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ASYMPTOTIC AND BOOTSTRAP CONFIDENCE BOUNDS
FOR THE STRUCTURAL AVERAGE OF CURVES1

By Kongming Wang2 and Theo Gasser

SUNY Health Science Center and University of Zürich

For analyzing samples of curves, Kneip and Gasser proposed a “struc-
tural analysis” for estimating an average curve which gives the average
amplitude and dynamics of the sample curves. An important step of their
method is the estimation of the warping functions in order to eliminate the
differences in dynamics between different curves. It is of interest to com-
pute confidence bounds for the structural average curve. First, we derive
the necessary asymptotic results to obtain confidence intervals based on
asymptotic normality. Due to the complex form of the asymptotic formu-
las and due to their asymptotic nature, bootstrap procedures are studied
in a second step. A small archive SACI (Structural Averaging and Con-
fidence Intervals), written in Fortran, can be obtained from the Web site
“http://www.unizh.ch/biostat” to compute the structural average curve, to
construct confidence regions at a structural point and to compute confi-
dence bars at other points.

1. Introduction. Consider a nonparametric regression model for m sub-
jects or experimental units:

Yij = fi�tij� + εij� j = 1� 	 	 	 � ni� i = 1� 	 	 	 �m	(1)

Here the fi are unknown curves recorded at times tij ∈ J ≡ �a0� a1	 ⊂ R.
The εij are independent error terms with mean E�εij� = 0 and variance
var�εij� = σ2

i > 0. Under the assumption that all �fi� are smooth and have
a similar pattern, one wants to estimate an average curve which reflects the
common structure of the individual curves. Such problems arise in studying
some biological, chemical or physical process or any other development. One
example is growth of humans or animals, where growth evolves at a different
intensity and at a different pace in different individuals. Another example is
speech signals, where the same words are spoken with varying loudness and
speed.

The variation on the time axis makes the cross-sectional average �f1+· · ·+
fm�/m inadequate as an average curve. Assume for (1) a model of the form
fi�t� = s�gi�t��, where s is some “shape function” and �gi� is an identically
independently distributed random sample of the developmental rates with
E�gi�t�� = t. Then by the law of large numbers, �f1+· · ·+fm�/m → E�f1� �= s
whenever s is nonlinear.
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In order to cope with the unfamiliar variation on the time axis, Kneip and
Gasser (1992) introduced “structural analysis.” The central idea of the struc-
tural analysis is the estimation of individual warping functions �gi� which
align individual curves to a common time scale. Naturally, these warping func-
tions are required to be strictly increasing and smooth. This proceeds in the
following steps (further details are given in Section 2).

1. The regression functions fi and/or their derivatives are estimated nonpara-
metrically.

2. Individual structural points are identified from the estimated functions.
Roughly speaking, structural points are features that are common to all
or most curves. Extremes and inflection points are examples for structural
points.

3. Warping functions are constructed from structural points such that indi-
vidual structural points are shifted to the respective average location. In-
between smooth monotonic interpolation is used.

4. The structural average is then estimated by averaging the aligned curves.

This method proved to be successful for studying human growth for vari-
ables inaccessible so far because of their small size and relatively large resid-
ual variation [Gasser, Kneip, Binding, Prader and Molinari (1991) and Gasser,
Kneip, Zieger, Molinari, Prader and Largo (1994)]. The success can be at-
tributed to the possibility of pooling information over many subjects to derive
the development of a “typical” child.

Even pediatricians acquainted with these results asked about the effect of
random variability on the estimated structural average curve. The purpose
of this paper is to describe methods for constructing confidence bounds for
the structural average. In the case of a single curve, one can only assess the
variations in amplitude caused by noise. If a sample of similar curves are
observed, as discussed here, not only the variability in amplitude but also the
variability in locating structural points can be estimated. This is intuitively
obvious. Therefore the confidence bounds take two forms. At a structural point,
a two-dimensional confidence region can be formed such that it contains the
structural point with a specified probability. At a nonstructural point, only
confidence bars for variation in amplitude are needed.

Two methods are presented, one based on the asymptotic normal approx-
imation and the other on bootstrapping. One reason for studying asymptotic
normality is that large samples are available in some applications so that the
asymptotic normal approximation could work. Another reason is that asymp-
totic normality of a statistic is often a necessary and sufficient condition for
bootstrapping [cf. Mammen (1992)]. To prove asymptotic normality we assume
that the curves in the sample are fixed unknown curves. If the curves are con-
sidered to be an identically independently distributed sample from a function
space, then the effects of noise can be ignored (cf. Section 4), and asymptotic
normality holds under general conditions. Thus we will not discuss it in de-
tail. It is shown that both the warping functions and the structural average
curve are asymptotically normal with a proper scaling. Asymptotic bias and
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variances are given in closed forms. In principle, these bias and variances
could be estimated from the data by plug-in methods, leading to asymptotic
confidence bounds. The complicated form makes this unrealistic and leads us
to propose bootstrap methods.

Bootstrap confidence bounds for an unknown function (density or regression
function) have been often studied [Härdle and Bowman (1988), Hall (1992a, b),
Härdle and Mammen (1993), Härdle and Marron (1991) and others]. A focus
of those methods is the correction of bias of nonparametric fitting since naive
bootstrap has bootstrap bias zero. For a sample of curves, bias correction is
even more important than for a single curve. This is essentially due to the
fact that variance decreases with the sample size m but not bias.

When bootstrapping, we should again make a distinction, whether the fi

(i = 1� 	 	 	 �m) are to be considered as fixed unknown curves or as an i.i.d.
random sample from some function space. In the first case, variations caused
by the �εij� are bootstrapped. Thus, resampling properly estimated residuals
works fine. In the second case, the leading term comes from random variation
of �fi� while the effects of �εij� can be ignored to a first-order approximation.
Naive bootstrapping of whole functions then works. See Section 4 for details,
where a combination of the two approaches is also discussed.

Figure 1 depicts the results of an illustrative simulation based on 50 func-
tions sampled at 100 equispaced points. The noise level is σ = 1. As to be

Fig. 1. Top left: five individual curves (smoothed) in the sample; top right: five bootstrapped
average curves by resampling estimated residuals; bottom left: five bootstrapped average curves by
resampling curves with replacement (the range of the averages is about −6 to 6); bottom right: 100
estimated residuals from one curve data.
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expected, bootstrapping when assuming a random sample of functions leads
to more variability between bootstrap realizations of the average curve. For
more information on the simulation, see Section 4.3.

The paper is organized as follows: the structural analysis of Kneip and
Gasser (1992) is summarized in Section 2. Results on asymptotic normal ap-
proximation are in Section 3. Bootstrap methods are presented in Section 4.
Comments on proofs of the theorems are gathered in Section 5.

2. Structural analysis. The procedure outlined in Section 1 for aligning
curves which are similar in structure—and usually created by one and the
same basic process—has intuitive appeal. Elementary features (or landmarks)
common to the curves are aligned to their average location; from this discrete
function, a smooth warping function is created by smooth interpolation. De-
spite the intuitive appeal, a relatively complicated mathematical formalism is
required which we will try to keep simple [see Kneip and Gasser (1992) for
more details]. First we need some definitions.

Definition 2.1. The function space C�ν��J� consists of all ν-times contin-
uously differentiable functions on J ≡ �a0� a1	.

Definition 2.2. The kernel estimator f̂i of fi, with kernel W and band-
width b, is

f̂i�t� b� =
1
b

ni∑
j=1

Yij

∫ si� j

si� j−1

W

(
t − u

b

)
du�

where si� j = �tij+1 + tij�/2, j = 1� 	 	 	 � ni − 1, si� 0 = ti1 − �si� 1 − ti1� and
si� ni

= tini
+ �tini

− si�ni−1�.
For simplicity we will use f̂

�j�
i = djf̂i/dtj as derivative estimator, but a

kernel estimator with special kernels could also be used. The bandwidth b de-
pends on the order of the derivative. Also other smoothing methods like local
polynomials or splines can be used without changing asymptotic results (note
that everything is based on fixed design, where most methods are asymptoti-
cally equivalent).

The extraction of structural features can be viewed as a mapping from
function space to the real line. This leads to the definition of structural func-
tionals. For simplicity we will often concentrate on extrema of f

�γ�
i associated

with “e-functionals.”

Definition 2.3. A structural functional T is a mapping T� � ⊂ C�ν��J� �→
�a0� a1�. An e-functional of order �γ + 1� locates an extrema of f

�γ�
i (ordinary

extrema are first order).
A further interesting class of features are characterized by “p-functionals”

which locate a certain percentage of decrease (or increase) in a monotone
segment (e.g., half lifetime).
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Definition 2.4. Assume that f
�γ�
i is monotone on �αi� βi	 ⊂ �a0� a1�, where

αi and βi are extremes of f
�γ�
i . For some p ∈ �0� 1�, a p-functional of order γ

locates a point p�fi� ∈ �αi� βi� such that

f
�γ�
i

(
p�fi�

) = pf
�γ�
i �αi� + �1 − p�f�γ�

i �βi�	

Remark 2.1. One can include the case where some extremum is not found
in some function by assigning a “missing” site (a point not in [a0� a1]). This
can be handled also in practical terms [Kneip and Gasser (1992)].

A basic and plausible assumption is some structural homogeneity of the
class of functions � ⊂ C�ν��J� considered. For structural functionals Tr: �r �→
�a0� a1� �r = 1� 	 	 	 � l�, let us assume the following:

(i) �fi� i = 1� 2� 	 	 	� ⊂ � ⊂ ⋂l
r=1 �r;

(ii) Tr is continuous;
(iii) No missings are allowed [Kneip and Gasser (1992)].

For convenience, these functionals are numbered so that Tr�fi� < Ts�fi�
for r < s.

The introduction of warping functions needs some further notation and def-
initions. The application of structural functionals T1� 	 	 	 �Tl to a regression
function fi leads to an ordered l-tuple �xi1� 	 	 	 � xil� of real numbers. These
locations of structural features form the basis for constructing warping func-
tions, which are obtained by mapping these discrete values to a continuous
function gi via a warping operator G.

Definition 2.5. Let �l ≡ ��x1� 	 	 	 � xl� ∈ Jl: xr < xs for all r < s�. A warp-
ing operator is a mapping G� � 2

l �→ C1�R� such that we have the following:

(i) For all �u�x� ∈ � 2
l , G�u�x��·� is a strictly, monotonically increasing real

function;
(ii) G�u�x��xr� = ur for r = 1� 	 	 	 � l.

Denote τir = Tr�fi� and τ = �τ·1� 	 	 	 � τ·l� where τ·r = �τ1r + · · · + τmr�/m.
Then the warping function for aligning fi to the average time scale is de-
fined by

gi�·� = G�τi� τ��·��
where τi = �τi1� 	 	 	 � τil�. The definition of G implies some freedom in construct-
ing warping functions between consecutive structural points. While linear in-
terpolation is in practice often good enough, interpolating splines obeying to
monotonicity are the method of choice [Kelly and Rice (1990)].

Remark 2.2. For periodic data, one would estimate a translation gi�t� =
t + δi (Silverman, 1995). Linear interpolation gives this translation since
�τ·�r+1� − τ·r�/�τi�r+1� − τir� = 1 for all r in the translation case.

Estimating warping functions is then rather straightforward; estimates of
structural points are obtained from kernel estimators using some bandwidth
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b: τ̂ir = Tr�f̂i�·� b��. Note that the delicate step is to determine the number and
meaning of structural functionals, which is something like “qualitative vague
modeling.” For details see Kneip and Gasser (1992) and Gasser and Kneip
(1995). In the latter paper a method is described for determining consistent
features directly from the data, instead of using just a priori knowledge.

The structural average curve

f�t� = 1
m

m∑
i=1

fi

(
gi�t�

)
is then estimated by plugging in the estimated ĝi followed by kernel estima-
tion of fi with some bandwidth c,

f̂�t� = 1
m

m∑
i=1

f̂i

(
ĝi�t�� c

)
	

Note that c has to be smaller than bandwidth b used for extracting features.
This is because averaging regression functions reduces variance and b is in-
volved in the estimation of the derivatives.

Consistency and convergence rates of the estimator f̂ have been established
by Kneip and Gasser (1992). Let µr be the order of the functional Tr, µ̄ =
max�µ1� 	 	 	 � µl�, and µ = min�µ1� 	 	 	 � µl�. Recall that for an e-functional,
µr = 1 means an extrema, µr = 2 an inflection point, and so on. We assume
the following five conditions [cf. Kneip and Gasser (1992)].

(A1) (Equally spaced design, equal number of observations per subject). As-
sume that n1 = · · · = nm = n and tij = tj = a0 + j�a1 − a0�/n for
i = 1� 	 	 	 �m; j = 1� 	 	 	 � n.

(A2) All moments of ε exist.
(A3) (Smooth kernel of order k). For some even integer k ≥ 2, we require that:

A3.1. W is symmetric, and W�u� = 0 for �u� > 1;
A3.2. W is of order k.
A3.3. W is µ̄ + 1 times continuously differentiable on R, and it is µ̄ + 2

times continuously differentiable on �−1� 1	.
(A4) (Smoothness). Model (1) holds with fi ∈ C�ν��J� for some ν ≥ µ̄+ k, and

G�·�·��t� is twice continuously differentiable at each �u�x� ∈ � 2
l .

(A5) (Conditions on bandwidth). It is assumed that b → 0, n1/3c/ log�n� → ∞,
n1/�2µ̄+3�b/ log�n� → ∞, b2µ+1/c → e ∈ �0�∞� and nb2µ+2k+1 → π2 ∈
�0�∞�.

Remark 2.3. (a) Assumption (A1) is mainly for simplification. For the
number of observations per subject, it is certainly enough if the limits
lim ni/nj = cij ∈ �0�∞� exist for i� j ∈ �1� 	 	 	 �m�. In this case, it is
easy to modify the results presented in this paper. (b) The conditions
n1/3c/ log�n� → ∞ and n1/�2µ̄+3�b/ log�n� → ∞ are needed to bound the
supreme norm of the derivatives of f̂i�·� c� and f̂i�·� b�, respectively. The
condition b2µ+1/c → e ∈ �0�∞� is used to balance the variances of f̂i�·� c� and
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f̂
�µ�
i �·� b�. For the case µ > 0 (e.g., considering only extremes as structural

points), one could take e = 0. Finally, nb2µ+2k+1 → π2 is used to balance the
variance and bias2 of f̂

�µ�
i �·� b�. (c) The existence of such bandwidths b and

c can be seen as follows. If we take c = O�n−γ� and b = O�n−δ� for some
positive constants γ and δ, then assumption (A5) requires that

γ = δ�2µ + 1� < 1/3�

1/�2µ + 2k + 1� ≤ δ < 1/�2µ̄ + 3�	
It is easy to see that this system has solutions. These include the most useful
cases µ̄ − 1 = µ = 0� k ≥ 3, µ̄ = µ = 1, k ≥ 4 and µ̄ = µ = 2, k ≥ 6.

3. Asymptotic normality. First, the asymptotics of f̂ at the structural
points τ·r is given. This is easier than the general case since no warping func-
tion is involved. We restrict ourselves to e-functionals. To give the asymptotic
results in concise form, we need some notation.

Let + be the delta-function +�x�y� = 1 for x = y, and +�x�y� = 0 for x �= y.
Define for i = 1� 	 	 	 �m that

Bir�t� =
�−1�µr+1πf

�µr+k�
i �t�

�k + µr�!f�µr+1�
i �t�

∫ 1

−1
W�µr��u�u�k+µr� du�

Hir�t� =
π+�µ� 0�

ek

f
�k�
i �t�
k!

∫ 1

−1
W�u�uk du	

These functions are the familiar bias functions for kernel estimators, and they
describe the asymptotic bias for structural points and for regression functions

Bτ
r ≡ +�µr�µ�

m

m∑
i=1

Bir�τir�� Bf
r = +�µr�µ�

m

m∑
i=1

[
Hir�τir� + f

�1�
i �τir�Bir�τir�

]
	

To summarize the structure of the asymptotic variances we define

Qir�t� =
(

σi

f
�µr+1�
i �t�

)2 ∫ 1

−1

[
W�µr��u�]2 du�

Vir�t� = σ2
i e+�µr�µ�

∫ 1

−1
W2�u�du + (

f
�1�
i �t�)2Qir�t�	

The asymptotic variances and covariance can now be defined by

Vτ
r = 1

m2

m∑
i=1

Qir�τir�� Vf
r = 1

m2

m∑
i=1

Vir�τir��

Covr = +�µr�µ�
m2

m∑
i=1

f
�1�
i �τir�Qir�τir�	

We give the asymptotic normal distribution in the following theorem.
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Theorem 3.1. Assume conditions (A1)–(A5). If Tr is an e-functional, then(
nb2µr+1)1/2�τ̂·r − τ·r� ⇒ N

(
Bτ

r�V
τ
r

)
�(

nb2µr+1)1/2(
f̂�τ̂·r� − f�τ·r�

)⇒ N
(
Bf

r�V
f
r

)
and

nb2µr+1 Cov
(
τ̂·r − τ·r� f̂�τ̂·r� − f�τ·r�

)→ Covr 	

In principle, Theorem 3.1 could be used to construct asymptotic confidence
regions for �τ·r� f�τ·r�� as follows. Let Sα be a 100α% confidence region, cen-
tered at �0� 0�, for a two-dimensional standard normal variable. Let B̂r be the
plug-in estimator of the asymptotic bias �Bτ

r�B
f
r �, and 3̂r the plug-in estimator

of the asymptotic covariance matrix of �nb2µr+1�1/2�τ̂·r� f̂�τ̂·r��. Then a 100α%
confidence region for �τ·r� f�τ·r�� is given approximately by(

τ̂·r

f̂�τ̂·r�

)
− {�nb2µr+1�−1/2�x + B̂r�� x ∈ 3̂1/2

r Sα

}
	(2)

The plug-in estimators B̂r and 3̂r are defined by replacing unknown f
�s�
i in the

asymptotic bias and covariances given in Theorem 3.1 with estimated values.
If some or all σ2

i , i = 1� 	 	 	 �m, are unknown, then use the difference estimator
[cf. Gasser, Sroka and Jennen-Steinmetz (1986)], which is strongly consistent:

σ̂2
i = 2

3�n − 2�
n−1∑
j=2

(
1
2
yij−1 +

1
2
yij+1 − yij

)2

� i = 1� 	 	 	 �m	(3)

The following proposition is a direct consequence of Theorem 3.1 and its
proof. Simultaneous confidence bounds for f at structural points can be con-
structed based on the following proposition.

Proposition 3.1. Assume conditions (A1)–(A5) and that all structural
functionals are e-functionals. Then((

nb2µ1+1)1/2(
f̂�τ̂·1� − f�τ·1�

)
� 	 	 	 �

(
nb2µl+1)1/2(

f̂�τ̂·l� − f�τ·l�
))⇒ N�B�V�	

Here B = �Bf
1 � 	 	 	 �B

f
l � and V = diag�Vf

1 � 	 	 	 �V
f
l �.

Next we investigate confidence bars for f�t� at a nonstructural point t.
In this case, all structural functionals are involved in the definition of the
warping functions. Both bias and variance can be written in closed forms, but
they are more complicated than the formulas in Theorem 3.1 and are of little
practical use. Therefore, they are omitted. Interested readers can obtain an
earlier version of this paper from the Web site “http://www.unizh.ch/biostat”
to get the formulas. The asymptotic distribution of f̂ is given by the following
theorem.
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Theorem 3.2. Assume conditions (A1)–(A5) and that all structural func-
tionals are e-functionals. Then the random variable �nb2µ̄+1�1/2�f̂�t� −f�t�� is
asymptotically normal for t ∈ �supi �g−1

i �a0��, inf i �g−1
i �a1���.

Remark 3.1. Theorem 3.2 gives the limiting distribution of f̂�τ·r� − f�τ·r�
when t = τ·r, while Theorem 3.1 is for the asymptotics of f̂�τ̂·r� − f�τ·r�. For
supi �g−1

i �a0�� < t1 < · · · < ta < inf i �g−1
i �a1��, it is easily seen that(

nb2µ̄+1)1/2(
f̂�t1� − f�t1�� 	 	 	 � f̂�ta� − f�ta�

)
converges to a multinormal random vector. This fact should be kept in mind
when one bootstraps the distribution of �f̂�t1�� 	 	 	 � f̂�ta��.

Comments on the proofs of Theorems 3.1 and 3.2 are given in Section 5.

4. Bootstrap confidence bounds. In previous sections we assumed that
�f1� 	 	 	 � fm� are fixed unknown functions. In other words, we treated the con-
ditional problem given �f1� 	 	 	 � fm�. The unconditional problem is to consider
the curves �f1� 	 	 	 � fm� as a random sample according to some probability
law.

For the conditional problem, variations are caused by observation errors
�εij�. Thus, the bootstrapping method described in Section 4.1 resamples es-
timated residuals. This is referred to as bootstrap within subject. For the gen-
eral problem, the random variation of �fi� dominates the variations caused
by observation errors. For a first-order approximation, the effects on the final
confidence region by the observation errors can be ignored. This is justified in
Section 4.2 and is referred to as bootstrap across subjects.

Bias correction has been an important issue in bootstrapping confidence
bars for a single regression curve. Several approaches have been proposed.
One method is to form bootstrapped data by adding estimated residuals to an
oversmoothed curve [Härdle and Marron (1991)]. The amount of oversmooth-
ing depends on the order of the kernel function. For a second-order kernel,
the bias of kernel estimator depends on the second-order derivative of the re-
gression function. Therefore, the second-order derivative of the oversmoothed
curve should converge to the second-order derivative of the regression func-
tion. Then the bootstrap estimate of bias is consistent. Härdle and Marron
(1991) show that this bootstrap works. Another approach is a two-step pro-
cedure [Hall (1992b)]. First, construct confidence bars for the expectation of
the kernel estimator. Then estimate bias by using another estimator. An ex-
ample is the plug-in estimator which depends on estimating the derivatives
of the regression curve. The final confidence bar is obtained by combining the
two estimates. We will apply the first approach which takes care of the bias
problem automatically.

For the average curve f of a sample of curves �fi�, confidence bounds take
two forms. At a structural point �τ·r� f�τ·r��, both the location τ·r and the
amplitude f�τ·r� are parameters. Therefore the bounds for �τ·r� f�τ·r�� consist
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of a bounded region in two-dimensional space. At a fixed point t, there is only
one parameter f�t�. The confidence bounds become confidence bars.

Let �τ̂·r� f̂�τ̂·r�� be an estimate of �τ·r� f�τ·r�� based on the data �tij� yij�.
Define Z = �τ̂·r� f̂�τ̂·r�� − �τ·r� f�τ·r��. Let V�Z� be the covariance matrix of Z
and assume that V�Z� is nonsingular. Denote a ball of radius d by B�0� d�.
For α ∈ �0� 1�, define γα by

γα = inf
{
γ� P(V�Z�−1/2Z ∈ B�0� γ�) ≥ α

}
	

Then a 100α% confidence region for �τ·r� f�τ·r�� is given by

61 = {(
τ̂·r� f̂�τ̂·r�

)− x� x ∈ V�Z�1/2B�0� γα�
}
	(4)

The bootstrap methods described below estimate V�Z� and γα.
At a fixed point t ∈ �0� 1	, zα is defined by

zα = inf
{
z� P(∣∣f̂�t� − f�t�∣∣ ≤ V

(
f̂�t�)1/2

z
) ≥ α

}
	

Here V�f̂�t�� stands for the variance of f̂�t�. Then a 100α% confidence interval
for f�t� is given by(

f̂�t� − V
(
f̂�t�)1/2

zα� f̂�t� + V
(
f̂�t�)1/2

zα

)
	

If one takes t = τ·r, then this is a confidence interval for the amplitude of f

at a structural point. Estimation of V�f̂�t�� and zα by bootstrap methods can
be done in the same way as the estimation of V�Z� and γα. Therefore it will
be omitted.

4.1. Bootstrapping under the conditional model. The conditional problem
is treated in this section. Let Zi ≡ �τ̂ir� f̂i�τ̂ir�� − �τir� fi�τir��, i = 1� 2� 	 	 	 �m.
Then

Z ≡ (
τ̂·r� f̂�τ̂·r�

)− (
τ·r� f�τ·r�

) = 1
m

m∑
i=1

Zi	

Since Zi depends only on the εij, Z1� 	 	 	 �Zm are independent random vectors.
Therefore, in order to bootstrap the distribution of Z it is enough to bootstrap
the distributions of Zi, i = 1� 	 	 	 �m, separately. This is what we mean by
bootstrap within subject.

Let f̌i�t� ≡ f̂i�t�h� be the kernel estimate of fi with kernel W and band-
width h. In order to correct the bootstrap bias automatically, oversmoothing is
necessary in estimating f̌i. Such a bandwidth h can be selected according to
Lemma 4.1. Denote the corresponding structural points of f̌i by τ̌ir = Tr�f̌i�.
Let �ε̂ij� j = 1� 	 	 	 � n� be the centered estimated residuals computed by

ε̂ij = yij − f̂i�tj� b0� −
1
n

n∑
q=1

[
yiq − f̂i�tq� b0�

]
� j = 1� 	 	 	 � n�

where b0 = O�n−1/�2k+1�� is an optimal bandwidth.
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Draw bootstrap residuals �ε∗
ij� j = 1� 	 	 	 � n� with replacement from �ε̂ij� j =

1� 	 	 	 � n� and define a bootstrapped sample

y∗
ij = f̌i�tij� + ε∗

ij� j = 1� 	 	 	 � n	

Smooth the data ��tij� y∗
ij�� j = 1� 	 	 	 � n� with kernel W and bandwidth b and

find the corresponding structural point τ∗ir. Then the bootstrapped estimate of
Zi is given by

Z∗
i =

(
τ∗ir� f̂

∗
i�τ∗ir�

)− (
τ̌ir� f̌i�τ̌ir�

)
	

Here f̂∗
i is the kernel estimator of fi from the bootstrapped data ��tij� y∗

ij�� j =
1� 	 	 	 � n� with kernel W and bandwidth c.

Define Z∗ = �Z∗
1 + · · · + Z∗

m�/m and define γ̂α by

γ̂α = inf
{
γ� P∗(V�Z∗�−1/2Z∗ ∈ B�0� γ�) ≥ α

}
�

where P∗ is the conditional distribution of �ε∗
ij� given �εij�, and V�Z∗� is

the covariance matrix of Z∗ under the distribution P∗. The following lemma
implies that V�Z∗� is a consistent estimator of V�Z� and that γ̂α is a consistent
estimator of γα. Replacing V�Z� and γα in (4) by V�Z∗� and γ̂α, respectively,
one obtains a bootstrapped confidence region

6∗
1 = {(

τ̂·r� f̂�τ̂·r�
)− x� x ∈ V�Z∗�1/2B�0� γ̂α�

}
for the structural point �τ·r� f�τ·r��. Comments on the proof of this lemma are
in Section 5.

Lemma 4.1. Assume that the conditions of Theorem 3.1 hold and, in addi-
tion, h → 0 and nh2�µr+k�+3 → ∞ as n → ∞. Then the following statements
hold:

(i) For 0 ≤ q ≤ µr + k + 1, f̌
�q�
i �τ̌ir� converges to f

�q�
i �τir� in probability.

(ii) The variable �nb2µr+1�1/2�τ∗ir − τ̌ir� f̂
∗
i�τ∗ir�− f̌i�τ̌ir�� under the bootstrap

distribution and the variable �nb2µr+1�1/2�τ̂ir − τir� f̂i�τ̂ir� − fi�τir�� under the
distribution of �εij� converge to the same normal variable in distribution as
n → ∞.

(iii) The probability P�Z ∈ 6∗
1� converges to α as n → ∞.

Remark 4.1. Confidence bars for f at multiple points a0 < t1 < · · · < ta <

a1 can be obtained similarly. The distribution of �nb2µ̄+1�1/2�f̂�t1� −f�t1�� 	 	 	 �
f̂�ta� − f�ta�� can be approximated by �nb2µ̄+1�1/2�f̂∗�t1� − f̌�t1�� 	 	 	 � f̂∗�ta� −
f̌�ta��. This can be justified by a multidimensional version of the proof of
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Lemma 4.1, based on Theorem 3.2 instead of Theorem 3.1. Then confidence
bounds for �f�t1�� 	 	 	 � f�ta�� can be constructed accordingly.

4.2. Bootstrapping under the random model. Assume that �fi� i = 1�
	 	 	 �m� is a random sample from � ⊂ C�ν��J� according to some proba-
bility law P. We will consider the simple case in which fi, i = 1� 	 	 	 �m�
are identically independently distributed. Let f0 be the mean of P. Then
τ·r = Tr�f0�. We will assume that �fi� is independent of �εij�. Define the
notation Eε�·� = E�·�fi� i = 1� 	 	 	 �m�, EP for expectation with respect to P,
and E for expectation with respect to the joint distribution of �εij� fi�.

Let Z0 ≡ �τ̂·r� f̂�τ̂·r�� − �τ·r� f0�τ·r��	 Then

Z0 = 1
m

m∑
i=1

[(
τ̂ir� f̂i�τ̂ir�

)− (
τ·r� f0�τ·r�

)]

= 1
m

m∑
i=1

[(
τ̂ir� f̂i�τ̂ir�

)− (
τir� fi�τir�

)]

+ 1
m

m∑
i=1

[(
τir� fi�τir�

)− (
τ·r� f0�τ·r�

)]
	

(5)

In the last display, the first term is mainly the effect of �εij�. The second
term is purely an effect of P since it vanishes if P is a point measure P= δf0

.
First we summarize some useful facts.

Fact 1. It follows from the i.i.d. assumption on �fi� that ��τir� fi�τir��� i =
1� 	 	 	 �m� is an i.i.d. random sample with mean �τ·r� f0�τ·r��.

Fact 2. Asymptotically we have

Z0 =
{

1
m

m∑
i=1

[(
τir� fi�τir�

)− (
τ·r� f0�τ·r�

)]}(
1 + op�1�

)
	

This is clear from Theorem 3.1, which states that(
τ̂ir� f̂i�τ̂ir�

)− (
τir� fi�τir�

) = Op

(�nb2µr+1�−1/2)	
Fact 3. Let H�f1� 	 	 	 � fm� be a functional of f1� 	 	 	 � fm. Then ; ≡ �τ̂ir�

f̂i�τ̂ir�� − Eε�τ̂ir� f̂i�τ̂ir�� and H�f1� 	 	 	 � fm� are uncorrelated. Since E�·� =
EPEε�·�, E�;� = 0. Using the independence of �fi� and �εij�, we have

E
{
;
[
H�f1� 	 	 	 � fm� − EP(H�f1� 	 	 	 � fm�)]}
= EP{Eε�;�[H�f1� 	 	 	 � fm� − EP(H�f1� 	 	 	 � fm�)]} = 0	

Fact 4. If we choose the bandwidth b small such that nb2µ+2k+1 → π2 = 0
as n → ∞, then (

τ̂ir� f̂i�τ̂ir�
)− (

τir� fi�τir�
) = ;

(
1 + op�1�

)
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See assumptions (A3) and (A5) in Section 2 for definitions of k and µ. This is
a basic property of kernel estimator—trade-off between bias and variance.

Fact 2 says that the variation induced by P dominates the variation caused
by �εij�. For bootstrapping the distribution of the leading term of Z0, we only
need to bootstrap the distribution of P. This is what bootstrap across subjects
means. From Fact 1, the problem of bootstrapping confidence regions at the
structural point �τ·r� f0�τ·r�� is equivalent to bootstrap confidence regions for
the mean of a two-dimensional distribution.

Let ��τ∗ir� f∗
i�τ∗ir��� i = 1� 	 	 	 �m� be a random sample drawn from ��τir�

fi�τir��� i = 1� 	 	 	 �m� with replacement. Define

Z∗
0 = 1

m

m∑
i=1

[(
τ∗ir� f

∗
i�τ∗ir�

)− Z̄0
]
�

where Z̄0 = ���τ1r� f1�τ1r�� + · · · + �τmr� fm�τmr��	/m. For α ∈ �0� 1�, let β̂α be
the solution of the equation

P∗(V�Z∗
0�−1/2Z∗

0 ∈ B�0� β̂α�
) = α	

Here P∗�·� = P�·��fi��. Then a 100α% confidence region for �τ·r� f0�τ·r�� is
given by

6∗
2 = {

Z̄0 − x� x ∈ V�Z∗
0�1/2B�0� β̂α�

}
	

Theorem 4.1. Assume conditions (A1)–(A5) and that �τ1r� f1�τ1r�� has fi-
nite second moment. Then the probability of �τ·r� f0�τ·r�� being in 6∗

2 converges
to α as n → ∞�m → ∞.

Proof. By Fact 2 above, we can ignore the first term of (5) when we ap-
proximate the distribution of Z0. Since �τ1r� f1�τ1r�� has finite second moment,
the central limit theorem holds for the sequence ��τir� fi�τir��� i ≥ 1�. It follows
from Theorem 1 of Mammen (1992) that the Kolmogorov distance between the
law of Z̄0 −�τ·r� f0�τ·r�� and the bootstrap law of Z∗

0 − Z̄0 converges to zero in
probability, as m → ∞. This completes the proof of the theorem. ✷

In practice, it might be better to take into account both the effects of P and
the law of �εij� if m and n are small. By Facts 3 and 4 above, the variations due
to P and the variations due to �εij� can be bootstrapped separately, because
they are asymptotically uncorrelated if we choose the bandwidth b properly.

Let Z∗ and V�Z∗� be the bootstrapped quantities of Section 4.1. Define δ̂α

by the solution of the equation

�
[(

V�Z∗� + V�Z∗
0�
)−1/2�Z∗ + Z∗

0� ∈ B�0� δ̂α�
] = α�
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where � �·� = P�·��fi�� �εij��. Then a 100α% confidence region for �τ·r� f0�τ·r��
is given by

6∗
3 = {(

τ̂·r� f̂0�τ̂·r�
)− x� x ∈ (V�Z∗� + V�Z∗

0�
)1/2

B�0� δ̂α�
}
	

We refer to 6∗
3 as a confidence region obtained by the “full bootstrap.”

4.3. A simulation study. We know from Section 4.2 that the variation in-
duced by the randomness of the sample curves dominates the variation in-
duced by �εij� (see also Figure 1). In the simulation here, the bootstrapped
confidence regions are constructed by resampling curves with replacement.
The noise is processed only in the smoothing step. If interested, one can ob-
tain a small archive SACI (Structural Averaging and Confidence Intervals),
written in Fortran, from the Web site “http://www.unizh.ch/biostat” to compute
the structural average curve, to construct confidence regions at a structural
point and to compute confidence bars at multiple points.

The data are generated from the model

yi�t� = ais

(
t − bi

ci

)
+ di + ei�t�� t ∈ �0� 1	

with a base function s given by

s�t� =




s1�t� + 4t sin�31	4�0	45 − t��� t ≤ 0	45�

s1�t� + 10�s2�t� − s1�t���0	45 − t�� 0	45 ≤ t ≤ 0	55�

s2�t� + 4�1 − t� sin�31	4�t − 0	55��� t ≥ 0	55�

s1�t� = 0	25�t − 5�2 − 8�0	45 − t��
s2�t� = −0	25�t + 4�2 + 8�t − 0	55�	

(6)

The ei are i.i.d. residuals. To simplify the computation of the exact confidence
regions and multiple confidence bars, the parameters are chosen to be inde-
pendently and normally distributed as follows:

ai ∼ N�1� α2�� bi ∼ N�0� β2��
ci ∼ N�1� γ2�� di ∼ N�0� δ2��

ei�t� ∼ N�0� σ2�� Cov�ei�t�� ei�u�� = 0 for t �= u	

Due to the choice of parameters, the structural average curve is s.
Let t0 be a structural point on s (say a maximum point). The corresponding

structural point on yi is at

gi = cit0 + bi�

with amplitude

yi�gi� = ais�t0� + di + ei�gi�	
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Thus, the structural point is estimated by

t̄ = 1
m

m∑
i=1

gi�

with amplitude estimated by

f̄ = 1
m

m∑
i=1

yi�gi�	

Note that

E�t̄� = t0� E�f̄� = s�t0�	
Therefore, �t̄� f̄� is an unbiased estimate of �t0� s�t0��.

Since ai, bi, ci, di, ei�t� are independent variables, we can compute the
moment generating function. For any real number u,

E
[
exp

(
uei�gi�

)] = E
{
E
[
exp

(
uei�gi�

)∣∣gi

]} = E
{
exp�u2σ2/2�} = exp�u2σ2/2�	

This and the fact that E�giei�gi�	 = 0 imply that t̄ and f̄ are independently
and normally distributed. Simple computations give

t̄ − t0 ∼ N�0� �t2
0γ

2 + β2�/m��

f̄ − s�t0� ∼ N
(
0� �s2�t0�α2 + δ2 + σ2�/m)	

Let T and F be the central 95% CIs for t0 and s�t0�, respectively. Then C0 =
T × F is a central 90% confidence region for �t0� s�t0��.

The exact confidence region C0 is a rectangle with edges parallel to axes.
The bootstrapped confidence region Cb is an ellipse. Let Cr be the smallest
rectangle which contains Cb and has edges parallel to axes. Then the distance
db between the centers of C0 and Cb and the sizes of C0, Cb, and Cr indicate
the performance of the bootstrap method.

The simulation proceeds as follows. Fix the number of curves m and the
sample size n per curve. Run the proposed estimation procedure for K = 500
Monte Carlo replications. For each Monte Carlo replication, we compute a
bootstrapped confidence region for �t0� s�t0�� with B = 200 bootstrap replica-
tions. This produces K estimated confidence regions Cb�k�, and the associated
distances db�k�, rectangles Cr�k�, and area differences

Ab�k� = area of Cb − area of C0�

Ar�k� = area of Cr − area of C0	

The following quantities will be computed:

D = mean of
{
db�k�� k = 1� 	 	 	 �K

}�
V = variance of the sample mean D�
Pb = proportion of Monte Carlo replications such that

(
t0� s�t0�

) ∈ Cb�
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Pr = proportion of Monte Carlo replications such that
(
t0� s�t0�

) ∈ Cr�
A1b = mean of �Ab�k�� k = 1� 	 	 	 �K��
V1b = variance of the sample mean A1b�
A1r = mean of �Ar�k�� k = 1� 	 	 	 �K��
V1r = variance of the sample mean A1r	

Table 1 gives the simulation results for different combinations of m and n.
It follows from A1b ≈ 0 that the bootstrapped confidence region is about the
same size as that of the exact confidence region. The fact that A1r is also
small implies that the bootstrapped confidence region is close to a rectangle
which has edges parallel to axes. Therefore, the bootstrap method performs
well in constructing confidence regions for structural average curves. Of
course these are limited simulation results. The measure D gives the er-
ror of estimating �t0� s�t0��, particularly the error of estimating s�t0�. Its
value is relatively large because we have only 20 or 50 curves and because
the amplitudes of the sample curves depend on the parameters ai (stan-
dard deviation 0.4), di (standard deviation 2) and σi�t� (standard devia-
tion 0.5).

A typical run with m = 50, n = 100 is plotted in Figure 2.
Simulation with another set of parameters is performed to check the per-

formance of the bootstrap method for data with larger shifts. Again the sim-
ulation is performed with 500 Monte Carlo replications and 200 bootstrap
replications. The results are groupped in Table 2. It can be seen that the re-
sult for this parameter set is not quite as good as the result for the previous
parameter set. This is probably due to heavier shift variation.

Generally speaking, the bootstrap method for constructing confidence re-
gions works well.

Table 1
Simulation results of bootstrapping confidence regions at a structural point ∗

(m, n) (20, 100) (50, 100) (100, 100) (20, 200) (50, 200) (100, 200)

Pb 0.878 0.898 0.902 0.884 0.860 0.672
Pr 0.884 0.904 0.928 0.886 0.874 0.686
D 0.6367 0.4092 0.3353 0.6169 0.3880 0.5455
V 0.2149 0.0948 0.0564 0.2097 0.082 0.1053
A1b −0	008 −0	001 0.0026 −0	0074 −0	0039 −0	0012
V1b 0.0008 0.0001 0.00002 0.001 0.0001 0.00001
A1r 0.0303 0.0133 0.0107 0.0251 0.01 0.0059
V1r 0.0014 0.0001 0.00003 0.0016 0.0001 0.00001

∗The first line (m�n) gives the (number of curves, sample points per curve). The parameters for
generating sample curves are α = 0	4, β = 0	05, γ = 0	01, δ = 2 and σ = 0	5. The confidence level
is 90%.
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Fig. 2. Raw data of 50 curves (top left); shifted smooth curves (top right); confidence regions (bot-
tom): base curve (dashed), estimated structural average (solid), cross-sectional average (dashdot),
90% confidence region by bootstrap (ellips) and 90% exact confidence region (rectangle).

It is more involved to compute the exact uniform confidence band. We know
that the structural average curve is the base function s, which is estimated by

f̄�t� = 1
m

m∑
i=1

�ais�t� + di + ei�gi�t��	� gi�t� = cit + bi	

For 0 < u1 < · · · < uq < 1, let

f̄ =




f̄�u1�
			

f̄�uq�


 � S =




s�u1�
			

s�uq�


 � � =




1

			

1


 	

Then it can be shown that f̄ − S ∼ N�0�V� with

V = σ2

m
I + δ2

m
� � ′ + α2

m
SS′	
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Table 2

Simulation results with parameters α = 0	8, β = 0	1, γ = 0	05,
δ = 1	5 and σ = 1 ∗

(m, n) (20, 200) (50, 200) (100, 200)

Pb 0.754 0.756 0.374
D 0.9653 0.5601 1.2448
V 0.5314 0.1804 0.3374
A1b 0.0611 0.0216 0.0219
V1b 0.0508 0.006 0.001

∗The confidence level is 90%.

For any η ∈ �0� 1�, let Cη be defined by∫
�x�≤Cη

h�x�dx = η�

where h is the desity function of f̄ − S. Then �x� �f̄ − x� ≤ Cη� is a 100η%
confidence region for S (uniform confidence bars on s). Note that the exact
uniform confidence bars are independent of the shift parameters bi and ci,
because we assume the optimal alignment. However, the shift parameters are
involved in the bootstrapped confidence bars because the optimal alignment
cannot be obtained from noisy data.

In the following example, we simply compute the bootstrapped 90% confi-
dence bars at each ui. This of course leads to uniform confidence bars of less
than 90% confidence level. Base function and parameters are the same as that
used for Table 1, with 50 sample curves and 100 sample points per curve. The
confidence bars are plotted in Figure 3.

5. Comments on the proofs. Theorems 3.1 and 3.2 and Lemma 4.1
are proved based on the ideas of Kneip and Gasser (1992). Following the

Fig. 3. Bootstrapped 90% confidence bars at 10 equally spaced locations: base curve (dashed),
estimated structural average (solid) and cross-sectional average (dashdot).
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suggestion of a referee, we cut out the detailed treatment, which can be
obtained from an earlier version of this paper from the Web site “http://
www.unizh.ch/biostat.”

The main step is to expand (Taylor expansion) τ̂·r − τ·r and f̂�τ̂·r� − f�τ·r�
as linear functions of the kernel estimators f̂i�τir� c�−fi�τir� and f̂

�s�
i �τir� b�−

f
�s�
i �τir�, i = 1� 	 	 	 �m; s = 0� 	 	 	 � µ̄, plus a smaller error term. By Theorem 3

of Gasser and Müller (1984), each of these linear terms has a limiting normal
distribution if it is properly scaled (Lindeberg condition). The scaling factors
are given in Kneip and Gasser (1992).

Recall that the e-functional of order µr locates an extrema τir of f
�µr−1�
i .

Assume that f
�µr+1�
i �τir� �= 0. Then

τ̂ir − τir = − 1

f
�µr+1�
i �τir�

[
f̂
�µr�
i �τir� b� − f

�µr�
i �τir� + Hir

]
�

where Hir is a higher order term.
For a p-functional of order µr, let αqir, q = 0� 1, be the two associated

extremes of f
�µr�
i such that f

�µr�
i is monotone in �α0ir� α1ir� and that

f
�µr�
i �τir� = prf

�µr�
i �α0ir� + �1 − pr�f�µr�

i �α1ir�
for some pr ∈ �0� 1�. Then

τ̂ir − τir = − 1

f
�µr+1�
i �τir�

[
f̂
�µr�
i �τir� b� − f

�µr�
i �τir� + Uir

− pr

(
f̂
�µr�
i �α0ir� b� − f

�µr�
i �α0ir�

)
− �1 − pr�

(
f̂
�µr�
i �α1ir� b� − f

�µr�
i �α1ir�

)]
	

Here Uir is a higher order term.
Use the Taylor expansion and the definition of structural average to get

that

f̂�τ̂·r� − f�τ·r� =
1
m

m∑
i=1

[
f̂i�τir� c� − fi�τir� + f

�1�
i �τir��τ̂ir − τir� + Rir

]
	

Again Rir is a higher order term. Substitute the expansions of τ̂ir − τir into
this formula to get the expansion for f̂�τ̂·r� − f�τ·r�.

Now we need only to find out the formulas for the bias and variance of each
term in the expansions, the covariance of any two such terms, and the order
of the supremum norm of each term. Most of these formulas are well known
for kernel estimators, or they are proved in the lemma of Kneip and Gasser
(1992). By carefully combining these facts, one can prove Theorem 3.1.

The proof of Theorem 3.2 is based on the same idea, but it is much more
complicated. First, all the structural functionals are involved. Secondly, an
extrema might be both a structural point (i.e., an e-functional is specified to
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locate this point) and an end point of a monotone segment on which a p-
functional is applied.

The proof of Lemma 4.1 is similar to the proof of Theorem 3.1. We know
from Theorem 3.1 that �nb2µr+1�1/2�τ̂ir−τir� f̂i�τ̂ir�−fi�τir�� is asymptotically
normal. An expansion of �nb2µr+1�1/2�τ∗ir − τ̌ir� f̂

∗
i�τ∗ir� − f̌i�τ̌ir�� as in the proof

of Theorem 3.1 shows that this variable is also asymptotically normal. In
order to say that these two variables converge to the same normal variable
in distribution, we only need to compare their covariance matrices, which are
obtained from the results for kernel estimates of regression functions.
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