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Peking University and University of Maryland

Under random truncation, a pair of independent random variables X
and Y is observable only if X is larger than Y. The resulting model is
the conditional probability distribution H�x�y� = P�X ≤ x�Y ≤ y�X ≥
Y�� For the truncation probability α = P�X ≥ Y�, a proper estimate is
not the sample proportion but αn = ∫

Gn�s�dFn�s� where Fn and Gn are
product limit estimates of the distribution functions F and G of X and
Y, respectivly. We obtain a much simpler representation α̂n for αn. With
this, the strong consistency, an iid representation (and hence asymptotic
normality), and a LIL for the estimate are established. The results are
true for arbitrary F and G. The continuity restriction on F and G often
imposed in the literature is not necessary. Furthermore, the representation
α̂n of αn facilitates the establishment of the strong law for the product limit
estimates Fn and Gn.

1. Introduction. Let X and Y be two independent random variables hav-
ing distribution functions F�x� and G�x�, respectively. Consider an infinite
sequence of independent random vectors 
�Xm�Ym�� m = 1�2� � � �� where
Xm and Ym are independently distributed as X and Y. For each m the pair
�Xm�Ym� is observable only when Xm ≥ Ym. Thus the observable random
variables are a subsequence of 
�Xm�Ym�� m = 1�2� � � ��. It is convenient to
denote the observable subsequence by 
�Uj�Vj�� j = 1�2� � � �� with Uj ≥ Vj.
The random vectors �Uj�Vj� are iid; however, the components of each vector
are dependent. Here and after, �U�V� refers to any pair of �Uj�Vj�. The ran-
dom truncation model is defined by the joint distribution H�x�y� of �U�V� as

H�x�y� = P�U ≤ x� V ≤ y� = P�X ≤ x� Y ≤ y�X ≥ Y�(1.1)

with marginal distributions,

F∗�x� = P�U ≤ x� = H�x�∞� = 1
α

∫ x

−∞
G�s�dF�s��(1.2)

G∗�x� = P�V ≤ x� = H�∞� x� = 1
α

∫ x

−∞
F̄�s−�dG�s��(1.3)

where

α = P�X ≥ Y� =
∫

G�s�dF�s��(1.4)
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The integral sign
∫ b
a stands for

∫
�a� b�. The integral sign without limits refers

to integration from −∞ to +∞.
The general problem is to draw statistical inference about the unknown F

and G based on a sample of n iid random vectors 
�Uj�Vj�� j = 1�2� � � � � n�
from 
�Xm�Ym�� m = 1�2� � � � �mn�, where the given n ≤ mn and mn is
unknown.

In the companion paper, He and Yang (1998) in the same issue of this jour-
nal, we prove the strong law of large numbers for the product limit estimate
Fn given in (2.4). Under the same assumptions used in the companion paper,
we address in this paper the estimation of the truncation probability,

α = P�X ≥ Y� =
∫

G�s�dF�s��(1.5)

The problem is, of course, trivial if we have an iid sample from the original
untruncated �X�Y�-data, �X1�Y1�� �X2�Y2�� � � � � �Xmn

�Ymn
�, with a known

sample size mn. Then the sample proportion of those �Xk�Yk� with Xk ≥ Yk is
an optimal nonparametric estimate of α. However, under random truncation,
any pair �X�Y� for which X < Y is missing, and it is not known how many
pairs are missing in the sample because mn is unknown. Thus it is not at all
clear that reasonable estimates for α can be found.

Equation (1.4) suggests estimating α by

αn =
∫

Gn�s�dFn�s��(1.6)

provided good estimates Fn and Gn for F and G can be obtained.
Random truncation restricts the observation range of X and Y. Only

F0�x� = P�X ≤ x�X ≥ aG� and G0�x� = P�Y ≤ x�Y ≤ bF� can be estimated;
see Woodroofe (1985), where

aF = inf
x� F�x� > 0� and bF = sup
x� F�x� < 1�
are the lower and upper boundaries of the support of the distribution of X.
Let aG and bG be similarly defined.

This leads us to the introduction of the following parameter:

α0 =
∫

G0�s�dF0�s��(1.7)

If aG ≤ aF and bG ≤ bF, then F0 = F� G0 = G and α0 = α. Under these
conditions and the continuity of F and G, Woodroofe (1985) proved that if
Fn and Gn are product-limit estimates [given by (2.4) below], αn converges
in probability to α as n → ∞. Under similar conditions, the asymptotic nor-
mality of

√
n�αn −α� has been investigated by several authors using different

methods. Chao (1987) used influence curves and Keiding and Gill (1990) used
finite Markov processes and the δ-method.

Since Fn and Gn have complicated product-limit forms, it is generally not
easy to study the properties of αn. We propose, instead, to use the relationship

R�x� = P�V ≤ x ≤ U� = P�Y ≤ x ≤ X�X ≥ Y� = α−1G�x�F̄�x−�(1.8)
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to obtain an estimating equation for α as

α = G�x�F̄�x−�/R�x��(1.9)

Replacing F and G by the respective product limit estimates yields another
estimate of α as

α̂n = Gn�x�F̄n�x−�/Rn�x�(1.10)

for all x such that Rn�x� > 0. [Defined by (2.3).]
An important result of this paper is that if Fn and Gn are the product-limit

estimates of F0 and G0 defined by (2.4) below, then α̂n and αn are equal. In
particular, α̂n is independent of x, provided Rn�x� > 0� The proof of equiv-
alence is presented in Section 2. It is worth noting that the equivalence is
not derived from integration-by-parts. The advantage of α̂n over αn is its sim-
pler form, which makes the analysis easier and enables us to obtain further
properties of the estimate. Using α̂n, we prove in Section 3 the almost sure
convergence of the estimate to α0 and obtain a manageable iid representation
for α̂n and a LIL. The iid representation yields immediately the asymptotic
normality of the estimate.

The iid representation for α̂n is deduced from that of Fn and Gn. Several iid
representations for Fn (and Gn) are available in the literature with different
remainder terms; see Chao and Lo (1988), Gu and Lai (1990) and Stute (1993).
We shall use Stute’s representation, which is derived under the condition that

∫ dF

G2
< ∞ and

∫ dG

F̄2
< ∞�(1.11)

It has a sufficiently higher order remainder term of O�ln3 n/n� that suits our
purpose. This condition can be weakened to

∫ dF

G
< ∞ and

∫ dG

F̄
< ∞�(1.12)

provided the tails of estimates Fn and Gn are properly modified. Under (1.12),
the remainder term is of lower order than O�log3 n/n� but still good enough to
yield the asymptotic normality for Fn at the rate

√
n and a LIL, as shown by

Gu and Lai (1990). Based on these, we obtain similar results for a modified α̂n.
Results in Section 3 are established under the continuity of F and G but

are true for discrete F and G as well. The generalization to arbitrary F and
G is given in Section 4.

By construction, α̂n and αn inherit asymptotic properties of Fn and Gn.
Conversely, good behavior of α̂n induces nice properties in Fn and Gn. As
shown in He and Yang (1998), the almost sure convergence of α̂n to α0 leads
to the SLLN for Fn in the sense that

∫
ϕdFn →

∫
ϕdF0

for any integrable ϕ.
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2. The equivalence of �̂ n and � n. To avoid triviality, we shall always
assume aG < bF, which ensures that α > 0. In what follows, for any real
monotone function g, the left continuous version of g�s� is denoted by g�s−�
or g−�s�, and the difference g�s� − g�s−� by the curly brackets g
s�. The
convergence is “with respect to n → ∞” unless specified otherwise.

Lemma 2.1. Let α0 be given by (1.7) and α by (1.5). Then α0 ≥ α. A necessary
and sufficient condition for α0 = α is

aG ≤ aF and bG ≤ bF�(2.1)

Proof. For x ∈ �aG� bF�, we have

G0�x� = P�Y ≤ x�/P�Y ≤ bF�� F̄0�x−� = P�X ≥ x�/P�X ≥ aG��
Hence, it follows from (1.8) and Lemma 1 of Woodroofe (1985) that

α0 = α�G�bF�F̄�aG−��−1� ✷

Let I�A� denote the indicator function of the event A. Let F∗
n, G∗

n and Rn

be the empirical distributions defined by

F∗
n�s� = n−1

n∑
i=1

I�Ui ≤ s�� G∗
n�s� = n−1

n∑
i=1

I�Vi ≤ s��(2.2)

Rn�s� = G∗
n�s� −F∗

n�s−� = n−1
n∑

i=1

I�Vi ≤ s ≤ Ui��(2.3)

The well-known product limit estimates of F0 and G0 are defined by

Fn�x� = 1 − ∏
s≤x

(
1 − F∗

n
s�
Rn�s�

)
and Gn�x� =

∏
s>x

(
1 − G∗

n
s�
Rn�s�

)
�(2.4)

where an empty product is set equal to 1. For construction of these estimates,
see Woodroofe (1985) or Wang, Jewell and Tsai (1986).

The estimates Fn and Gn are step functions. The jumps of Fn occur at the
distinct order statistics U�1� < U�2� < · · · < U�r� of the sample U1�U2� � � � �Un

with jump size at U�j� (using our brackets notation) given by

Fn
U�j�� = ∏
i<j

(
1 − F∗

n
U�i��
Rn�U�i��

)
F∗

n
U�j��
Rn�U�j��

�(2.5)

A similar expression for Gn can be determined from (2.4) where Gn jumps
at the distinct order statistics V�1� < V�2� < · · · < V�q� of V1�V2� � � � �Vn.

We need to study these jumps in order to prove the following equivalence
theorem.

Theorem 2.2. Let Fn and Gn be the product limit estimates given by (2.4).
Let α̂n be defined by (1.10) and αn by (1.6). Then αn = α̂n, for any x such that
Rn�x� > 0.
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Proof. The case αn = 0 is easy. Note that αn = 0 if and only if bFn
< aGn

or bFn
= aGn

and �1 −Fn�bFn
−��Gn�aGn

� = 0. This is equivalent to α̂n = 0 for
all x.

Now suppose αn > 0. We introduce two independent random variables Z
and W which have distributions Fn�x� and Gn�x�, respectively. Then

αn = P�Z ≥ W� =
∫

Gn dFn�

The integral
∫ x

∞
Gn�t�dFn�t� =

r∑
j=1

Gn�U�j��Fn
U�j��I�U�j� ≤ x�

=
r∑

j=1

ζn�jF
∗
n
U�j��I�U�j� ≤ x��

(2.6)

where ζn�j = Gn�U�j��Fn
U�j��/F∗
n
U�j��.

In Lemma 2.3 below we show that for n fixed, ζn�j is a constant in j, say
ζ0. By setting x = ∞ in (2.6) we obtain

αn =
∫

Gn�s�dFn�s� = ζ0
∑
j

F∗
n
U�j�� = ζ0�(2.7)

Consequently, the conditional distribution

P�Z ≤ x�Z ≥ W� = α−1
n

∫ x

−∞
Gn�t�dFn�t� = α−1

n ζ0F
∗
n�x� = F∗

n�x��(2.8)

By symmetry,

G∗
n�x� = P�W ≤ x�Z ≥ W��

Therefore, Rn�x�=G∗
n�x�−F∗

n�x−�=P�W≤x≤Z�Z≥W�=α−1
n Gn�x�F̄n�x−�;

that is,

αn = Gn�x�F̄n�x−�
Rn�x�

= α̂n

for all x such that Rn�x� > 0. ✷

Remark. Once we have reached (2.8), we could use integration-by-parts
to complete the proof. However, it is simpler to use random variables Z and
W. Then the result follows immediately by symmetry. Note also that although
αn is an MLE, it is not obvious that α̂n is an MLE, since it is Fn�x� and not
Fn�x−�, that is, the MLE of F. Therefore we cannot use the MLE argument
to claim that αn = α̂n.

Lemma 2.3. Let Fn and Gn be the product-limit estimates given by (2.4).
Let ζn�j = Gn�U�j��Fn
U�j��/F∗

n
U�j�� as in (2.6). Then for any fixed n, ζn�j =
ζn�1, for j = 2� � � � � n.
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Proof. Substituting (2.5) for Fn
U�j�� in ζn�j gives

ζn�j =
q∏

k=1

(
1 − G∗

n
V�k��I�V�k� > U�j��
Rn�V�k��

) ∏
i<j

(
1 − F∗

n
U�i��
Rn�U�i��

)
1

Rn�U�j��
�

We show that the differences ζn�j−ζn�j−1 = 0 for all j. Write the difference
as a product

ζn�j − ζn�j−1 = 
An�j�
Bn�j��
where

An�j =
q∏

k=1

(
1 − G∗

n
V�k��I�V�k� > U�j��
Rn�V�k��

) ∏
i<j−1

(
1 − F∗

n
U�i��
Rn�U�i��

)
�

Bn�j =
(

1 − F∗
n
U�j−1��

Rn�U�j−1��
)

1
Rn�U�j��

− 1
Rn�U�j−1��

∏
l

(
1 − G∗

n
V�l��I�U�j−1� < V�l� ≤ U�j��
Rn�V�l��

)
�

We are going to show that Bn�j = 0, which proves the lemma.
Put h = ∑

l I�U�j−1� < V�l� ≤ U�j��� which is the total number of V’s lying
in the interval �U�j−1��U�j��.

If h = 0, then Rn�U�j�� = Rn�U�j−1�� −F∗
n
U�j−1��. It follows that

Bn�j = Rn�U�j−1�� −F∗
n
U�j−1��

Rn�U�j−1��
1

Rn�U�j��
− 1

Rn�U�j−1��
= 0�

If h > 0, let us denote by V′
�1��V

′
�2�� � � � �V

′
�h� the distinct ordered values of

Vj in �U�j−1��U�j��, that is,

U�j−1� < V′
�1� < V′

�2� < · · · < V′
�h� ≤ U�j��

Then,

∏
l

(
1 − G∗

n
V�l��I�U�j−1� < V�l� ≤ U�j��
Rn�V�l��

)
=

h∏
l=1

(
1 −

G∗
n
V′

�l��
Rn�V′

�l��
)

=
Rn�V′

�1�−�
Rn�V′

�h��

= G∗
n�U�j−1�� −F∗

n�U�j−1��
G∗

n�V′
�h�� −F∗

n�U�j−1��
�

This implies that

Bn�j = Rn�U�j−1�� −F∗
n
U�j−1��

Rn�U�j−1��
1

Rn�U�j��

− Rn�U�j−1�� −F∗
n
U�j−1��

Rn�V′
�h��

1
Rn�U�j−1��

= 0�
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The last equality follows from Rn�U�j�� = Rn�V′
�h��. This is because if

V′
�h� < U�j�, then Rn�U�j�� = G∗

n�U�j��−F∗
n�U�j�−� = G∗

n�V′
�h��−F∗

n�V′
�h�−� =

Rn�V′
�h��. ✷

Corollary 2.4.

α̂n = Gn�U�j��F̄n
U�j�−�
Rn�U�j��

= Gn�V�j��F̄n
V�j�−�
Rn�V�j��

� j = 1�2� � � � � n�

The next corollary follows either by Theorem 4.1 of He and Yang (1998),
or by applying the uniform strong convergence of Fn [see Chen, Chao and Lo
(1994)].

Corollary 2.5. As n → ∞,

α̂n → α0 a.s.

Remark. If we use Sn�x� = exp�− ∫ x
−∞ dF∗

n/Rn� to estimate 1 − F0�x�,
and Q̃n�x� = exp�− ∫∞

x dG∗
n/Rn� to estimate G0�x� then, by Corollary 3.2 of

He and Yang (1998), for any x such that Rn�x� > 0,

cn = Q̃n�x�Sn�x−�
Rn�x�

is a strong consistent estimate of α0.

3. The CLT and the LIL for � n. Since αn and α̂n are equivalent, the
known result of asymptotic normality of

√
n�αn − α0� applies to

√
n�α̂n − α0�.

On the other hand, the simple form of α̂n makes it possible to obtain an iid
representation from which the asymptotic normality of α̂n follows immediately.
Moreover, an LIL can be obtained.

Let Fn and Gn be defined by (2.4). Applying Theorem 2 of Stute (1993)
yields the following iid representation for Fn and Gn. This result is needed
for deriving the iid representation for α̂n as given in Theorem 3.2. It is also of
independent interest.

Lemma 3.1. If F and G are continuous such that
∫ ∞

aG

dF�s�
G2�s� < ∞ and

∫ bF

−∞
dG�s�
F̄2�s� < ∞(3.1)

then for x ∈ �aG� bF�, we have the following:

(i) Fn�x� = F0�x� + F̄0�x���1/n�
∑n

i=1 Zi�x�� +O�log3 n/n�, a.s.
(ii) Gn�x� = G0�x� −G0�x���1/n�

∑n
i=1 Wi�x�� +O�log3 n/n�, a.s.

where

Zi�x� =
I�Ui ≤ x�
R�Ui�

−
∫ x

−∞
I�Vi ≤ s ≤ Ui�

R2�s� dF∗�s�� i = 1�2� � � � � n�
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are iid random variables with

EZi�x� = 0� Var�Zi�x�� =
∫ x

aF∗

dF∗�s�
R2�s�

and

Wi�x� =
I�Vi > x�
R�Vi�

−
∫ ∞

x

I�Vi ≤ s ≤ Ui�
R2�s� dG∗�s�� i = 1�2� � � � � n�

are iid random variables with

EWi�x� = 0� Var�Wi�x�� =
∫ bG∗

x

dG∗�s�
R2�s� �

Proof. We prove only (i), because (ii) can be proved by symmetry.
It is easy to see that

∫∞
aG

dF�s�/G2�s� < ∞ if and only if
∫

dF0�s�/G2
0�s� <

∞, and
∫ bF

−∞ dG�s�/F̄2�s� < ∞ if and only if
∫

dG0�s�/F̄2
0�s� < ∞. By Theo-

rem 2 of Stute (1993),

Fn�x� −F0�x� = F̄0�x�Ln�x� +O

(
log3 n

n

)
� a.s.,

with

Ln�x� =
∫ x

aF

dF∗
n�s�

R�s� −
∫ x

aF

Rn�s�
R2�s� dF∗�s� = 1

n

n∑
i=1

Zi�x�� a.s.

Direct computation yields

EZi�x� = 0�

and

Var�Zi�x�� =
∫ x

aF∗

dF∗

R2
+

∫ x

aF∗

∫ x

aF∗

EI�s�I�t�
R2�s� dF∗�s� 1

R2�t� dF∗�t�

− 2
∫ x

aF∗
E

(
I�U ≤ x�I�s�

R�U�
)
dF∗�s�
R2�s� =

∫ x

aF∗

dF∗

R2
�

where I�s� = I�V ≤ s ≤ U�. ✷

Remark. Evaluation of integrals similar to the above will be carried out
in the proof of the next theorem.

Theorem 3.2. Under the assumptions of Lemma 3.1, as n → ∞,
√

n�α̂n −
α0� converges weakly to the normal distribution N�0� σ2�, and with probability

1, the sequence 
√n/2 log log n�α̂n − α0�� n ≥ 7� is relatively compact with its
set of limit points �−σ�σ�, where

σ2 = α2
0

{∫ x

aF∗

dF∗�s�
R2�s� +

∫ bG∗

x

dG∗�s�
R2�s� − 1

R�x� + 2α0 − 1
}

for x ∈ �aG∗� bF∗�, is a positive constant.
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Proof. Using Lemma 3.1 and the LIL for iid partial sums, we obtain
∀ x ∈ �aG∗� bF∗�, with probability 1 for n large:

α̂n − α0 = Gn�x��1 −Fn�x−��
Rn�x�

− G0�x��1 −F0�x��
R�x�

= F̄0�x�R�x�G0�x�
Rn�x�R�x�

{
− 1

n

n∑
i=1

Wi�x� −
1
n

n∑
i=1

Zi�x�

− 1
nR�x�

n∑
i=1

�I�Vi ≤ x ≤ Ui� −R�x��
}

+O

(
log3 n

n

)

= −α0
1
n

n∑
i=1

ζi�x� +O

(
log3 n

n

)
a.s.�

where

ζi�x�=Wi�x�+Zi�x�+
1

R�x�
(
I�Vi ≤x≤Ui�−R�x�)� i=1�2� � � � �(3.2)

is a sequence of iid random variables with mean zero. The theorem follows by
the classical CLT and the LIL for partial sums of an iid sequence, if we can
show that

Var�ζi�x�� = σ2 ∀ x ∈ �aG∗� bF∗�(3.3)

is a positive constant. This requires calculations of the moments and cross-
product moments of Zi, Wi and I�Vi ≤ s ≤ Ui�. The calculation is not hard
but tedious. We shall give some key steps only. To proceed, we suppress the
subscript i from these variables for simplicity. Put T�s� = I�s�/R�s�−1. Then

E�T�x��2 = 1
R�x� − 1�

EZ�x�W�x� =
∫ x

aF∗

∫ bG∗

x

E�I�s�I�t��
R2�t� dG∗�t� 1

R2�s� dF∗�s�

= 1
α

∫ x

aF∗

∫ bG∗

x

G�s�F̄�t�
R2�t� dG∗�t� 1

R2�s� dF∗�s�

= −α

(
1

G�bG∗� −
1

G�x�
)(

1

F̄�x� −
1

F̄�aF∗�

)

and

E�Z�x� +W�x��T�x� = − α

G�x�
(

1

F̄�x� −
1

F̄�aF∗�

)

+ α

F̄�x�

(
1

G�bG∗� −
1

G�x�
)
�
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Using the moments of Zi and Wi given in Lemma 3.1, we obtain

Var�ζ�x�� =
∫ x

aF∗

dF∗

R2
+

∫ bG∗

x

dG∗

R2
− 1

R�x� + 2α0 − 1�

where we used the fact that α0 = α�G�bG∗�F̄�aF∗��−1 = α�G�bF�F̄�aG��−1 [see
the definition of G∗ and F∗ in (1.2), (1.3)]. Obviously, ζ�x� is not a constant
and therefore σ2 > 0. Then ∀ x�y ∈ �aG∗� bF∗�, the difference

Var�ζ�x�� − Var�ζ�y�� =
∫ y

x

dR

R2
+ 1

R�y� −
1

R�x� = 0�

Hence, σ2 = E�ζ�x��2 for x ∈ �aG∗� bF∗� is a positive constant. ✷

Remark. The random variable ζ�x� does not depend on x. This can be seen
from the following representation:

ζ�x� = 1
R�V� −

∫ bG∗

aG∗

I�s�
R2�s� dG∗�s� − 1 a.s.

or

ζ�x� = 1
R�U� −

∫ bF∗

aF∗

I�s�
R2�s� dF∗�s� − 1 a.s.

A necessary and sufficient condition for σ2 < ∞ is
∫ ∞

aG

dF

G
< ∞ and

∫ bF

−∞
dG

F̄
< ∞�(3.4)

which is weaker than (3.1). To obtain results similar to Lemma 3.1 and Theo-
rem 3.2 under the weaker condition (3.4) we can use a modified form α̃n of αn.
The modification is necessary to avoid singularities at the boundaries of X. It
is constructed based on the modified estimates F̃n, G̃n, of Fn, Gn proposed by
Gu and Lai (1990) as given below:

F̃n�x� = 1 − ∏
i�Ui≤x

(
1 − I�G∗

n�Ui� ≥ nθ−1�
nRn�Ui�

)
(3.5)

and

G̃n�x� =
∏

i�Vi>x

(
1 − I�F̄∗

n�Vi−� ≥ nθ−1�
nRn�Vi�

)
(3.6)

for θ ∈ �1/3�1/2�.
Accordingly, the modified estimate α̃n for α0 is

α̃n = G̃n�x��1 − F̃n�x−��
Rn�x�

�(3.7)

for any x such that Rn�x� > 0� To see how G̃n is constructed, put X̃ = −Y and
Ỹ = −X. Thus X ≥ Y is precisely X̃ ≥ Ỹ. Therefore, �X̃� Ỹ� is observable
if and only if X ≥ Y, and so �Ũ� Ṽ� = �−V�−U�. Then the corresponding
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modified estimate for P�X̃ ≤ x� based on the data 
�Ũj� Ṽj�� j = 1� � � � � n� is,
according to (3.5),

1 − ∏
i� Ũi≤x

(
1 − I�∑j I�Ṽj ≤ Ũi� ≥ nθ�∑

j I�Ṽj ≤ Ũi ≤ Ũj�

)

= 1 − ∏
i�Vi≥−x

(
1 − I�∑j I�Uj ≥ Vi� ≥ nθ�∑

j I�Vj ≤ Vi ≤ Uj�
)

= 1 − ∏
i�Vi≥−x

(
1 − I�F̄∗

n�Vi−� ≥ nθ−1�
nRn�Vi�

)
�

However, by construction P�X̃ ≤ x� = P�Y ≥ −x� = 1 − G−�−x�. Therefore,
G�x� is estimated by

∏
i�Vi>x

[
1 − I�F̄∗

n�Vi−� ≥ nθ−1�
nRn�Vi�

]
�

An iid representation for α̃n under the weaker condition (3.4) is achieved
at the cost of lowering the order of the remainder term. However, the order
remains high enough to yield the weak convergence of

√
n�α̂n−α0� to normality

and a LIL. The proof of this is more involved than that of Theorem 3.2.
Let Zi�x� and Wi�x� be defined as in Lemma 3.1.

Lemma 3.3. Assume that F and G are continuous and satisfy the conditions
(3.4). Then for θ ∈ �1/3�1/2�, x ∈ �aG� bF�, as n → ∞ we have the following.

(i) F̃n�x� = F0�x� + F̄0�x���1/n�
∑n

i=1 Zi�x�� +O�ηn� a.s.

(ii) G̃n�x� = G0�x� −G0�x���1/n�
∑n

i=1 Wi�x�� +O�ηn� a.s.

where ηn = o�φ�n�� a.s., φ�n� = √
2 log log n/n and ηn = op�1/

√
n�.

Proof. We first prove (i) and then show that (ii) can be obtained by means
of symmetry. Taking q = θ and c = 1 in Theorem 2 of Gu and Lai (1990), we
have, with probability 1 as n → ∞,

F̃n�x� −F0�x�

= 1
mn

mn∑
j=1

F̄0�x�
∫ x

τn

1

G�u�F̄�u�

× d

{
I�Yj ≤ Xj ≤ u� −

∫ u

−∞
I�Xj ≥ s ≥ Yj�

dF�s�
F̄�s�

}

+O�nθ−1��
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where τn = inf
s� G∗
n�s� ≥ nθ−1�, and mn is defined in the Introduction. By

(1.2) we have

F̃n�x� −F0�x� =
F̄0�x�
αmn

∫ x

τn

1
R�u�d

{
nF∗

n�u� − n
∫ u

−∞
Rn�s�
R�s� dF∗�s�

}

+O�nθ−1�

= 1
n
F̄0�x�

n∑
i=1

Zi�x� +
1
α

(
n

mn

− α0

)
F̄0�x�

1
n

n∑
i=1

Zi�x�

− n

αmn

F̄0�x�
1
n

n∑
i=1

Zi�τn� +O�nθ−1�

= F̄0�x�
1
n

n∑
i=1

Zi�x� +J1� n�x� +J2� n�x� +O�nθ−1��

According to Corollary 4 of Gu and Lai (1990), for any δ ∈ �aG� x�,

lim sup
n→∞

1
φ�n� sup

aG≤s≤δ

∣∣∣∣ 1
n

n∑
i=1

Zi�s�
∣∣∣∣ ≤

(∫ δ

aG

dF�s�
αF̄2�s�G�s�

)1/2

a.s.

Now ∫ δ

aG

dF�s�
αF̄2�s�G�s� ≤ 1

F̄2�x�
∫ δ

aG

dF�s�
G�s� → 0 as δ → aG�

n/mn → α0 a.s, and the classical LIL implies that Ji�n�x� = o�φ�n��, a.s. for
i = 1�2. On the other hand, the CLT and the Chebyshev inequality imply that
Ji�n�x� = op�1/

√
n�, for i = 1�2. This completes the proof of (i). We now turn

to the proof of (ii). As noted earlier,

Q�x� ≡ P�X̃j ≤ x� = 1 −G�−x�� K�x� ≡ P�Ỹj ≤ x� = 1 −F�−x��
Thus aQ = −bG, bQ = −aG, aK = −bF, bK = −aF, and aG < bF if and only if
−bQ < −aK�

Therefore,
∫ ∞

aK

dQ�x�
K�x� =

∫ ∞

−bF

−dG�−x�
1 −F�−x� =

∫ bF

−∞
dG�x�

1 −F�x� < ∞�

Since �aG� bF� = �−bQ�−aK�� so if x ∈ �aG� bF� then −x ∈ �aK� bQ�. Setting
y = −x and applying (i), we obtain

Q̃n�y� = Q0�y� + �1 −Q0�y��
(

1
n

n∑
i=1

Z̃i�y�
)
+O�η�n��

where Q̃n�y� = 1− G̃n��−y�−� = 1− G̃n�x−�, Q0�y� = P�X̃j ≤ y�X̃j ≥ aK� =
Ḡ0�x−� and

Z̃i�y� =
I�Ũi ≤ y�
R̃�Ũi�

−
∫ y

aK

I�Ṽi ≤ s ≤ Ũi�
R̃2�s� dQ∗�s��
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with R̃�s� = P�Ṽi ≤ s ≤ Ũi� = R�−s� and Q∗�s� = P�Ũi ≤ s� = 1 − G∗�−s�.
Hence

Z̃i�y� =
I�Vi ≥ x�
R�Vi�

−
∫ −x

−bF

I�Vi ≤ −s ≤ Ui�
R2�−s� d�1 −G∗�−s�� = Wi�x−��

where Wi is given in Lemma 3.1.
Therefore

G̃n�x−� = G0�x−� −G0�x−� 1
n

n∑
i=1

Wi�x−� +O�ηn� a.s. ✷

The following theorem is proved the same way as Theorem 3.2.

Theorem 3.4. Suppose the assumptions of Lemma 3.3 hold. As n → ∞,√
n�α̃n − α0� converges weakly to the normal distribution N�0� σ2�, and with

probability 1, the sequence 
φ−1�n��α̃n−α0�� n ≥ 7� is relatively compact with
its set of limit points �−σ�σ�, where σ2 is defined in Theorem 3.2.

4. Arbitrary F and G. We shall relax the continuity condition on F and
G of Theorems 3.2 and 3.4. The results are given in Theorems 4.1 and 4.2.
As noted by Woodroofe (1985), the truncation model H�x�y� is the same if
the underlying distributions F and G are replaced by F0 and G0. Thus for
studying H, we may, without loss of generality, assume that F0 = F and
G0 = G. It follows that α0 = α. This simplifies the discussion.

The proof for arbitrary F and G uses a technique of Major and Rejtö (1988).
Namely, we transform X�Y to X̂� Ŷ via a certain specially constructed real
function h�x�. The transformed random variables have continuous distribution
functions to be denoted by F̂ and Ĝ. As such, the foregoing theorems apply to
the product-limit estimates F̂n� Ĝn of F̂� Ĝ, where the product-limit estimates
F̂n� Ĝn are computed, with (2.4), based on the transformed sample, X̂i� Ŷi or
Ûi� V̂i. It is shown in He and Yang (1998) that

F�u� = F̂�h�u+��� G�u� = Ĝ�h�u+���
Fn�u� = F̂n�h�u+��� Gn�u� = Ĝn�h�u+�� for any real number u�

By way of this relationship, we show that the results of previous sections hold
for arbitrary F and G. To proceed, we need to express Rn and αn in terms
of the transformed variables as well. Using the same notation as in He and
Yang, we put the symbol ˆ on quantities derived from the transformed data
and let A = 
xj� j ≥ 1� be the set of jump points of F and G.

If aG∗ < bF∗ , then for x ∈ �aG∗� bF∗� − A, with probability 1 for large n we
have

0 < Rn�x� =
1
n

mn∑
i=1

I�Yi ≤ x ≤ Xi� =
1
n

mn∑
i=1

I�Ŷi ≤ h�x� ≤ X̂i�

= 1
n

n∑
i=1

I�V̂i ≤ h�x� ≤ Ûi� ≡ R̂n�h�x���
(4.1)
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Define F̂∗�x� = P�Ûi ≤ x�, Ĝ∗�x� = P�V̂i ≤ x� and R̂�x� = Ĝ∗�x�−F̂∗�x−�.
It follows that R�x� = R̂�h�x�� and

α̂n = �1 −Fn�x−��Gn�x�
Rn�x�

= �1 − F̂n�h�x�−��Ĝn�h�x��
R̂n�h�x��

�(4.2)

Here we have used the fact that h�x� = h�x+� for x ∈ Ac, the continuity set
of F and G.

Parallel to Theorems 3.2 and 3.4, we arrive at the following general results
in Theorems 4.1 and 4.2 for arbitrary F�G under condition (3.1) and (3.4),
respectively. Note that for continuous F and G, the σ2 formula in Theorem
4.1 coincides with that in Theorem 3.2.

Theorem 4.1. If∫ dF�s�
G2�s� < ∞�

∫ dG�s�
�1 −F�s−��2

< ∞(4.3)

and aG∗ < bF∗ , then as n → ∞,
√

n�α̂n − α� converges weakly to the normal
distribution N�0� σ2�. Moreover, with probability 1, the sequence 
φ�n�−1�α̂n−
α�� n ≥ 7� is relatively compact with the set of its limit points �−σ�σ�, where

σ2 = α2
{∫ x

−∞
dF�s�

R�s�F̄�s� +
∫ ∞

x

dG�s�
R�s�G�s−� −

1
R�x� + 2α− 1

}

is a positive constant for x ∈ �aG∗� bF∗� −A.

Proof. We first show that F̂0 = F̂ and Ĝ0 = Ĝ� Applying Corollary 5.3 of
He and Yang (1998) gives

∫ dF

G2
=

∫
Ac

dF̂�h�x��
Ĝ2�h�x��

+∑
j

F̂�h�xj+�� − F̂�h�xj��
Ĝ2�h�xj+��

=
∫
;c

dF̂

Ĝ2
+∑

j

{∫
;j�1

dF̂

Ĝ2
+

∫
;j�2

dF̂

Ĝ2

}
=

∫ dF̂

Ĝ2
< ∞�

and similarly
∫ dG

�1 −F−�2
=

∫ dĜ

�1 − F̂�2
< ∞�

where ;c� ;j�1� ;j�2 are defined in Section 5 of He and Yang (1998). It follows
that aF̂ ≥ aĜ and bĜ ≤ bF̂. Hence F̂0 = F̂, Ĝ0 = Ĝ. By Theorem 3.2, (3.9) and
the fact that α = P�Xi ≥ Yi� = P�X̂i ≥ Ŷi�, the weak convergence of

√
n�α̂n−

α� to N�0� σ2
1 � follows. Also, with probability 1, the sequence 
φ�n�−1�α̂n −

α�� n ≥ 7� is relatively compact with the set of its limit points �−σ1� σ1�,
where

σ2
1 = α2

{∫ h�x�

−∞
dF̂∗

R̂2
+

∫ ∞

h�x�
dĜ∗

R̂2
− 1

R̂�h�x��
+ 2α− 1

}
(4.4)

is a positive constant for h�x� ∈ �aĜ∗� bF̂∗�.



ESTIMATION OF THE TRUNCATION PROBABILITY 1025

It remains to prove that σ2 = σ2
1 . For x ∈ Ac with R�x� > 0, we know that

h�x� ∈ ;c and

R̂�h�x�� = P�V̂i ≤ h�x� ≤ Ûi� = α−1P�Ŷi ≤ h�x� ≤ X̂i� = R�x� > 0�(4.5)

For s ∈ ;j�2,

αR̂�s� = G�xj��1 −F�xj−� − �2j2�s− h�xj�� − 1�F
xj���
F̂�s� = F�xj−� + �2j2�s− h�xj�� − 1�F
xj��

We show that the two integrals in σ2
1 equal the corresponding ones in σ2. The

first integral is

∫ h�x�

−∞
dF̂∗

R̂2
=

∫ h�x�

−∞
dF̂

R̂�1 − F̂�
= E

(
I�X̂ ≤ h�x��

R̂�X̂��1 − F̂�X̂��

)
≡ B+D�(4.6)

where

B = E

(
I�X̂ ≤ h�x�� X ∈ Ac�

R̂�X̂��1 − F̂�X̂��

)
= E

(
I�h�X� ≤ h�x�� X ∈ Ac�
R̂�h�X���1 − F̂�h�X���

)

= E

(
I�X ≤ x� X ∈ Ac�
R�X��1 −F�X��

)
=

∫ x

−∞
IAc

dF�s�
R�s�F̄�s�

and

D = E

(
I�X̂ ≤ h�x�� X ∈ A�
R̂�X̂��1 − F̂�X̂��

)

= ∑
k�xk<x

E

(
I�X̂ ∈ ;k�

R̂�X̂��1 − F̂�X̂��

)
= ∑

k�xk<x

E
∫
;k

dF̂

R̂�1 − F̂�

= ∑
k�xk<x

α
∫
;k�2

d�2k2�s− h�xk�� − 1�F
xk�
G�xk��1 −F�xk−� − �2k2�s− h�xk�� − 1�F
xk��2

= ∑
k�xk<x

α

G�xk�
∫ F
xk�

0

ds

�1 −F�xk−� − s�2
= ∑

k�xk<x

∫

xk�

dF

RF̄
�

Therefore,

∫ h�x�

−∞
dF̂∗

R̂2
= B+D =

∫ x

−∞
dF

RF̄
�(4.7)

Evaluation of the second integral requires the specification of the values at s in
the intervals ;j�1. We proceed as above by computing the integral separately
over A and Ac as follows:

∫ ∞

h�x�
dĜ∗

R̂2
=

∫ ∞

h�x�
dĜ

R̂Ĝ
= E

(
I�Ŷ > h�x��
R̂�Ŷ�Ĝ�Ŷ�

)
≡ B1 +D1�(4.8)
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where

B1 = E

(
I�Ŷ > h�x�� Y ∈ Ac�

R̂�Ŷ�Ĝ�Ŷ�

)
� D1 = E

(
I�Ŷ > h�x�� Y ∈ A�

R̂�Ŷ�Ĝ�Ŷ�

)
�

After some tedious computations similar to those of B and D, we arrive at

B1 +D1 =
∫ ∞

x
IAc

dG�s�
R�s�G�s� +

∫ ∞

x
IA

dG�s�
R�s�G�s−� =

∫ ∞

x

dG�s�
R�s�G�s−� �

The equalities (4.5) through (4.9) show that σ2 = σ2
1 . This completes the proof

of Theorem 4.1. ✷

For the modified estimate

α̃n = G̃n�x��1 − F̃n�x−��
Rn�x�

for any x such that Rn�x� > 0�

we have the following result.

Theorem 4.2. For possibly discontinuous F and G, if

∫ dF

G
< ∞�

∫ dG

1 −F−
< ∞(4.9)

and aG∗ < bF∗ , then as n → ∞,
√

n�α̃n − α� converges weakly to the normal
distribution N�0� σ2�. Moreover, with probability 1, the sequence 
φ�n�−1�α̃n−
α�� n ≥ 7� is relatively compact with the set of its limit points �−σ�σ�, where
σ2 is given in Theorem 4.1.

Proof. For s belonging to the continuity set Ac, we apply Corollary 5.3 of
He and Yang (1998) to obtain 
Yi ≤ s� Xi ≥ Yi� = 
Ŷi ≤ h�s�� X̂i ≥ Ŷi�
and 
Yi ≤ xj� Xi ≥ Yi� = 
Ŷi ≤ t� X̂i ≥ Ŷi�, ∀ t ∈ ;j�2. It follows that
G∗

n�s� = Ĝ∗
n�h�s��, ∀ s ∈ Ac and G∗

n�xj� = Ĝ∗
n�h�t��, ∀ t ∈ ;j�2�

Hence by (3.5) for x ∈ Ac, we have

1 − F̃n�x�

= ∏
s≤x

(
1−

#
i�Ui = s� 1≤ i≤n�I�G∗
n�s�≥nθ−1�

#
i�Vi ≤ s≤Ui� 1≤ i≤n�
)

= ∏
s≤x� s∈Ac

(
1−

#
i� X̂i =h�s�� X̂i ≥ Ŷi� 1≤ i≤mn�I�Ĝ∗
n�h�s��≥nθ−1�

#
i� Ŷi ≤h�s�≤ X̂i� 1≤ i≤mn�

)

× ∏
j�xj<x

(
1−

#
i� X̂i ∈;j�2� X̂i ≥ Ŷi� 1≤ i≤mn�I�Ĝ∗
n�h�xj+��≥nθ−1�

#
i� Ŷi ≤h�xj�+1/2j2 ≤ X̂i� 1≤ i≤mn�

)

= ∏
s≤h�x�

(
1−

#
i� Ûi = s� 1≤ i≤n�I�Ĝ∗
n�s�≥nθ−1�

#
i� V̂i ≤ s≤ Ûi� 1≤ i≤n�

)
�
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The second equality is obtained by translating Ui�Vi into Xi�Yi and then
into X̂i� Ŷi. By the same token,

G̃n�x� =
∏

s>h�x�

(
1 −

#
i� V̂i = s�I�1 − F̂∗
n�s−� ≥ nθ−1�

#
i� V̂i ≤ s ≤ Ûi�

)
�

Finally, Theorem 3.4 and (4.5) imply Theorem 4.2. ✷

Remark. If aG∗ = bF∗ , then the observations �Ui�Vi� = �aG∗� aG∗�, i =
1�2� � � � � n. This implies that αn = α̂n = α̃n = 1. Since aG∗ = bF∗ implies that
F
aG∗� = 1 and G
aG∗� = 1, hence α = 1. Therefore, α̂n = α̃n = α.
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