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A data depth can be used to measure the “depth” or “outlyingness” of
a given multivariate sample with respect to its underlying distribution.
This leads to a natural center-outward ordering of the sample points.
Based on this ordering, quantitative and graphical methods are intro-
duced for analyzing multivariate distributional characteristics such as
location, scale, bias, skewness and kurtosis, as well as for comparing
inference methods. All graphs are one-dimensional curves in the plane
and can be easily visualized and interpreted. A “sunburst plot” is pre-
sented as a bivariate generalization of the box-plot. DD-(depth versus
depth) plots are proposed and examined as graphical inference tools. Some
new diagnostic tools for checking multivariate normality are introduced.
One of them monitors the exact rate of growth of the maximum deviation
from the mean, while the others examine the ratio of the overall disper-
sion to the dispersion of a certain central region. The affine invariance
property of a data depth also leads to appropriate invariance properties
for the proposed statistics and methods.

1. Introduction. Multivariate analysis plays a role of ever-increasing
importance in statistics. Most statistical experiments are multivariate by
nature, and large scale multivariate datasets are now made tractable by
recent explosive advances in computer technology. However, classical multi-
variate analysis relies heavily on the assumption of normality or near-nor-
mality, which is often difficult to justify in practice.

The goal of this paper is to develop a general nonparametric multivariate
methodology based on the concept of data depth. This methodology provides a
systematic nonparametric approach for defining quantitative and graphical
multivariate distributional characteristics and inference methods. A com-
monly adopted method for obtaining multivariate distributional characteris-
tics has been a straightforward extension of the moment approach in the
univariate case. More specifically, the location, scale, skewness and kurtosis
are defined, respectively, in terms of the first, second, third and fourth
moments. This leads to matrix or vector forms of outputs which are hard to
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grasp conceptually and graphically. Worse still, this approach would not even
be applicable if the moments do not exist. In our approach, these characteris-
tics and their corresponding descriptive statistics are defined as functionals
of data depth. They can be displayed as simple graphs on the plane and be
easily visualized. Since these graphs are all based on an analysis of the
contours derived from the data depth used, they convey a more intuitive
picture of the distributional properties. Furthermore, our approach is mo-
ment-free if the underlying data depth is, which in fact is the case for almost
all data depths we consider in this paper (cf. Section 2).

Our depth-based methodology may be viewed in part as a multivariate
generalization of standard univariate rank methods, in the sense that they
are both based on the idea of ranks. In the univariate setting, our methodol-
ogy reduces to the standard univariate rank method, albeit without the
distinction between positive and negative directions. There is, however, a
marked difference in the two ways of ranking: the ranking in the univariate
case is a linear ranking from the smallest to the largest, while our multivari-
ate one is a center-outward ranking induced by depth. In this context, we
note that the subject of multivariate ordering has attracted considerable
interest over the years. For a survey of work in the area up to 1976 we refer
to Barnett (1976). We should also point out that there exist many nonpara-
metric multivariate approaches which in essence apply univariate nonpara-
metric methods to analyze the multivariate observations componentwise [see,
for example, Chapter 6 of Hettmansperger (1984)]. However, they often have
difficulties in cases of dependence between component variates.

The paper is organized as follows. In Section 2 we present some back-
ground material and basic definitions, beginning with the general concept
and examples of data depth. The notion of ordering according to depth, its
affine invariance, and the resulting quantiles are then discussed at length.
We introduce a bivariate generalization of the boxplot, which we call the
sunburst plot [cf. Figure 5(a, b)]. We also review the Lorenz curve, which will
serve later to interpret the descriptive statistics proposed in the paper. In
Sections 3 through 6, we define several parameters according to depth, which
can characterize a multivariate distribution in terms of its location, scale,
skewness and kurtosis. In each section, graphs based on simulated data
corresponding to the relevant descriptive statistics are displayed. Regardless
of the dimension of the underlying distribution, the graphs are always
one-dimensional curves in the plane and can be easily visualized and inter-
preted. We also show how the affine invariance property of a data depth leads
to a corresponding invariance property for each proposed method. In Section
7, we introduce the DD-plot as a simple graphical tool for comparing two
given samples or their underlying distributions. Different patterns of the
DD-plot are associated with differences in location, scale, skewness or kurto-
sis between the two distributions. In Section 8, we establish some properties
of multivariate normal distributions, and explain how to use them as diag-
nostic tools for checking normality. These properties include an almost surely
asymptotic bound for the maximum of a multivariate normal sample (Theo-
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rem 8.2), and a fixed constant multiplier (Theorem 8.1) between the overall
dispersion matrix and the dispersion matrix derived from a central region
(Definition 2.3). Finally, in Section 9, we discuss aspects of our methodology
such as computational feasibility, graphical presentability, conceptual and
theoretical tractabilities and other ramifications of data depth. Most proofs
are deferred to the Appendix.

One immediate application of the proposed scale parameter in Section 4 is
the comparison of estimation errors of different estimators when they are
used to estimate the same parameter. In the context of accounting for
estimation error, we also introduce several definitions of bias in Section 4 and
view the combination of the newly defined sale and bias as a generalization of
the univariate mean-square-error. In the situation where only a sample is
available for computing the estimators, we may use the bootstrap procedure
to approximate the sampling distributions of the estimators, and then derive
from these distributions the scale and bias for the estimators. Specific exam-
ples are graphically illustrated in Figure 9. Again, the comparison there can
be easily interpreted visually.

In view of the vast literature on multivariate analysis, we cannot describe
adequately in this paper all the important developments on the subject. Only
the most closely related methods have been mentioned in each section. We
refer to Anderson (1984) for a general reference on classical multivariate
analysis and the Gnanadesikan (1997) (and references therein) for surveys of
multivariate data analysis tools. We would also like to call the reader’s
attention to the systematic and insightful treatment of univariate descriptive
statistics for nonparametric models in Bickel and Lehmann (1975a, b, 1976,
1979).

2. Data depth and background material. Let F be a probability
distribution in R¢, d > 1. Throughout the paper, unless stated otherwise, we
assume that F is absolutely continuous and also that {X;,...,X,} is a
random sample from F. Each sample point X, is viewed as a d X 1 column
vector.

2.1. Data depth and ordering /ranking multivariate observations. A data
depth is a way of measuring how deep (or central) a given point x € R? is
w.r.t. F or wr.t. a given data cloud {X,..., X,}. Some useful examples of
data depth are:

1. The Mahalanobis depth (M, D) [Mahalanobis (1936)] at x w.r.t. F is
defined to be

M,D(F;x) = [1+ (2 — pp)Sp'(x — pp)]

where pp and 2, are the mean vector and dispersion matrix of F,
respectively. The sample version of M, D is obtained by replacing u, and
3 » with their sample estimates.
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2. The half-space depth (HD) [Hodges (1955), Tukey (1975)] at x w.r.t. F is
defined to be

HD(F;x) = i?If{P(H): H is a closed half-space in R¢ and x € H}.

The sample version of HD(F;x) is HD(F,; x). Here F, denotes the
empirical distribution of the sample {X, ..., X,}. The half-space depth is
sometimes also referred to as the Tukey depth in the literature, for
example, Liu and Singh (1993, 1997) and Yeh and Singh (1997).

3. The convex hull peeling depth (CD) [Barnett (1976)] at the sample point
X, w.r.tthe data set {X,,..., X,} is simply the level of the convex layer X,
belongs to. A convex layer is defined as follows. Construct the smallest
convex hull which encloses all sample points {X,..., X,}. The sample
points on the perimeter are designated the first convex layer and removed.
The convex hull of the remaining points is constructed; these points on the
perimeter are the second convex layer. The process is repeated, and a
sequence of nested convex layers is formed. The higher layer a point
belongs to, the deeper the point is within the data cloud. Note that several
other versions of “convex peeling” exist; see Eddy (1982) and Tukey’s
approach described in Huber (1972). Although only the simple convex hull
peeling of Barnett (1976) is specified here, the methods we develop in this
paper apply to all variations of convex peeling.

4. The Oja depth (OD) [Oja (1983)] at x w.r.t. F is defined to be

OD(F; x) = [1 + Ey{volume(S[ x, X,,.... X,])}] ",

where S[x, X;,..., X,;] is the closed simplex with vertices x, and d
random observations Xj,..., X, from F. Obviously OD(F,; x) = (%)~ '[1 +
>{volume(S[ x, Xil, e, Xid])}]’1 is the sample version of OD(F; x). Here

# indicates all d-plets (i;,...,i ) suchthat1 <i; < -+ <i, <n.
5. The simplicial depth (SD) [Liu (1990)] at x w.r.t. F is defined to be

SD(F;x) = Po{x € S[X,,..., X, .1 ]).

Here S[ X}, ..., X, ] is a closed simplex formed by (d + 1) random obser-
vations from F. The sample version of SD(F'; x) is obtained by replacing F
in SD(F; x) by F,, or alternatively, by computing the fraction of the
sample random simplices containing the point x. In other words,

-1
SD(Fn’ x) = (d i 1) ZI(xES[Xil:“"XiCHI])’

where I, is the indicator function.
6. The majority depth (M,;D) [Singh (1991)] of x w.r.t. F is defined to be

M;D(F;x) = Pp{x is in a major side determined by (X, ..., X,)}.
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Here a major side is the half-space bounded by the hyperplane containing
(Xy,..., X,;) which has probability > 0.5. The sample version of M;D(F’; x)
is M;D(F,; x).

7. The likelihood depth (LD) [Fraiman and Meloche (1996)] of x w.r.t. F' is
simply its probability density, that is, LD(F; x) = f(x), and the empirical
version can be any consistent density estimate at x, for example, the
kernel density estimate.

Henceforth, D(-;-) or Dy(-) will be used to indicate any of the above-men-
tioned depths unless specified otherwise. The value of D(F'; x) may vary with
the notion of data depth, but for each notion of depth, a larger value of
D(F; x) always implies a deeper (or more central) x w.r.t. F. When there is
no possibility of confusion, we may omit the underlying distribution F and
simply use D(-) and D,(-) to denote, respectively, D(F;-) and D(F,;-).

Given a notion of data depth, one can compute the depths of all the sample
points {X, ..., X,} and order them according to decreasing depth values. This
gives a ranking of the sample points from the center outward. Let X;, denote
the sample point associated with the ith highest depth value. We view
Xi1)s -+ -5 X[ as the order statistics, with X|;, being the deepest or the most
central point or simply the center, and X, the most outlying point. The
implication is that a larger rank is associated with a more outlying position
w.r.t. the data cloud. These order statistics induced by a data depth are
different from the usual order statistics on the real line, since the latter are
ordered from the smallest sample point to the largest, while the former start
from the middle sample point and move outwards in all directions. In this
article, only the depth-induced order statistics are studied. They will be
referred to as depth order statistics (denoted by DO-statistics), and their
ordering or ranking as depth ordering or depth ranking. When ties occur in
the ordering, the corresponding sample points are viewed as depth-equiv-
alent, and the set of these points is termed a depth-equivalence class (de-class
for short). In the particular case where there is more than one sample point
with the highest depth value, we refer to their average as the deepest point,
for convenience. The notation v, is used to denote the deepest point w.r.t. the
sample, and vy w.r.t. the underlying distribution F. For simplicity, the
following method is used to assign ranks to points belonging to the same
de-class: if x; , x; ,..., x; all belong to the same de-class where i; <i, < -
< i, and there are exactly j sample points with higher depth values, then we
assign x; , %, ,..., x; tobe x5, Xji9)5 .-+, X[+ I0 that order.

Some multivariate rankings which preserve the directions of the data can
be derived from the multivariate quantile processes proposed in Einmahl and
Mason (1992), Chaudhuri (1996) and Koltchinskii (1997). These rankings
certainly retain more information from the original data than the simple
center-outward ranking by depth. A comparison study on these different
multivariate rankings should be worthwhile. In this paper, our objective is to
show that even the simple depth ranking can have far-reaching applications.

To proceed further, we need the following set of notations and definitions.
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DEFINITION 2.1. The set {x € R%: D(x) = ¢} is called the level set or
contour of depth t.

DEFINITION 2.2. The set {x € R%: D(x) > t} is referred to as the region
enclosed by the contour of depth t, and denoted by R(#).

DEFINITION 2.3. The set

(2.1) C, = N{R(t): Pr(R(t)) = p}.
t

is referred to as the pth central region. In other words, C, is the smallest
region enclosed by depth contours to amass probability p. The boundary of C,
is referred to as the pth level contour, and is denoted by Q(p) or Qz(p)
(when we need to stress that F' is the underlying distribution). In fact, if f is
nonzero everywhere, @,(p) is the contour of {x € R%: D(x) =t } where
P{x € R%: D(x) > t,} = p. To distinguish it from univariate quantlles we
shall refer to Qz( p) 0 < p < 1 as the center-outward quantile surface.

If F' is absolutely continuous and its density function f is nonzero every-
where, then we have

C,=R (tp)’

where R(t,) is characterized by the requirement that P(R(¢,)) =p. In
theory, the empirical versions of C, and ®7(p) should be defined by replac-
ing F and D(") in (2.1) with F, and D,(-), respectively. However, for computa-
tional and graphical convenience, we shall focus only on the D,(-) values
computed on the sample {X}, ..., X} and view the convex hull containing the
most central fraction p sample points as the sample estimate of C,. More
precisely, we set

C,. , = convex hull{X,,..., X, ..}

where [np]l=np if np is an integer, and (1 + the integer part of np)
otherwise. This simplification can also be justified by the fact that C, is
typically a convex region. In practice, the convexity is not crucial for the
interpretation of the methods proposed in this paper. We call C, , the sample
pth central hull, and its boundary, denoted by @ ,(p), the sample pth level
contour or the empzrlcal pth center-outward quantile surface. Here, @,(p)
may be viewed as an estimate of the quantile @,(p). It is clear that if there
are multiple points in a de-class, these points should belong to the same
sample pth level contour for some p. A remark on the breakdown property of
the bootstrap version of @,(-) is given in Section 4 of Singh (1998).

Note that, except for (4) and (7), all the above-mentioned depths are affine
invariant. The affine invariance ensures that the depth value remains the
same after the data are transformed by any affine transformation. That is, if
a data point X is transformed to AX + b, with a nonsingular d X d matrix A
and a d X 1 constant vector b, and if Fyx and F, ., denote, respectively, the
c.d.f’s for the datum before and after the transformation, then

(2.2) D(Fyx.,;Ax + b) = D(Fy; x).
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Although the depth values defined by (4) and (7) change by a factor of the
determinant of A under the above transformation, the ordering induced by
OD or LD remains affine invariant. Therefore, we conclude that based on any
notion of depth in (1) to (7) the deepest point is affine invariant. Some
properties related to this observation are discussed further in Proposition 3.1.

Some general properties of several of the above depths can be found in Liu
and Singh (1993). The Mahalanobis depth studies the elliptical structure of a
multivariate distribution as in classical multivariate analysis, and its proper-
ties have been fully developed. Needless to say, the definition of Mahalanobis
depth depends on the existence of the second moments, and it is not a
moment-free approach. Some asymptotics and properties of the contours of
the half-space depth are given in Nolan (1992) and Donoho and Gasko (1992).
The convex hull peeling approach is intuitively appealing, but its use is
somewhat limited by the lack of an associated distribution theory. A discus-
sion of convex peeling in the context of partial ordering of multivariate
observations is given in Barnett (1976), and some asymptotic distribution
theory is in Eddy (1982). The Oja depth is studied extensively in Oja (1983).
For simplicial depth, Liu (1990), Diimbgen (1992) and Arcones, Chen and
Giné (1994) cover some basic properties and a range of asymptotics, including
the strong uniform convergence of D(F,;-) to D(F;-). This convergence
allows us to approximate D(F;-) by D(F,;-) when F is unknown, an
approximation which we use often to justify our methods (see, e.g., DD-plots
in Section 7). Rousseeuw and Ruts (1996), Ruts and Rousseeuw (1996), and
Rousseeuw and Struyf (1997) address the issues of computing the halfspace
and simplicial depths. He and Wang (1997) investigate the convergence of
depth contours formed by several notions of depth.

2.2. Depth contours and sunburst plots. To illustrate depth ordering and
its ramifications, we use the simplicial and Mahalanobis depths to order
sample points and graph some representative contours. Applying simplicial
depth ordering to a sample of 500 points drawn from the bivariate standard
normal distribution, we obtain in Figure 1 the sample pth level contours for
p =025, 0.5, 0.75 and 0.9. The contours are nested within one another. As
the p-value increases, the contour expands. The deepest point in the sample
is marked by a cross. Figure 2 shows the same set of contours for a sample
from the standard bivariate exponential distribution (i.e., with independent
margins and with marginal mean 1). Applying Mahalanobis depth ordering to
the same normal and exponential samples leads to the contours displayed in
Figures 3 and 4, respectively. As the p-value increases, the contours there
also expand from the center outward. How the contour expands in terms of
speed, direction and rate of change actually motivates our definitions of scale
(dispersion), skewness and kurtosis in Sections 4 to 6.

There is little difference between the contours plotted in Figures 1 and 3,
since the underlying sample is normal and symmetric. However, there is a
noticeable difference between the two sets of contours in Figures 2 and 4 for
the asymmetric exponential sample. The contours in Figure 2 are fanning out
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Fic. 1. Normal contours by SD.

Fic. 2.  Exponential contours by SD.
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Fic. 3. Normal contours by MD.

Fic. 4. Exponential contours by MD.
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up right, reflecting the probabilistic geometry of the exponential distribution,
while those in Figure 4 expand in a somewhat symmetric manner. This can
be explained by the intrinsic difference between the two depths used. As the
Mahalanobis depth measures the quadratic distance from each sample point
to the sample mean, the contours expand outward from the sample mean,
following only the distance change and ignoring the asymmetric nature of the
exponential sample. On the other hand, the simplicial depth is defined to
measure the relative position of a point w.r.t. to a distribution and thus to
capture the underlying probabilistic geometry. Similar explanations hold for
the half-space depth. The graphs of contours formed by the half-space depth
are similar to those formed by the simplicial depth, and they are omitted.

The center-outward ordering induced by a data depth immediately gives
rise to a simple graphic technique for presenting bivariate data sets. This
technique can be viewed as a generalization of the univariate box-plot or
box-and-whiskers plot. The plot resembles the sun with its rays radiating in
all directions, and is thus named the “sunburst plot.” For a given sample, we
apply a data depth to identify its center and the central 50% sample points.
We mark the center and draw the contour to enclose the 50% central hull.
The rays in the plot are obtained by joining the sample points outside of the
50% central hull to the center, keeping only the segments outside the
contour. The center, the central region and the rays obtained this way can be
regarded as the analogues of the median, the interquartile range and the
whiskers in the box-plot. Examples based on the samples used in Figures 1
and 2 are given in Figure 5(a, b).

The above examples show that both the sunburst plot and the contours
plot provide a quick and informative overview of the shape, concentration,
spread and skewness of the underlying distribution for a given sample.

The sunburst plot is also investigated independently in Rousseeuw and
Ruts (1997), where it is called bagplot. The idea of “fence” in the univariate
box-plot is also incorporated into the bagplot.

2.3. The Lorenz curve. The Lorenz curve, introduced in Lorenz (1905),
has been used to measure the inequality or concentration of a wealth distri-
bution. Generally, it is defined to be the plot of (F(x), Q(x)), where F is the
cdf. and Qx) = A/w/* vdF(v). Here wu = 7 _sdF(s). Alternatively
[Gastwirth (1971)], the Lorenz curve can be defined in terms of the inverse of
the probability distribution function, that is,

1 »
(2.3) L(p) = ;fo FY(t)dt, 0<p<1,

where F~(¢) = inf {v € R: F(v) > t}. The area between the Lorenz curve
and the line L(p) = p is called the area of concentration, or the degree of
inequality in the context of quantifying wealth distribution. The Lorenz curve
will be used in later sections as a way to standardize properly a proposed
descriptive statistic for specific interpretations. As such, it is more appropri-
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Fi16. 5. Sunburst plot. (a) Normal sample.(b) Exponential sample.
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ately defined as follows. Let X be a nonnegative random variable in R. Then
the Lorenz curve is

E(X|X <F '(p))
E(X)

(2.4) L(p) =p X

It has the following properties:

1. L(p) is nondecreasing in p;
2. L(p) < p;
3. And L(p) = p if F(-) is degenerate.

3. Location.

3.1. Median /Center. Given a notion of data depth, there is a natural
choice of location parameter for the underlying distribution, namely the
deepest point or the average of the deepest points if there is more than one.
For the same distribution, different notions of depth may lead to different
deepest points, which can all be reasonable candidates for multivariate
medians, as they are generally referred to [see, for example, Rousseeuw and
Leroy (1987)]. They may, however, be quite different if the underlying distri-
bution is asymmetric. An illustrative example is given later at the end of this
section.

Viewing the deepest point as the sample median, we state below a general
property regarding its distributional symmetry and unbiasedness.

ProposITION 3.1. If the population distribution is symmetric, then the
distribution of any affine invariant sample median (the deepest point) is also
symmetric about the population center of symmetry.

Proor. Without loss of generality, we assume the population distribution
is symmetric about the origin 0. Let X denote the given random sample from
this distribution, that is, X = {X;,..., X,}. Let 6,(X) denote the sample
median derived from the sample X. The affine invariance property of the
median [cf. (2.2)] immediately implies that 6,(—X) = —0,(X), where —X =
{—Xi,..., —X,}. Following the symmetry of the population distribution, we
know that X and —X are identically distributed. This in turn implies that
0,(X) is symmetric about 0.

REMARK 3.1. Note that Proposition 3.1 holds even for symmetric distribu-
tions which have no moments, such as the Cauchy distribution. Pushing from
the above result of symmetry of 0, further to claim its unbiasedness in the
sense of moment, namely showing E®, = 6, we would need to require the
existence of E£0,. This expectation exists whenever the underlying population
has the first moment, following the arguments below. Note that the sample
medians derived from all the depths described in Section 2 lie in the convex
hull formed by the data cloud X. This means that the sample median 0, can
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be expressed as a convex combination of the sample points in X. Conse-
quently,

16, 1 < 31X,

where én ; indicate the jth component of the vector 0 and X;; the jth
component of the ith sample point.

The remark here immediately implies that the half-space median, the
simplicial median and all deepest points derived from the depths listed in
Section 2.1 are unbiased estimators for the mean of a multivariate normal
distribution.

3.2. Depth L-statistics. As in the univariate case, most of the data points
do not directly influence any of the medians described earlier, except for the
Mahalanobis depth with respect to which the deepest point turns out to be
the mean. This suggests concepts of location which are intermediate between
the mean and the median, such as the trimmed means. In analogy with the
concept of univariate L-statistics, that is, linear combinations of order statis-
tics, we define here depth-L-statistics, (DL-statistics). The DL-statistics are
robust location statistics which are designed to reduce or eliminate the
weights of data at outlying positions. All the location parameters we define
here, be it the median or DL-statistics, inherit the affine invariance property
of the data depth from which they are derived.

Multivariate data, when ranked according to a data depth, may have a
large number of ties. In defining DL-statistics, we follow the principle that
data points which are in the same de-class, assuming the same depth value,
must receive equal weights. Let w(#) be a weight function on 0 < ¢ < 1, that
is, w(t) > 0 and [jw(¢)dt = 1. Taking into account robustness, we tacitly
assume that w(¢) is nonincreasing.

Given the DO-statistics Xj,..., X[,;, we denote the stochastic process

associated with these statistics by
i—1 i

<t<-—,
n n

X4, ati=0.

Xy, for

(3.1) £,(t) =

Let £ (¢) be the average of &,(t) over the de-class that it belongs to. The
DL-statistic based on the weight function w(?) is defined as

(3.2) DL, = [£,(t)o(t) dt.

The case of a-depth-trimmed mean uses the weight function «(¢) = (1/(1 —
aNjg<s<1-ap» that is, w(#) = (1/(1 — a)) on [0,1 — ] and 0 otherwise. If
there are no ties and if n« is an integer, then the a-depth-trimmed mean is
L0 9X{1/[n(1 — @)]}. This is, in the usual form of univariate
L-statistics, 2" ; X; 0;, with X7, w; = 1. The special case of @ = 0 yields the
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mean as the resulting DL-statistic, and the limiting case of o = 1 yields the
median associated with the particular data depth used in ordering the data.

Before we present an illustrative example, we show in Proposition 3.2 that
an alternative definition to the above DL, is

(3.3) DL, = folfn(t)a(t) dt,

where (') is defined as follows. Suppose that X[, y,..., X, belong to the
same de-class. Then @(t) = (//n)" [} "w(s)ds, for all ¢ (i/n,( +
/) /n]. In other words, o(¢) is derived by averaging (w.r.t. Lebesgue-measure)

w(t) over the range of each de-class.
PROPOSITION 3.2. [{&,(Dw(t) dt = [L€,(D)w(2) dt.

This follows readily from the fact that the weight received by X; in either
expression is (1/7) [+ "w(s) ds, if we assume that X, belongs to a de-class
which contains /# members, and that the deeper classes contain altogether j

members.

ExampPLE 3.1. Assume that the DO-statistics for a sample of size n = 8

are (X3), (X;, X, X7, Xp), (X, X5, X¢). In other words, X;, = X;, X, = X;,

Xis) = Xy, Xy =Xq, Xj5) = X, Xjg) = Xy, Xj7) = X; and X5 = Xg. To com-
pute the 10% trimmed mean, we observe that
X5 for0 < ¢ < ¢,
£(t) = { 1(X, + X, + X; + Xg), forg<t<g,
5( X, + X5 + X)), for 2 <t <1.

In view of (3.2) and (3.3) for DL, , the 10% trimmed mean can be expressed as

1.1 41 1
[§X3E+§Z(X1+X2+X7+X8)@
5\1 1
+(0.9—§)§(X4+X5+X6)@

1 1 22 1
= E[Xd + E[Xl + X, + X, + Xl + —=— (X, + X5 + Xp).

3 7.2
Note that

8 1

ﬁ’ fOI‘OSth,
—(¢ 8 " 1 5
o(t) =\ 73’ org<t=yg

22 8 5

———, for—<t<1.

3 7.2 8
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The total weight is equal to 1. The outermost three data received reduced
weights compared to the five inner data.

There is actually a simple recipe for computing a depth-trimmed mean: let
n be the sample size and « be the trimming proportion. Move in decreasing
depth order along the DO-statistics, and assign weight 1/na to each data
point until the sum of the weights just crosses the threshold 1. Assume that
this point belongs to the jth de-class. Weights can then be reassigned as
follows. The weight 1/na is retained for all the data points belonging to
classes up to the (j — 1)th class, but the remaining weight (so that the total
weight adds up to 1) is divided uniformly over all the points in the jth class.
The points in higher classes are assigned zero weight. The weighted mean
based on this weight distribution is the a-depth-trimmed mean.

We now turn to the population version of DL,, which we denote by DL.
Clearly,

(3.4) DLy = ['Qp(t) (1) dt,

where Q(t) is the population counterpart of £,(¢). More specifically, @,(t) is
the ¢th center-outward quantile defined in Definition 2.3, and Q(¢) is the
mean along Q(¢). Alternatively, if the distribution of D,(X) is continuous,
then

(3.5) DL, = fRdxw(é(x))dF(x).

Here R(x) = Ppll p,(x)> Dp(xy)> Damely the probability of the central region
enclosed by the level set to which x belongs. Note that if D(X) is continu-
ous, R(X) is uniformly distributed [cf. Liu and Singh (1993)]. We can view
Qr(t) as the conditional mean of the population random variable X, condi-
tional on R(X) =t¢. It can be shown that for a symmetric distribution,
Qy(t) = 6, the center of symmetry, and thus DL, = 6. Furthermore, if the
chosen data depth is affine invariant, then the linear transformation (AX + b)
on the population X transforms DLy to (A(DLy) + b).

We conclude this section by observing an odd property of peeling-related
trimmed means and in particular, of the convex hull peeling median. Suppose
that the bivariate data are on polygonal contours centered at 6, and the data
to the left of 6 are much more dense than those to the upper right of 6, say
with the ratio 9 to 1. Suppose that the convex hull peeling median is 6 to
begin with. Now if we drag the halves of the contours which are to the left of
0 further left, the peeling median still remains at 6. This phenomenon can
arise in practice, as in the following example. We begin with a sample of 500
observations from the standard bivariate exponential distribution. The plot of
this sample is shown in Figure 6(a). The spots marked (a) to (d) (which lie
virtually on top of one another in Figure 6(a), but (a) is clearly separated from
the rest in Figure 6(b)) are, respectively, the medians identified by convex
hull peeling, simplicial depth, half-space depth and componentwise medians.
All four medians are quite close to each other. Now, if we round all data off to
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X,

(b

F1G. 6. Deepest points by four depths. (a) Before rounding.(b) After rounding.
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their first decimal place, then many points have common coordinate values or
become collinear subsets, as seen in Figure 6(b). The rounding yields convex
hulls with a larger number of points from the dense side of the data cloud
(near the origin), since data which differed sufficiently to be on different hulls
before the rounding are now constrained to one. Consequently, this rounding
off pushes the convex-hull-peeling median in the up-right direction (see
Figure 6(b)), to the extent that the resulting median seems far away from the
central mass of the data set. This phenomenon reflects the fact that each
round of peeling removes far more points from the dense side of the data
cloud than from the sparse side. The plots in Figure 6(b) is also a good
example to show that different data depths may yield different deepest points
for the same dataset.

4. Scale or dispersion. There are two common approaches to quantify
the scale or dispersion of a multivariate distribution: as a matrix or as a
scalar. Naturally, it is easier to grasp the magnitude of the scale by a scalar
than by a matrix. However, as seen in the definition of the covariance matrix
in classical multivariate analysis, a matrix scale can reveal other informa-
tion, such as the orientation of the probability mass distribution and the
variations of individual variates or covariates.

4.1. Matrix form of scale dispersion. Define

i—1 i
X, — X — f e
(Xiiy — w)( Xy — w)',  for —<t<—,

0, for t = 0.

(4.1) S.(t) =

Here v, is the deepest sample point, and O is the zero matrix. Following the
same idea of DL-statistics described in Section 3, and we can define a general
weighted scale matrix as follows: for a given weight function w(#), 0 <t < 1,

(4.2) S, = [S,(1)w(1) dr.
0

We recall that the integral of a matrix is the matrix of the integrals of its
entries. The overline “ ” indicates the averaging over all X;’s which belong
to the same de-class, as described in Section 2. The proposition below is
similar to Proposition 3.1 and provides an alternative definition to (4.2).

PROPOSITION 4.1.
(4.3) S, = [S.(1)(1) dt.
0

Note that if w(t) = 1for 0 < ¢ < 1, and if v, = X,, then S, is the classical
sample dispersion matrix. If (¢) =1/(1 — a) on [0,1 — «], then S, is the
a-trimmed sample dispersion matrix.
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As usual, we can interpret loosely the entries of S, as variations and
covariations, without requiring the existence of the corresponding moments.
We can also imitate the definition of the so-called generalized sample vari-
ance in classical multivariate analysis by taking the determinant of our
sample scale matrix S, and using the resulting single numerical value to
describe the variation expressed by S,. This determinant will be called the
generalized sample scale.

It is obvious that the scale matrix S, is equivariant under affine transfor-
mations. In other words, if S, denotes the sample scale matrix of the
transformed data Y;’s such that Y, = AX, + b, for i = 1,...,n, where Ais a
d X d nonsingular matrix and b is a d X 1 constant vector, then S;, = AS A,
where Sy is the sample scale matrix of the X’s.

4.2. Scalar form of scale/dispersion. A different measure of scale or
dispersion of a distribution can be defined by keeping track of how the pth
central region C, expands as p increases. This is a distributional property
which can be characterized easily by the speed with which the data depth
decreases. Recall that, for a given data depth DC(-;-), the level sets {x:
D(F; x) = ¢} form nested contours as the level ¢ decreases. Thus we can
define a scale curve by taking the plot of p versus S(p), where

(4.4) S(p) = volume(C,}.

Here C, is the pth central region. The sample scale curve, S,(p), is simply
the volume of the convex hull containing [np] most central points, that is,

(4.5) S,(p) = volume{C, ,}.

Clearly, the faster growing S(p) or S,(p) is associated with a larger scale
of the distribution. To some extent, our definition of scale in terms of S(p) is
in the same spirit as the spread defined in Bickel and Lehmann (1979). That
is, C, is the central region amassing probability p, which expands as p
grows. For p; < p,, the difference S(p,) — S(p,) reflects the central proba-
bility increment speed relative to the central-region expansion from C, to
C,,- Following this line of interpretation, we may view the distribution G as
more spread out than F if for p; < p,, the volume expansion S(p,) — S(p,)
under G is larger than that under F. In other words, if the scale curve of G is
consistently above the scale curve of F, then G has a larger scale than F.

Figure 7(a) shows two sample scale curves, each based on a random
sample of size n = 100, from two bivariate distributions, namely the stan-
dard bivariate normal and the normal distribution with enlarged covariance

matrix 41 = (3 2). The standard normal has a smaller scale and should be

able to enclose [np] observations by a smaller pth central region. Conse-
quently, its scale curve, plotted as the solid curve in Figure 7(a), is consis-
tently below the dashed scale curve for the distribution with the enlarged
covariance matrix. The value of S,(0.5) indicates the area of the convex
region that amasses the central 50% probability. This value is 4.354 for the
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standard normal, and 17.416 for the other. This confirms that the central
probability of the second distribution is much more dispersed, and that a
larger region is needed to collect the same fixed amount of probability.

Two additional scale curves computed from the test data set given on page
3 of Mardia, Kent and Bibby (1979) are presented in Figure 7(b). The solid
one corresponds to the test scores for mechanics and vectors taken in closed
book format and the dashed one to algebra and analysis in open book format.
The fact that the dashed curve lies below the solid one suggests that there is
less variation in open book tests scores.

Not only does the scale curve described above allow us to visualize the
scale of a multidimensional distribution via a simple one-dimensional curve,
but it also gives us a tool for quantifying the evolution of the scale of a
distribution as the distribution spreads out. We will return to this point later.

An application to comparing different estimators. One immediate applica-
tion of scale curves is to compare the efficiencies of alternative estimators for
the same parameter. We demonstrate this through the following example.
Assume that we are interested in estimating the mean w of a bivariate
normal distribution, which happens to be the center as well as the median.
Therefore, it is natural to consider the following four estimators: the sample
mean X,, the sample componentwise median M, the sample simplicial
median M? and the sample half-space median M. The sample mean
contains in each component the average of each component, and the sample
componentwise median contains the sample median of each component. Both
the simplicial and half-space medians are simply the deepest sample points
based on the simplicial and half-space depths. If the sampling distribution of
each estimator is known, we may generate a random sample from the
distribution and plot the sample scale curves for comparison. Equivalently,
we may draw K samples from the known population distribution to obtain K
realizations of each estimator, namely, K of X,, K of M¢ and so on. For each
estimator, we plot its scale curve based on its K sample estimates. Figure
8(a) presents a set of simulation results, with K = 500 and sample size
n = 100. The lowest and the second lowest curves correspond to the sample
mean and the sample componentwise median. The other two curves, with the
simplicial median case indicated by the solid one, are hardly distinguishable.
These plots imply that the simplicial and half-space medians are less efficient
than the sample mean, which is to be expected. That the componentwise
median outperforms the simplicial and half-space medians is probably due to
the lack of dependence between the two component variables.

Figure 8(b) displays the exact same set of scale curves as in Figure 8(a),
except that each component of the underlying bivariate distribution is now
Cauchy with parameter 1. It is worth noting that the sample mean, repre-
sented by the dashed curve, is far worse than the other three, since it is so
much higher in terms of scale that the other three curves are collapsed into
one flat line throughout. To put the other three curves in proper perspective,
we plot them on Figure 8(c). Note the sharp difference in the values along the
vertical axes in Figure 8(b,c). This confirms that the sample mean is defi-
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nitely not appropriate for estimating the Cauchy location parameter, since
the mean does not exist. The interpretation of the three curves in Figure 8(c)
is similar to that of the curves in Figure 8(a).

In the above scale comparison of different estimators, if the underlying
population distribution is unknown, we may rely on the bootstrap procedure
to generate enough samples for each estimator, more specifically, to generate
K bootstrap samples, each with sample size n, by sampling with replacement
from {X,,..., X,}. From each bootstrap sample, compute the four different
estimates. Repeat this procedure on all K bootstrap samples to obtain K
sample points for each estimator. The K points are then used to plot the scale
curve for its corresponding estimator. Figure 9 is the bootstrap version of the
four scale curves in Figure 8(a). The same pattern of behaviors are more or
less retained, although the curves now zigzag more due to some replicates
stemming from the bootstrap procedure.

It is important to note that in order to have a meaningful comparison, the
same notion of data depth should be employed at the last stage for determin-
ing the level sets used in plotting all the scale curves. This ensures that the
level sets start from the same center point, and thus provides a legitimate
ground for comparison. figures 8 and 9 are all carried out with level contours
determined by the simplicial depth ordering.
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4.3. Measures of bias. In addition to the scale or the variance of an
estimator, the bias is also an important component for measuring estimation
error. We outline below some possible approaches to quantify the bias of a
multivariate estimator.

The first approach is motivated by the same reasoning behind our defini-
tion of scale curve. Let 6, be an estimator of the parameter . Mimicking the
procedure for plotting its scale curve, we first obtain K sample estimates
from the population distribution, and denote them by 6,(1),..., 6,(K). We
apply a specific data depth to these K points, and 1dent1fy the deepest point
6. We expand the central region outward from 6 until it encloses 6, and
denote this central region by C(). Next, we shift the region C(8) along the
line connecting 6 and 6 until it is centered at 6. This shifted region is
denoted by C(6). The bias of the estimator 0, is defined to be the volume of
the intersection of C(6) and C(6). The populatlon version of this bias is
defined similarly with the true sampling distribution of 6,. Note that in the
univariate case, this notion of bias is in fact the absolute value of the usual
bias. Consider the example of estimating the bivariate normal mean by either
the simplicial or the half-space median. In either case, the bias computed
from a sample of size 100 is nearly zero. This should be expected, since both
the simplicial and the half-space medians are unbiased estimators for the
bivariate normal mean (cf. Proposition 3.1 and Remark 3.1). Two other
examples with more noticeable biases are also considered. The first is on the
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estimation of the bivariate mean ratio. Let W, X and Y be independent
random variables from exponential distributions with means wuy, wy and
Wy, respectively. The parameter of interest is the vector (uy/wyx, tx/my)
and the proposed estimator is (W/X, X /Y ), where the bar indicates a sample
mean. The sample size n here is 5, and all means are assumed to be 1. The
obtained bias is 0.0146. The second example is on the estimation of the fourth
moment of a bivariate normal random vector. Let (Z,, Z,) be a standard
bivariate normal random vector. The parameter of interest is (E(Z}), E(Z3)),
and the estimator is the vector of the componentwise fourth sample moments.
The sample size n is 5. In this case, the obtained bias is 29.6. The nonzero
bias in the last two examples clearly reflects the fact that the two estimators
are not unbiased estimators for their population counterparts.

Again, if the underlying population is unknown and only a sample is
available which yields the estimate 6,, we may employ the bootstrap proce-
dure to obtain many, say K, estimates based on the given sample. We denote
them by 6,°(1),..., ,"(K) and repeat the same procedure as above for getting
the bias by treating 6, as the true parameter. The role of 6 is then assigned
to the center point of 6 (i)’s. 3

Another perfectly legitimate measure of bias is simply the volume of C(6),
defined in the first approach. This generalization of bias reflects better the
multidimensional nature of the estimate, since 6 may be viewed as one
realization of a whole class of estimators in the same level contour surround-
ing 6. This definition can be made scale-free by considering the probability
content of C(6) instead of the volume.

One can also try to make this bias measure scale-free by taking the bias as
the probability mass contained in C(6). In fact, this may be viewed as a
generalization of the so-called median bias [cf. page 6, Lehmann (1991)].
Following this definition, the four simulated samples considered earlier yield
the median bias 0, 0, 0.024, and 0.132, respectively.

4.4. Bias + scale. To account for the estimation error of an estimator, we
may consider simultaneously the scale and the bias and view the sum of scale
and bias as a multivariate generalization of the mean-square-error in the
univariate statistics. Although several definitions of bias have been discussed
earlier, the one using the volume of C(6) as a bias measure seems to be more
in line with the construction of the scale curve. This would seem to suggest
that the bias + scale curve be the plot of (volume(C(6)) + volume(C, ,)),
0 < p < 1. However, the overlap of the two central regions, C(#) and C,, > 18
being used to compute both the bias and the scale. As a result the curve will
begin at a nonzero level. Removing this overlap leads to the following
proposal of a simultaneous measure of scale and bias. We begin the construc-
tion of the bias + scale curve for the estimator 6, as if we were to compute
the bias in the first approach. We start with many, say K, sample estimates,
that is, 6,(1),..., 6,(K). We then identify the deepest point and denote it by 6.
For a given p value, 0 < p < 1, we obtain the pth central region centered at
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6 which encloses [np] of 6,(i)s, and denote this region by C, (6). We shift
C, (6) along the line connecting 6 and the true parameter 6 untll C, (0) is
centered at 6. The bias + scale at level p is defined to be the volume of the
smallest convex hull containing the union of Cp(é) and its shifted region
centered at 0. The dashed curve in Figure 10 is the bias + scale curve for the
simplicial median when it is used as an estimator for the bivariate normal
mean. Again, as expected, the bias is nearly zero (cf. Proposition 3.1). The
bias + scale curves for the cases of estimating exponential mean ratios and
estimating normal fourth moments are shown as dashed curves in Figure
11(a, b). The bias in either case is clearly not negligible.

REMARK 4.1. Remarkably, our definitions of bias happens to be very well
behaved with respect to dimensionality. The bias defined either way quickly
becomes insignificant as the dimension of the distribution rises. More pre-
cisely, we first note that the vector (6 — ) typically has length O(n~1).
Consequently, the volume of C(6), as well as the other bias measures, are all
O(n~%), where d is the dimensionality of the distribution. This desirable
property is also confirmed by our simulation results with a moderately large
sample size, even in the case d = 2. This observation suggests that more
attention be given to the scale in measuring the estimation error of a
multivariate estimator.
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Fic. 10. Estimating normal mean by simplicial median.
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5. Skewness. Skewness is a measure of deviation from symmetry. For a
multidimensional distribution, we consider the following four types of sym-
metry:

A. Spherical symmetry. The distribution of the random variable X is said to
be spherically symmetric about the point ¢ if the distributions of (X — ¢)
and U(X — ¢) are identical, for any orthonormal matrix U.

B. Elliptical symmetry. The distribution of the random variable X is said to
be elliptically symmetric about the point ¢ if there exists a nonsingular
matrix V such that VX is spherically symmetric about c.

C. Antipodal symmetry. The distribution of the random variable X is said to
be antipodally symmetric about the point ¢ if the distributions of (X — ¢)
and —(X — ¢) are identical.

D. Angular symmetry. The distribution of the random variable X is said to be
angularly symmetric about the point ¢ if, conditional on X # ¢, the
distributions of (X — ¢)/|IX — ¢|l and —(X — ¢)/I| X — cl| are identical.

The preceding four notions of symmetry are increasingly less restrictive.
That is, spherically symmetric distributions are elliptically symmetric, ellipti-
cally symmetric distributions are antipodally symmetric and antipodally
symmetric distributions are angularly symmetric.

A detailed investigation of elliptical symmetry can be found in Beran
(1979). The recent paper by Beran and Millar (1997) contains an extensive
study of many multivariate symmetry models (where antipodal symmetry is
called simple symmetry). Some qualitative directional measure of skewness
are explored in Avérous and Meste (1997). Our focus is on an overall
quantitative measure of skewness of various types, which seems simpler and
more practical in comparison.

For each type of symmetry in (A) to (D), we can define a measure of
skewness as the deviation from that particular symmetry. Thus, there are
four measures of skewness.

A. Skewness as departure from spherical symmeitry. For each pth central
hull C, ,, 0 < p <1, we find the smallest sphere containing C, , and deter-
mine the fraction of the data within that sphere. This fraction is plotted with
respect to its level p. In principle, if the underlying distribution is spherically
symmetric, the resulting plot should be the diagonal line from (0, 0) to (1, 1).
The area of the gap between the plot and the diagonal line, denoted by A, , is
thus a measure of skewness due to lack of spherical symmetry.

The zigzag plot in Figure 12(a) is the proposed spherical skewness for a
standard bivariate normal distribution based on a sample of size 100. The
plot closely follows the diagonal line, and indicates that the standard normal
is spherically symmetric. The sample A, value in this case is 0.0779, nearly
zero. The plot in Figure 12(b) is for a bivariate normal distribution whose first
component variable is a standard univariate normal and the second compo-
nent is the sum of the first component variable and another independent
standard univariate normal variable. The plot arches away from the diagonal
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in the middle, and suggests a nonspherically symmetric distribution. This is
indeed in the case, since the distribution is elliptical but not spherical. The
sample A, here is 0.197.

B. Skewness as departure from elliptical symmetry. For each pth central
hull C, ,, 0 <p <1, we first apply the transformation S;’lp/ 2 to each data

point, where S,  is the scale matrix [ef. (4.1)] derived from the data points

inside the level set C, ,. We then proceed as if we were to measure the
skewness as the departure from spherical symmetry on the transformed data,
namely by plotting the fraction of the transformed data falling inside the
smallest sphere containing the transformed level set. Again, we expect the
plot to hug the diagonal line closely under elliptical symmetry.

Figure 13(a) is the elliptical skewness plot from the standard bivariate
normal sample examined in Figure 12(a). The plot follows closely and often
touches the diagonal, with A, = 0.0852. The elliptical skewness plot for the
sample in Figure 12(b) shows a similar result with A, = 0.0848. These
observations confirm that the two underlying distributions are elliptically
symmetric. Figure 13(b) presents the plot based on a sample from the
standard bivariate exponential distribution. It shows that the exponential
distribution is not elliptical, since the plot deviates substantially from the
diagonal line, not touching it in the upper two-thirds range of p. The A, here
is 0.1464.

C. Skewness as departure from antipodal symmetry. Since antipodal
symmetry means that the distribution coincides exactly with its image under
reflection about the point of symmetry, we define the corresponding skewness
as the degree of nonoverlapping between the central region and its reflection
image. That is, for each pth central hull C, , we calculate the fraction of the
data points falling inside the intersection of C, , and its reflection. Under
antipodal symmetry, this fraction is exactly the same as the level of the
central region since the two regions coincide. The graph of this fraction
versus the level p should therefore be the diagonal line from (0, 0) to (1, 1).

We obtain the plots for the samples drawn from five bivarite distributions
whose component variables are independent and have the following marginal
distribution: (a) standard normal, (b) Cauchy(1), (¢) uniform [ —0.5,0.5], (d)
exponential (1) and (e) gamma (5) (5 is the shape parameter). The first three
distributions are antipodally symmetric, and their plots, as expected, hug the
diagonal line closely. Since the three plots are similar, we present only the
one from Cauchy distribution in Figure 14(a). The distributions in (d) and (e)
are antipodally asymmetric and their plots deviate significantly from the
diagonal line, especially towards the upper right. Figure 14(b) is the plot
based on the sample from the exponential distribution in (d).

D. Skewness as departure from angular symmetry. To obtain a measure
of skewness as deviation from angular symmetry, we proceed as follows. We
apply a specific data depth to identify the deepest point. We calculate the
half-space depth of the deepest point w.r.t. only the data points within each
central region C,, 0 <p < 1. We then plot the value of (3, the half-space
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depth at the deepest point) w.r.t. level p for 0 < p < 1. The deviation of the
plot from the horizontal line at value zero is the desired measure of skewness
due to lack of angular symmetry. To see this, we observe that the half-space
depth value in essence identifies the pair of half-spaces whose probability
contents differ the most. Under angular symmetry, all pairs of half-spaces
joining at the deepest point have equal probability mass &, which implies
that the deepest point has the half-space depth value exactly 1 and it is also
the center of angular symmetry. Therefore, the deviation of the half-space
depth at the deepest point from the value 1 is a measure of the departure
from angular symmetry of the empirical distribution determined by the
sample points within each level set. We obtain angular skewness plots for
samples of size 100 from the following distributions: (a) the standard bivari-
ate normal; (b) the standard bivariate normal with its right-hand side
compressed to its half, that is, the distribution of (X, X,) is given by
X,=Y/2and X,=Y,/2if Y, >0,and X; =Y, and X, =Y, if Y, <O,
where Y, and Y, are two independent univariate standard normal random
variables; (¢) the two component variables are independent Cauchy (1); (d)
the two component variables are independent exponential with mean 1; and
(e) the two component variables are independent chi-square with mean 1. All
graphs begin to stabilize after some initial fluctuation in the range of small p
values. This is expected since the half-space depth there is an estimate based
on only a small sample, and thus highly unstable. For practical purposes, we
make use only of the graph in the range of p > 0.4. The first three distribu-
tions are angularly symmetric. Their graphs stay below 0.1 after p > 0.4 and
edge closer to zero if the sample size increases, as shown in Figure 15(a),
which is the angular skewness plot from a sample drawn from the com-
pressed normal distribution in (b). The distributions (d) and (e) are angularly
asymmetric, and the plots from their samples maintain a substantial gap
throughout, as seen in Figure 15(b), which is the angular skewness plot with
the underlying distribution (e).

REMARK 5.1. A careful examination of the graphs in Figure 15(a,b)
reveals that their maximum half-space depths never quite reach %, even
though the three distributions there are angularly symmetric. This is in part
due to the slow convergence of the sample half-space depth, which is particu-
larly acute for a small or medium sample size. It is also a consequence of
having restricted ourselves to identifying the deepest of the sample points
instead of the overall deepest point on the space R2. The overall deepest point
is more efficient and should provide a faster convergence to the true half-space
depth. However, it is highly impractical, if not impossible, to search the
infinitely many points in space to locate the “deepest” point. A practical
compromise here would be simply to include some natural efficient location
estimators, such as the sample mean, in our sample during the search for the
deepest point. This inclusion should be particularly helpful in distinguishing
plots when the sample size is small.
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REMARK 5.2. For the above reasons, the angular skewness plots based on
the half-space depth in some cases may appear to be less than decisive. In
such a case, one can consider an alternative angular skewness plot which
plots the simplicial depth value at the “deepest” point. It has been shown in
Liu (1990) that the simplicial depth at the point of angular symmetry is 279,
where d is the dimension of the distribution. Therefore, one can easily plot
the simplicial depth of the deepest point within each pth central region.
Taking into account the discussion in Remark 5.1, we may also treat the
sample mean as one of the sample points in computing the highest depth
value to enhance the results. Note that the computer program we use here [cf.
Rousseeuw and Ruts (1996)] treats a boundary point of a triangle as being
contained in the triangle. This leads to a systematic overcount of the trian-
gles containing each sample point. This fact does not affect the ordering of the
sample points, since their simplicial depth values are all equally inflated.
This inflation in simplicial depth values in the finite sample calculation
explains why all graphs in the alternative angular skewness plots for angu-
larly symmetry distributions (except for the initial zero value for the central
region which contains only two points) are always above 27¢, and seem to
converge from above to 2°¢ toward the end. An illustrative example is given
in Figure 15(c), which shows the angular skewness based on plotting the
highest simplicial depth for the same sample used in Figure 15(a). Note that
the graph here never quite reaches 0.25. On the other hand, the graph in
Figure 15(d) which plots the highest simplicial depth for the sample used in
Figure 15(b) does reach 0.25 fairly quickly.

6. Kurtosis, relative-spread, heavy tailedness. These three expres-
sions are synonymous in this section. On the real line, kurtosis is defined to
be the ratio of the fourth central moment to the square of the second central
moment, see, for example, Section 3.31 of Kendall, Stuart and Ord (1987). It
is interpreted as an inverse of the “peakedness” of a distribution or as a
measure of the overall spread relative to the spread in the tails. Unless the
concept is viewed relative to the scale, it can be quite confusing. Consider the
following two univariate distributions:.#10,1/100) and U[ —1, 1]. Looking at
the two densities, the normal curve seems obviously more peaked. However,
it is the uniform distribution which is relatively more peaked after equalizing
the scales. In fact, the kurtosis is 1.8 for a uniform distribution and 3 for a
normal distribution.

We describe below four approaches for defining notions of kurtosis to
measure heavy tailedness of a multidimensional distribution. Each approach
is illustrated by four bivariate distributions, whose components are: (i) uni-
form, (ii) normal, (iii) double exponential and (iv) Cauchy. The first two
approaches give very straightforward curves. The others give more compli-
cated sets of curves, but they do provide more information about tail probabil-
ity behaviors. Again, all our approaches are moment-free if the underlying
depth is. Furthermore, these concepts are invariant under location and scale
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changes, that is, the plots are the same for X and (AX + b) if A is a
nonsingular matrix and b is a vector.

6.1. Kurtosis in the form of a Lorenz curve of sample Mahalanobis dis-
tances. Given a sample {X,..., X,}, we compute their Mahalanobis dis-
tances from the deepest point u, determined by a specific data depth

Zi=(X; — 1) S, M(X; — ), i=1,...,n

Here S, is either a dispersion matrix defined in (4.2) or the classical sample
covariance matrix. Consider the Lorenz curve (cf. Section 2.3) of {Z,, ..., Z,}.
The area between this curve and the diagonal line is a measure of kurtosis,
since the curve for a distribution with a higher kurtosis falls further below
the diagonal line and gives a larger area in between. More precisely, the
Lorenz curve of the Z’s can be constructed as either L, or L% expressed in
(6.1) and (6.2),

6.1 _EE
( ° ) D - EiLZl ’
Egnp]zi/[np]
* T e
(6.2) Lp SiZn

The definition of L, follows that of the Lorenz curve in (2.4), which is the
proportion of the mean confined to the central hull C, , to the overall mean.
Figure 16(a) displays the L ’s for samples from the four distributions @D-Gv).
The L, of the uniform sample is the closest to the diagonal line. The other
three, in the order listed, move gradually further away from the diagonal
line. The area in between and thus the kurtosis increases accordingly. The
visual effect of the four curves in Figure 16(a) can be enhanced by modifying
L, to L%, which leads to a more pronounced separation of the curves. This
effect is shown clearly in the resulting graphs of L%’s in Figure 16(b). Note
that L, = pL%, and L7 is the proportion of the subtotal in C, , to the grand
total. It is worth noting that both the L, and the L% curves are completely
free of location and scale.

6.2. Kurtosis and a Lorenz curve with density function as wealth. Let f(-)
be the probability density function of the random variable X on R¢. Define a
new random variable T = f(X), and denote its c.d.f. by H(-). The kurtosis of
the distribution F(-) in terms of the Lorenz curve associated with a positive
random variable in (2.3) can be measured as follows. Define

(6.3) L(p) = E(T) 57 ),

Note that E(T) = [f(x) dF(x), and [ "P¢dH(t) = Je: (LD)f(x) dF(x) since
{T < H "(p)} = {x € C}(LD)}. Here C}(LD) is the region of the 100p%
smallest likelihood depth f(x), and may be viewed as the pth tail region. In

HE Wy al(8) for 0 < p < 1.
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our usual notations for depth central regions, C5(LD) is simply the comple-
ment of the (1 — p)th central region determined by the likelihood depth.
Thus, it is obvious that (6.3) is equivalent to

(6.4) L(p)=[_ f(x)dF(x) / JF(x) dF(x),
C#(LD)
for 0 < p < 1. The right-hand side of (6.4) can be viewed as a Lorenz curve
with f(x) as the wealth of the point x. If we plot L(p) w.r.t. p. the area
between L(p) and the diagonal line is a measure of the degree of heavy
tailedness and hence of kurtosis.

To motivate this concept of kurtosis, we recall from (2.4) that the measure

of concentration of the distribution H(:) can be expressed as L(p) =p X
(E(TIT < H '(p))/E(T). Since {T < H '(p)} = {x € C}(LD)},

E(f(X)IX € C}(LD))
E(f(x))

Without the factor p, the right-hand side of (6.5) can be viewed as the ratio
of the overall scale to the conditional scale of the pth tail region. It is
reasonable to view [[fdF]™! as the overall scalar scale since [ [fdF] =
constant X |3|"'/? within the same location and scale family. Similarly,
[ Jezwp) f(x)dF(x)/p]~! can be viewed as the conditional scalar scale for the
pth tail region where the 100p% probability is more sparsely distributed.

Another way of interpreting this kurtosis measure is to view the uniform
distribution as a model case which divides the wealth of density equally to
100% of the population and the compare the other distributions with the
model case. A heavy tailed distribution has a sizable fraction of its population
with much lower wealth density than the modal points do. In other words, it
spreads a small amount of tail probability (i.e., wealth in the context of
wealth distribution) over a large domain (i.e., portion of the population). This
results in an overall lowering of the density function in the tail region. The
integral of the density in the tail zone is divided by the integral of the density
over the entire range to make the function L(p) free of scale.

The kurtosis in terms of L(p) is plotted in Figure 17 for the distributions
(i)—@\v). The conclusion drawn from them is similar to the one drawn from
Figures 16(a, b).

(6.5) L(p) =p X

6.3. Shrinkage plots. Let s, 0 <s <1, be a predetermined shrinkage
level. Consider the pth central hull C, ,. We shrink its boundary towards it
center (the deepest point) by a factor of s. We refer to the region enclosed by
this shrunken boundary as the shrunken hull, and denote it by C;; ,. We then
count the number of data points enclosed in C;, ,. Let a,(p) (or simply a(p)
when s is fixed) denote this fraction of data points. The shrinkage plot is the
plot of a(p) versus p. For the same value of p and s, we can compare the
kurtosis of two distributions by comparing their shrinkage plots. For a fixed
shrinkage level, a distribution with heavier tails tends to have higher a(p),
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Fic. 17. Kurtosis using L( p) [ Definition (6.5)].

especially in the range of larger p values. This corresponds to the fact that a
higher concentration of probability mass in the tail region makes it harder to
lose a substantial number of data points by shrinking. Evidently, a more
compelling conclusion can be drawn if this shrinkage plot comparison is
carried out with many different values of s, say s = 0.25, 0.5, 0.75. However,
we find that the common features of the plots usually do not vary greatly.
Therefore, we present our simulated plots only for s = .5 and draw conclu-
sions from there. Figure 18 contains the shrinkage plots for the four distribu-
tions displayed in Figure 16. The horizontal axis represents the pth central
hull C, ,, and the vertical axis represents a(p). Except for a few minor
crisscrosses in the range of small p, overall the four plots show clearly very
different speeds of increase for a( p). From low to high, they correspond to the
four distributions (i) to (iv) in that order. This finding is consistent with the
ones derived from Figures 16(a,b) and 17.

To standardize the magnitude of the difference in the plots above, we can
force them to have the same range on [0,1] by converting them into the
following Lorenz curves. Consider a fixed C, ,. After the s-shrinkage, we let
V(s) denote the loss of area or volume (in fraction of the total area or volume
of C, ,) and I(s) the loss of inclusion of data (in fraction of the total number
of data in C, ,). Now we plot V(s) on the horizontal axis and I(s) on the
vertical axis. Note that V(s) and I(s) increase from 0 to 1 as s decreases from
1 to 0, and also that I(s) increases as V(s) increases. For a unimodal
distributions, [(s) < V(s). This clearly generates a Lorenz curve. The area
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between the curve and the diagonal line can be viewed as a measure of
kurtosis at the pth central region. A plot of this kurtosis value for the range
of p from 0 to 1 should give a complete picture of the kurtosis measure of a
distribution.

In the Appendix, we provide a proof of the affine invariance of the above
shrinkage plots.

6.4. Fan plots. Consider the pth central region C, ,. For a given ¢,
0 < ¢ < 1, form the convex hull of the 100¢% central-most data points in C, ,
and denote it by C, ,(¢). Let b,(¢) = {volume (C, ,(¢))/volume (C, ,)}. The
plot of bp(t) versus ¢ for a fixed p is a measure of heavy tailedness in the pth
central region of the distribution. For a fixed value of p, the value of bp(t)
ranges from 0 to 1. Repeat this procedure for a set of values of p. The
collection of these plots resembles the shape of a fan. For a distribution with
heavier tails b,(¢) tends to be smaller, and thus its fan plot is more spread
out. Figures 19(a)-(d) show the fan plots for the four distributions. They are
consistent with all earlier results in this section.

7. Data-depth plots. In this section we focus on graphical comparisons
of two multivariate distributions based on data-depth plots of their samples.
Specifically, we consider the DD-plot which plots the depth values of the
combined sample under the two corresponding empirical distributions. If
the two given distributions are identical, then these plots are segments of the



MULTIVARIATE ANALYSIS BY DATA DEPTH 823

Area Ratio bp(t)

T T
0.0 0.2 0.4 0.6 0.8 1.0

Proportion p
(a)

1.0

Area Ratio bp(t)
0.4

0.2

0.0

T T T
0.0 0.2 0.4 0.6 0.8 1.0

Proportion p
(b)

Fic. 19. Kurtosis as fan plots. (a) Uniform.(b) Normal.



824 R

. Y. LIU, J. M. PARELIUS AND K. SINGH

Q
©
@
£ o
-QD. O- |
2
T
o
3 -
Zz o
N
1=}
Q]
o
I I T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Proportion p
(©
Q]
@ |
o
£ o
a o]
2
©
o
g =
Z ©
N |
o
Q|
=]
T I T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Proportion p
(d)
Fic. 19. (Continued).(¢) Double exponential.(d) Cauchy.




DG,,(‘ )

D& ()

Fic. 20. DD-plot.(a) Identical distributions.(b) Location shift.

MULTIVARIATE ANALYSIS BY DATA DEPTH

W
S XX ,
(=] X A%
X
X
& X
- Xx
Xy ¥ x
e X
%
2 % X Ky
o X X
XX X
X’Q(
x XX x
7] )28"‘ X X XX
X X
X
’,‘“3(( ey XX
™ X X
o 4 X
= s
1 1 T T 1
0.05 0.15 0.25
D)
(@)
X
o x)(x % X
A X X x X X
o X X X * X
X X
* X XX
- X X X
X X X
X X X
x X
2 x XX X X X
(<] xxX X X X X X
X x x)el(X X L X
x Xy X x
-1 X)Q(XXX XXX X X X
x® &y x X x X
X X
)?&x X X XX
8 XXX X X XX)QS( % xX
(=] x)z()g( XXX(
ROKx
1 T T T 1
0.05 0.15 0.25
DH()
(b)

825



826 R. Y. LIU, J. M. PARELIUS AND K. SINGH

%
o x XXy x Xﬁx’{xxx
. X XX X X
o X % ,2‘))(°(x X x X
x XXy % Xx X X
« XX X XX £
. X XX x X
)Z(X XX§%
—_ x),()e(xxx
o x%
(=] X
X
X x
413 %
X
X
[Te)
(=3
o
T T T 1 )
0.05 0.15 0.25
DF"(-)
(©
X
[Te) xx X X
N X
e X X X »’g& XXxx X
%%k x’k’kxx XX x Xx
X X X
i X
p o
X/x
— S X X X
0 X x X
? vo-_— ! * X XX %
X 3!
x Xx x x X
¥ X X
= X X
X X
x ¥ X
X
X X X
8] fxxx
IS x X
X X
T I I T T
0.05 0.15 0.25
D)
()

Fic. 20. (Continued). (¢) Scale difference.(d) Skewness difference.



&()

DGn(')

Fic. 20.

MULTIVARIATE ANALYSIS BY DATA DEPTH

0 )“xx
[V
=} xx )X
)&X(
X *
X
XX }(
- XXXXX X
X X
xX
T) % X X’e( X x X
- X i{ Pl
o X XX X
X)O( X ;X X
o K x
XX yx X
- % )§x X XX
Xy X X X
X
wn
Q_
o
T T T 1 )
0.05 0.15 0.25
DFn()
(e
o
@ X
e %
X
X x X
[Ye} X X X XX X
N~ Xx  x X
© % X X
X X X
o
S x X X
o X X X
X X
X X X
2 X X xx X X
© X X x %
X X
XX Xx x X X
vo—_. xx X X X
o X X x X
X X
X X
g X % X xX X x
o 4
XX X
S Fx % 1 X0
Q|
=]

T T T
0.0 0.05 0.10 0.15 0.20 0.25 0.30

Dea()
®

(Continued). (e) Kurtosis difference.(f) Raw test scores.

827



828 R. Y. LIU, J. M. PARELIUS AND K. SINGH

o
® X
I=]
X
n
(\!—.
=] x§ X
o
N+ XX ox
(=} X
< Q] X x
(O] . X
[a)

o
24
T 1 ) T T T T
0.0 0.05 0.10 0.15 0.20 0.25 0.30
Den(.)
(€3]
X
o
® X
(=}
X x X xx
ﬁ— xXXxX X %0 X
X ¥x x x x
&4 XX X x X
o XX X x x X
T":J o X)k)& X x X
o & X
e XK X XX
X)& X X
o X X
o AL X x % X
2 x X xx
o P X
o
=

T T T T
0.0 005 010 0.15 020 025 0.30

Dral)
()

Fic. 20. (Continued). (g) Scale adjusted test scores. (h) Location adjusted test scores.



MULTIVARIATE ANALYSIS BY DATA DEPTH 829

diagonal line from (0, 0) to (1, 1) in R2. Plots which deviate from this straight
line indicate differences between the two distributions. We observe that
different deviation patterns in the plot correspond to different types of
variations between the distributions, for example location shifts or scale
increases.

Let F and G be two distributions on R? and D(-) be an affine-invariant
depth. We define DD(F, G) as

(7.1) DD(F,G) = {(Dg(x), Dg(x)) for all x € R%}.

When F and G are fixed, we denote DD(F, G) simply by DD. Since DD is a
subset of R2, its plot can be easily visualized. We call it the DD-plot. It is
affine invariant if the underlying depth is. When the distributions are un-
known, we may construct the empirical version of a DD-plot. If the underly-
ing distribution F is unknown, with a given dataset {X,,..., X,}, we may
determine whether F' is some specified distribution, say G by examining the
following DD-plot:

DD(F,,G) = {(Dg(x), Dg(x)) forall x € {X;,..., X,}}.

If F and G are the population distributions for the samples { X}, ..., X, }(= X)
and {Y,,...,Y }(=Y), then the DD-plot below can be used to determine
whether or not the two distributions are identical:

(7.2) DD(F,,G,) = {(Dg (%), Dg (x)), x € (XU Y}}.

We observe that if d = 1, then the Lebesgue measure of DD is zero when
F +# (. However, if d > 2 and if F and G are both absolutely continuous,
then DD is a region with a nonzero area. The area of this region can serve as
an affine-invariant measure of the discrepancy between F and G.

If the two distributions are identical, the DD-plot in (7.2) should be
concentrated along the diagonal line, as seen in Figure 20a where the two
samples are drawn from the same standard bivariate exponential distribu-
tion. Different patterns of deviations from the diagonal line in the DD-plots
are indications of differences in specific characteristics of F and G. Several
examples are given here to identify these characteristics. The depth measure
used in Figures (a—h) is simplicial depth.

Consider first the case when G(-) = F(-— 0), that is, G is a location shift of
F. In this case, the DD-plot exhibits a noticeable departure from the diagonal
line from (0, 0) to (0.25,0.25), in such a symmetric manner as if the diagonal
is the regression line and the DD-plot is the scatter plot. The departure here
usually takes the form of pulling down from the point (0.25,0.25) to (0, 0),
leaving the upper right corner empty and spreading out the points around the
midrange of the diagonal line, as if fitting a heart-shaped leaf on the diagonal
pointing at (0, 0). An example of this can be seen in Figure 20(b), which is the
DD-plot with one sample from the standard bivariate normal and the other
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sample with a mean shift to (0.5,0). From the theoretical point of view, we
note that if the two samples have the same center (deepest point) then this
center achieves the highest depth within each individual sample. In other
words, a DD-plot with a common maximum point for both coordinates
indicates a common center (i.e., no location shift) for the two underlying
samples. This is clearly not the case in Figure 20(b), and the resulting
heart-shaped plot indicates a location difference in the two samples.

In order to bring out scale differences, the center of the samples should be
equalized first by subtracting from the data their respective centers. Suppose
that F' and G have the same center, but F' is more spread out than G. Then
the points in DD tend to arch above the diagonal line in the shape of an early
half moon as seen in Figure 20(c). This is a DD-plot for two bivariate normal
samples where F' has an enlarged scale.

To bring out skewness and kurtosis-associated differences in DD-plots,
both location and scale should be equalized first. To equalize the scales, the
data should be transformed to Sx'/?X and Sy'/%Y, where Sy and Sy are
dispersion matrices of the central 50% of the data [cf. (2.1)]. Once F and G
have the same location and (central) spread, a difference in skewness mani-
fests itself in the DD-plot in the form seen in Figure 20(d). As in Figure 20(c),
the plot arches up above the diagonal line. However, unlike Figure 20(c), the
arch is not symmetric as a half-moon shape. Rather, it spreads out more
toward the lower left corner. The skewness difference comes from the two
bivariate chi-square distributions, with different degrees of freedom 1 and 5.

Finally, suppose F' and G have the same center and (central) spread and
both are more or less symmetric. If F' has higher kurtosis than G, then the
lower part of the DD-plot shifts to one side of the diagonal line, although the
upper part still points straight toward (1, 1). Figure 20(e) provides such an
example, with the first sample from standard bivariate normal and the other
from the bivariate distribution whose components are independent Cauchy
(D).

As an application, we present three DD-plots for the test score data set
discussed in Section 4. Figure 20(f) is the DD-plot of the original data set.
The plot deviates significantly from the diagonal line and does not have a
common maximum point. This strongly suggests a possible location difference
of the two sets of test scores. After centering both sets of test scores on (0, 0Y
(by subtracting the corresponding deepest point from each observation), we
obtain the DD-plot in Figure 20(g). The half-moon shape of the plot hanging
below the diagonal line indicates a scale difference between the two sets of
scores, with the larger scale for closed-book scores. This conclusion was
independently obtained by the earlier scale plot in Figure 7(b). Finally, the
DD-plot for the standardized data (multiplying each datum by the square
root inverse of the corresponding central 50% covariance matrix) is given in
Figure 20(h). This plot shows minor asymmetry along the diagonal line,
which seems to be an indication of a possible difference in skewness and /or
kurtosis.
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8. Data-depth based estimation of a dispersion matrix and diag-
nostics of nonnormality. In this section, two results related to multivari-
ate normality are derived. They provide some simple diagnostic tools for
checking normality. The first result establishes a relationship between the
overall dispersion matrix and the dispersion of a smaller central region
determined by a data depth. The second result provides an almost sure bound
for the maximum deviation from the mean in a multivariate normal sample.
We now proceed to discuss the first result.

The estimation of the dispersion matrix ¥ = E(X — u)XX — M)/) plays an
important role in multivariate analysis. One of the important functions of
is in standardizing or sphericizing the observed data X, that is, in defining
Z = 371/2(X — w) so that Z has mean vector 0 and dispersion matrix I, the
identity matrix. Our objective in estimating % is to obtain a sample version of
Z, namely Z* = 37 1/2(X — X), where 2 is the estimated dispersion matrix.

The most natural estimator of 3 is of course the sample variance—covari-
ance matrix S,, where S, = (1/n)3" (X, — XXX, — X). This estimator,
however, is highly sensitive to extreme observations. It puts in question
whether the dispersion matrix restricted to a central region C, can give rise
to a consistent estimator of 3. The answer turns out to be indeed that it
cannot, if nothing else is specified about the population distribution. If the
tail portion of a population is unspecified, the ranges of the values of the
elements in 3 are unbounded.

For the rest of this section we shall restrict ourselves to the family of
distributions commonly known as elliptical distributions. The density func-
tion of a member of this family can be expressed as [cf. page 34 of Muirhead
(1982)]

Cd

|20|1/2

(8.1) f(x) = A((X - )2 (X —n)), 2x€RY,

where c,; is a constant depending on d and the function 4, u is the center of
the distribution, 3, is a positive definite matrix, and A(-) is a nonnegative
function with [¢*/2-Dh(¢) dt < ». The notation “|*|” stands for the determi-
nant of *. It is clear that %, = ¢, for some constant c.

Let 2(p) denote the dispersion matrix when the population is conditioned
on the central region C,. We shall show that %(p) and X are related by a
constant multiplier if the underlying population is elliptical and the depth
used is affine invariant. It should be noted here that the contours of the
density function of an elliptical distribution agree with the depth contours
determined by an affine invariant data depth [cf. Liu and Singh (1993)].

THEOREM 8.1. Let p be a fixed value between 0 and 1. If the underlying
distribution F satisfies (8.1), then

(8.2) 2(p) =1,%,
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where m, is a scalar depending on h(-), p and d. IfR? = (X — ,u,),Ea X - ),
and ¢, stands for the pth quantile of R2, then

E(R*|R* < §,)
E(R?)

(8.3) n, =

The density function of R? is given by

d/2
/ d/2-1

(8.4) g(r?) = 2=

W(I"Q) h(r2).

The constant c, is the same as the one in (8.1).
Note that the density in (8.4) can be found on page 37 of Muirhead (1982).
ExamPLE 8.1. Let p = 0.5. Consider the case where d = 2 and A(r?) =
exp(—r?/2), namely the case of bivariate normal distribution. Here c, =

(27)7?/2, and the distribution of R? turns out to be exponential with
mean = 2. Thus the formula in (8.4) gives

In2 _ *®
np=20 ye ydy/foye Y dy

= (1-1n2) = 0.31.

(8.5)

The constant (0.31) derived in the above example can be utilized as a
diagnostic tool for checking bivariate normality. More precisely, we compute
the sample version of 2(0.5) and compare it with the sample dispersion
matrix ¥ to see if 3(0.5) is close to 0.31 X 2. Our simulations give ratios of
0.314 for normal, 0.274 for exponential, and 0.014 for Cauchy distributions.
The results are supportive of our claim and they give a clear distinction
between normal and nonnormal cases.

A closer examination of the distribution of R? in (8.4) provides yet another
simple method for checking the normality. In the bivariate normal case with
3 = I, the median of R? is 2In 2, and thus

area(C,;) = m(2In2) = 4.355.
For a general 3, we have instead
(8.6) area(C, ;) = m(2In2)[2|"/? = 4.355|3 /2,
which again, for diagnostic purposes, can be used for normality checking.
This can be viewed as a bivariate generalization of the simple univariate

normality checking, which examines whether or not the interquartile range of
the standardized sample is 1.25.
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In implementing the checking procedure in (8.6), we need to obtain a good
estimate of area(C,;) from the given sample. Recall from Section 2.1 the
definitions of the pth central region C, and its sample version C, ,, the pth
central hull. Our definition of C, , was motivated by the 1ntended probablhty
mass inclusion. However, the area, and not the probability inclusion, is the
main focus in (8.6). Using area(C, ,) as an estimate for area(C,) often does
not achieve the desired level of accuracy, since our forming the convex hull
C,, , has trimmed off most of the smooth surface area of C,. Consequently,

C,, , consistently underestimates C, in terms of area. Thus, we propose to

estimate area(C,) by area(C; ), where
(8.7 C! _p = the central hull containing [ np | sample points in its interior.

Our simulations show that the ratios of area(C,) to I3|% are 4.74, 4.73 and
4.39 for bivarite normal samples with sizes 50, 100 and 500, respectively. The
same simulations yield the ratios = 3.5 for bivariate exponential samples,
0.5 for bivariate uniform samples, and 15.1 for bivariate Cauchy samples. In
all three nonnormal cases, the ratio is clearly far from 4.355.

We summarize the differences in the roles of the two estimates for C,. If
the area or the volume of the region is the main object, then C,{, » performs
better. In terms of capturing the probability mass inclusion in C,, C, ,
performs quite adequately. It is easier to determine C, ,, since it does not
require the extra sequential search needed in determlnmg C!

Turning to the issue of outliers in model checking, we now estabhsh an
almost sure bound for the maximum deviation from the mean for a normal
random sample. This bound can be used to verify the normality of a given
sample. It is in the form of an exact growth rate with no unspecified
constants. This point is elaborated after the statement of the exact bound in
Theorem 8.2.

THEOREM 8.2. Let {X,,...,X,} be a sequence of i.i.d. random variables
following the d-dimensional normal distribution N(u, Y), where Y isa d X d
positive definite matrix. Then, max, _;_,IlX; — ull grows at the exact rate
of {2A,,.,(og n + (m/2)loglog n)}'/2, almost surely, where A, is the maxi-
mum eigenvalue of 3 and m is the multiplicity of A

ax

max*

The proof of this theorem is quite involved and is presented in Hisler, Liu
and Singh (1999).

ReEMARK 8.1. By “grows at the exact rate,” we mean the following:

P( max || X; — ull > {

max
1<i<n

1 1 1 ]_, 1f3$%7
(ogn+$0g0gn)} ')_ 0, ifs>7%.
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Clearly, A, =1 and m =d if X = I In this case, it is interesting to note
that the dimension of the data appears only in the secondary term involving
(loglog n) in the rate of growth.

Before putting this result directly to use, we recommend that the data be
standardized first. This is in order to have X = I, since it may be difficult to
determine the multiplicity of A,,, from . In the process of standardizing the
data, we should use a robust version of 3. For instance, {2(0.5)/0.31} should
be a reasonable choice for such a purpose in the bivariate case, following the
result in (8.5). Figure 21 contains the plot (looking like a step function) of the
maximum of a random normal sample from R? as n grows to 5000, against
the growth curve (appearing in a small-dot curve) expressed in Theorem 8.2.
The two plots seem to match closely. Raising the dimension of the distribu-
tion to 10, the plot is given in Figure 22. In both figures, the lower dashed
curve is the growth curve in Theorem 8.2 without the secondary loglog n
term. The lack of fit of the lower dashed curve shows the crucial role of the
secondary term, especially in high dimension cases. Finally, the same plot for
a bivariate exponential sample is presented in Figure 23, where the lack of fit
of the growth curve intended for the normal case is evident.

9. Concluding remarks.
9.1. Computation and graphics. Many numerical and graphical simula-

tions have been presented in this paper. In general, analyzing and presenting
multivariate observations require more sophisticated algorithms than in the
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univariate case. Since the contour plot in Figure 2 shows that the simplicial
ordering captures more of the probabilistic structure of the underlying distri-
bution than the Mahalanobis ordering, the simplicial ordering has been used
throughout for all simulations, except in a few specific cases. In principle, the
sample simplicial depth at a given point in any dimensional space can be
calculated in a straightforward manner by solving a system of linear equa-
tions. More precisely, we can determine whether or not a point is inside a
random simplex by checking if the point can be expressed as a convex
combination of the vertices of the simplex. However, this routine checking is
tedious and time-consuming. Instead, we utilize a FORTRAN program pro-
vided in Rousseeuw and Ruts (1996) to calculate the bivariate simplicial
depth. This program effectively reduces the number of operations to
O(nlog n). It also contains a subroutine for calculating the half-space depth,
which we use in Section 5 for measuring angular skewness. Some three-di-
mensional simulation results are available, but they are omitted since they
would only serve to confirm the results already presented. Clearly, it would
be desirable to have efficient computing algorithms for the higher dimen-
sional cases.

All simulations were run using S-Language on a Sun Workstation SPARC
5. The computer programs used and their detailed instructions are available
in Parelius (1997).

Many interesting graphical methods have been proposed to present fea-
tures of multivariate data sets, for example, Andrews (1972), Chernoff (1973),
Kleiner and Hartigan (1981), and Wegman (1990). Friedman and Rafsky
(1979, 1981), Easton and McCulloch (1990) and Marden (1998) have intro-
duced different multivariate versions of the quantile—quantile plot and use
them as diagnostic tools for comparing two multivariate samples or checking
multivariate normality. A comparison of these gg-plots to our DD-plots could
be worthwhile.

9.2. Ramifications of data depth. Besides providing a new set of parame-
ters for multivariate analysis, the depth ordering concept has many theoreti-
cal and practical ramifications. For example, multivariate sign or rank tests
based on the Oja depth are studied in a series of papers: Brown and
Hettmansperger (1989), Hettmansperger, Nyblom and Oja (1992) and
Hettmansperger and Oja (1994). Liu (1992) and Liu and Singh (1993) develop
a quality index and several multivariate rank tests based on the general
concept of depth ranking. Liu (1995) applies some of these tests to develop
nonparametric multivariate control charts. These control charting techniques
are then used in Cheng, Liu and Luxhoj (1999) to develop a monitoring
scheme with thresholding systems for the analysis of multivariate aviation
safety data. With the help of bootstrap methods, a general methodology based
on data depth is developed for constructing confidence regions [see Yeh and
Singh (1997)], and for determining P-values in testing hypotheses [see Liu
and Singh (1997)]. Using the likelihood depth, Fraiman, Liu and Meloche
(1997) provide a multivariate density estimate with an improved convergence
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rate. Rousseeuw and Hubert (1999) extend the half-space and simplicial
depth rankings to develop robust regression methods.

We have seen that depth-based multivariate methods can be completely
nonparametric or even moment free. Clearly, defining the distributional
characteristics and the corresponding descriptive statistics is only a first step.
Properties such as consistency and other asymptotics of the descriptive
statistics proposed in this paper are yet to be fully investigated. Many
questions still need to be addressed, for example, how the proposed statistics
can be applied to making inferences, and which notion of depth should be
more suitable for what analysis purpose. It may also be worthwhile to
investigate how resampling methods can be utilized in the depth-based
methodology to help achieve better graphical presentations.

APPENDIX

PROOF OF THE AFFINE INVARIANCE PROPERTY OF THE SHRINKAGE PLOT IN
SECTION 6.2. Let Q be a convex hull on R? and 6 a given point in the
interior of ). Consider the linear transformation x — (y = a + Bx), where a
isa d X 1vector and B is a d X d nonsingular matrix. The point 6* = a + B6
is in the interior of the transformed hull Q* = a + BQ. For any point
x, € RY, with x, # 6, a line segment passing through x, and 6 which falls
completely inside the convex hull Q can be expressed as

(A1) L={xeR%x=0+c(x,—0)

for all ¢ between some numbers ¢, and c,}
After the transformation, the line segment L becomes
(A2) L* = {x* € R%: x* = 0% + c(x§ — 6*) for all ¢ between ¢, and c,}.

Here x§ = a + Bx,. For a given shrinkage proportion p, the shrunk version
of L, denoted by L ,, can be expressed as (A.1) with the constant ¢ now falling
between pc; and pc,. Similarly, the shrunk version of L*, denoted by L%, can
be expressed as (A.2) with the constant ¢ again falling between pc; and pc,.

The invariance property of the shrinkage plot follows from the equivalence
of the following four statements for a given data point x; inside Q: (1) x; lies
on L,;(2) x = 6+ c(x, — 6) for some ¢ with pc, <c < pcy;(3) a + Bx; = 6*
+ c(xg — 6%) and (4) a + By, lies on L¥.

PrOOF OF THEOREM 8.1. We begin by noting that on R¢, the surface area
of a sphere with radius r is given by

277d/2rd—1

(A3) A(d,r) = W

, r>1.
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Let Y = 3,1/2X. Recall that X has the elliptical density
Ca o
f(x) = —5h((x — w25 (x — p)).
D
The density of Y is then I(y) = ¢, h(y'y). By definition, R? = (X — ,u),Eal(X
— w) = Y'Y. Since the density of Y is spherical, we immediately obtain
P(Re(r,r+Ar)) =A(d,r)c h(r?) Ar + o(Ar).

This implies that the density function of R is A(d, r)c,h(r?). Substituting
A(d, r) with the formula in (A.3), the density of R becomes

9qd/2pd—1
I'(d/2)

In particular, the density function of R? is

c h(r?).

7_rd/z(rQ)d/zq
rds2)
Note that for the elliptical distribution with the density function f(x)
given earlier, the overall dispersion matrix 3, is
ER?
d

This can be seen as follows. Let 3, denote the dispersion matrix of Y. Since
Y is spherical, 3 = al, for some constant a > 0. Hence ER? = E(Y'Y) = ad
and a = ER?/d, which implies (A.4).

It is clear from the statement of the theorem that X( p) is the dispersion of
a distribution restricted to C,. This distribution is also elliptical, with density
function

g(r?) =cq h(r?).

(A4) 3 =

3.

Cq
pIZ "2
where h*(t) = h(¢) when ¢ < (the pth quantile of R?), and A*(¢) = 0 other-
wise. This is because the contour of the central region C, agrees with the
density contour of the elliptical distribution, provided the depth is affine
invariant [see Liu and Singh (1993)]. Arguments which led to (A.4) immedi-
ately show that 3(p) = (E(R*|R? < £,))/d)%,, or

3(p) =1,%,

where 1, = E(R*|R* < &£,))/ER?, with £, = (the pth quantile of R*).

f*(x) = R ((x = p) 2 (x — ),
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DISCUSSION

WirLiam F. Eppy!

Carnegie Mellon University

Liu, Parelius, and Singh (henceforth, LPS) have taken some simple ideas
and pushed them a long way to provide some useful tools for exploratory
multivariate data analysis. They have written an interesting paper and I
congratulate them. I also applaud the editors for their willingness to publish
a nonstandard contribution to the Annals.

I am enthusiastic about what LPS have done and I encourage them to
continue this work. I also encourage the interested reader to do what I did
after reading LPS; I reread Schervish (1987) and the associated discussion. If
you haven’t yet read that paper, its author describes it as “a thoroughly
biased and narrow look at the development of multivariate analysis.” I find it
an excellent overview of the scope of multivariate analysis. My rereading
provided some context for my thinking about LPS.

Exploratory data analysis. The work in LPS, although couched some-
what in the language of mathematical statistics, really belongs in a branch of
exploratory data analysis. Since Tukey (1962, 1977), and Mosteller and
Tukey (1977) this field has really languished. Parametric modeling and
inference, especially Bayesian, has made dramatic strides; our journals are
filled with developments. The bootstrap (which the present authors have
made contributions to), Markov chain Monte Carlo, and so on are prime
topics for academic research. Nonparametric modeling has made equally
dramatic strides with advances in smoothing, CART, generalized additive
models, and so on. The reality of applied statistical work, namely, exploration
of data (and development of models) has made almost no progress at all,
except the peripheral progress gleaned from the improvements I've men-
tioned. We still use the box plots that Tukey gave us more than 20 years ago.
The sunburst and contour plots in this paper are a nice generalization. We
can quibble about details:

1. I don’t want so many whiskers (rays).
2. I would prefer more contours.
3. I would like outliers distinguished in some way.

But the spirit is right.

Computing. In the days since Tukey introduced us to exploratory data
analysis, the world has undergone major changes brought about by the

! Supported in part by NSF Grant DMS 97-05034.
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integrated circuit revolution and the resulting ubiquity of computational
devices. Nowhere in this paper is there a hint that this has happened. The
computations needed for this article (with the exception of the simulations)
could easily be done (by John Tukey sitting in the back of the lecture hall) by
hand.

Even more important than the increase in computation power has been the
attendant increase in the size of data sets. No longer, very often, does one
find a data set with a few hundred or even a few thousand observations. The
data set I am currently studying contains 120 billion individual numbers
(there are no images); what constitutes a multivariate observation in this
data set depends on one’s point of view. The tools in LPS, in their present
form, will simply not work on data sets this large. We need even more
advanced tools, especially dynamical ones. We need to be able to elucidate
conditional effects.

Graphics. The graphics in this paper are a throwback to the days of the
pencil-and-paper graphs that Tukey liked to draw. After that there were
pen-plotters; this let us make graphs that looked just like the ones he drew
by hand. Only with the computer revolution mentioned above have bit-mapped
graphics become commonplace. Where are they in this paper? We have much
more spatial resolution available. Why not use it?

In the very same issue of Statistical Science as Schervish (1987) is an
article on “Dynamic Graphics for Data Analysis” by Becker, Cleveland and
Wilks (1987). Twelve years ago in my comment on that article I looked
forward to a ten-year “Golden Age of Graphics.” I continue to look forward to
it and I hope that LPS will look at Becker, Cleveland and Wilks and think
about how they could add dynamics to their graphics specifically to reveal
interdependence among the variables.

Dependence. Finally, my criticism. LPS say they want to develop a
general nonparametric methodology for multivariate analysis. However, 1
could not find the most important notion of multivariate analysis, depen-
dence, seriously addressed in this paper. We have location, scale, skewness
and kurtosis. We have sunburst plots which can show bivariate dependence,
but what else is there? I can imagine a scatterplot matrix with sunburst plots
of each pair of variables. But each element of the scatterplot matrix is
actually a projection of all the dimensions into the two that are plotted. What
about a dynamic conditional scatterplot matrix of sunburst plots where the
dynamics lets us change the conditioning event?

I greatly hope that LPS will continue work on these ideas. I particularly
hope they will work on dynamic and genuinely multidimensional generaliza-
tions of these ideas. And I hope that twelve years from now their latest
publication will not be confined to the monochrome, static pages of this
journal but will rather take full advantage of the integration of computing,
television and dynamic graphical methodology!
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KEITH A. BAGGERLY AND DAviD W. ScoTT!

Rice University

The authors have demonstrated a wide range of potential applications of
data-depth ideas. Since in one dimension the data-depth and rank are closely
related, the authors have succeeded in developing a novel line of multivariate
extensions to nonparametric statistics. In this brief comment, we explore two
aspects of interest in any multivariate extension of rank-based procedures.
The first issue is computation and the second is the definition of what
constitutes a central fraction of the data.

Algorithms for many multivariate point-oriented procedures are combina-
torial in nature and difficult to solve exactly in feasible time. The algorithms
provided by Rouseeuew and Ruts (1996) for computing the simplicial and
halfspace depths at a given point dodge the combinatorial problem in the
bivariate case by making use of an efficient ordering of the data values, but
the method becomes noticeably more complex in dimensions higher than two.
The computational complexity is O(n?~ ! log n) for d-dimensional data. Many
of the techniques described herein involve computing the areas of nested
convex hulls containing fixed fractions of the data. The problem of finding the
convex hull of a set of data has already attracted the interest of computer
scientists in two and three dimensions, but again the computational complex-
ity increases exponentially with dimension, adding another O(n? !log n)
term. The computational burden may be further exacerbated in the inferen-
tial setting, as the only means of establishing acceptable deviations from a
specified model would seem to involve computation for multiple samples;
bootstrapped p-values. Clearly, there are many research opportunities cre-
ated by the authors’ line of inquiry.

! Supported in part by NSF Grant DMS 96-26187.
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With multivariate data, a common goal is to understand the structure
among the variables and any grouping among the points. We are interested
in many of the same questions as the authors, Are the data normal? for
example, and wish to explore the power of these techniques in many settings.
We recall that the simple idea of replacing each data coordinate by its rank
within that variable before performing multivariate techniques can radically
change the structure of the data, for example, by making adjacent two widely
separated clusters.

In Figure 1, we examine the simplicial depth contours for 200 variates
drawn from a bivariate mixture of two normals, f(x) = 0.6+ N(0,0.25I) +
0.4+ N(1,0.25+ I). Half-space depth contours are similar. We also provide
contours from a kernel density estimate using a bivariate normal product
kernel. The density estimate clearly shows the multimodal structure of the
data. The authors include such density estimates in their hierarchy of
data-depth measures (likelihood depth) but evidently different measures can
give quite different types of information about the data at hand. The near
convexity of the simplicial depth contours severely limits the interpretability
of the corresponding contours for multimodal data.

Simplicial Depth
2 T T T T T

Density Depth
2 T T T T T

1 1 I 1 1 1

-1 -0.5 0 0.5 1 1.5 2

FiGg. 1. Depth contours for a bivariate mixture density using (a) simplicial depth and (b)
density or likelihood depth.
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Among the mean-median-mode trio, the mean and mode are well defined
beyond one dimension. The authors provide a specific description of a multi-
variate median point as the highest data-depth contour. However, the median
is less a measure of center than a device for splitting the data in half. Thus
we are more attracted to the notion of a multivariate median as a true
density contour, specifically, a high-density contour capturing 50% of the
probability mass. The median contour may be connected or, as in the multi-
modal case, consist of several density shells. (Recall that the multivariate
mode is a set of all local modes.)

Extending the notion of ordering to multivariate data is an exciting
challenge. As there is no unique way of doing so, different definitions will be
appropriate for different classes of data. The authors’ proposals seem limited
to two or three dimensions and to unimodal data. This paper challenges us to
think harder about these issues.

DEPARTMENT OF STATISTICS MS-138
RicE UNIVERSITY

6100 MAIN STREET

HousToN, TEXAS 77005-1892
E-MAIL: scottdw@stat.rice.edu

DISCUSSION

T. P. HETTMANSPERGER, H. OJA AND S. VISURI

Penn State University, University of Jyvdskyld and
Tampere University of Technology

The authors are to be congratulated for providing a sweeping introduction
to multivariate descriptive statistics. This paper should inspire many investi-
gations extending these methods into valuable inference tools. The unifying
themes are data depth and corresponding sample characteristics. The devel-
opment contrasts with the traditional approach based on moments. The
result is a set of graphical displays rather than matrix displays that yield
information on location, scale, skewness, and tail weight. They are much
easier to interpret and, hence, more user friendly. Computer power now
makes it possible to generate displays for reasonably sized data sets.

Rather than attempt a review of the current methods, below we restrict
attention to samples that come from elliptical distributions. This is, of course,
a subclass of the general class of underlying distributions considered by the
authors. The class of elliptical models, while not as general, still provides a
wide nonparametric class of distributions.

Our goal is to illustrate several of the data displays suggested by Liu,
Parelius and Singh in the context of elliptical models. This allows for a
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discussion and elucidation of some of the more interesting suggestions made
in the paper. In particular, we will consider sunburst plots, DD-plots, scale
and kurtosis plots, and introduce PP-plots for scale and tail weight compar-
isons.

We suppose that our data comes from an elliptical distribution. Hence, the
density is of the form

FR) = (s 3,) = Mot 372 0= )34 = )

where 3 is a positive definite covariance matrix and p is a location vector.
The covariance matrix 3 can be expressed in terms of its eigenvalue decom-
position as follows:

S = \UCUT,

where A? is the generalized variance, the orthogonal matrix U contains the
eigenvectors and C is the diagonal matrix of standardized eigenvalues
(|det(C)| = 1). As in Bensmail and Celeux (1996), we use the terms scale,
shape and orientation for items A, C and U. If z comes from a spherical
distribution with the location vector 0 and covariance matrix I, then y =
UCY2\Y2%z + p is elliptically symmetric with the location vector m, scale A,
shape C and orientation U.

Our plan is to first define a multivariate centered rank vector. This vector,
in many ways, represents an extension of the idea of a univariate rank. In
addition, it has certain nice affine equivariance properties. We only provide a
sketch here; see Hettmansperger, Mottonen and Oja (1998) or Oja (1999) for
details. We then consider the rank covariance matrix, RCM. Visuri, Koivunen
and Oja (1999) show that if the standardized eigenvalues and the eigenvec-
tors of the covariance matrix ¥ are ¢; > -+ > ¢, and u,,...,u,, respectively,
then c¢;! < -+ < c, 1 and u,,...,u, are the standardized eigenvalues and
the eigenvectors for the theoretical RCM. The sample RCM is more robust
than the sample covariance matrix and, hence, provides a robust estimate of
the underlying shape and orientation for the elliptical distribution. This,
along with a robust estimate of Wilk’s generalized variance, can be used to
robustly estimate . However, here we use only the standardized eigenvalues
and the eigenvectors to define a robust version of depth.

We next sketch the construction of the rank vector and corresponding
sample RCM. We begin with p-dimensional data x,,...,x,. The volume of
the p-variate simplex determined by x and p observation vectors with
indices i; < -+ <1, is

1 1 - 1 1

V(x,%,,...,X; ) = —'abs{det(x, e ox. x) .
p p‘ 11

We introduce the criterion function and its gradient

D(p) =ave{V(pL,xi1,...,xip)} and R(p) =p!VD(p),
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where the average is taken over all choices of subscripts i; < -+ <i, from
1,...,n. In the univariate case R(x;) reduces to the centered rank of x;
among Xi,...,x,. This multivariate extension R(x;) retains many of the
features of a centered rank and enjoys the following equivariance property: if
the observations x; are transformed to x¥ = Ax; + b where A is nonsingu-
lar, then R*(x¥) = A*R(x) where A* = abs{det(A)}(A 1" and R* is the
rank function calculated from the x¥ observations. When A is orthogonal,
*=A.
The sample RCM is simply

RCM = ave{R(x,)R(x,)" }.

Let U be the matrix whose columns are u,,...,u,, the eigenvectors of the
sample RCM, and let D = diag{d,,...,d,}, d, < - <d,, be a diagonal
matrix with the standardized eigenvalues of RCM as diagonal entries. U and
D™! are then robust estimates of the eigenvectors (orientation) and the
stand?rdized eigenvalues (shape) of the covariance matrix. Finally, let W =
UDU".

The Oja (1983) multivariate sample median { solves R(p) = 0. Define the
depth of x relative to x;,...,x, by the Mahalanobis-type distance from the
Oja median,

d(x) = (x — )" W(x — ).

Note here that we retain d(x) as the measure of depth rather than (1 +
d(x))~! suggested by the authors. Hence, large values of d(x) suggest that x
is at or beyond the convex hull of the data and small values suggest that x is
near the Oja median at the center of the data.

We will illustrate the plots with data drawn from the following models
with X distributed as N(0, I,) and sample size n = 50:

(A): (g ‘i)x

w (3 e ()

o 1t e )

(D): (1—3)((2) (1’)X+B¢E((2) (I))X,WithB~Bin(1,0.05).

We first consider the sunburst plot. This extends the boxplot and is
valuable in assessing the location, scale, shape and orientation of the sample
as well as identifying outliers. In the case of an elliptical model, we seek an
ellipse that includes fifty percent of the data, reflects the proper orientation
and shape and is not affected by outliers. In Figure 1, we show the sunburst
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plots for the four situations in (A)—(D) above. In each plot, the center of the
ellipse is the sample Oja median and the shape and the orientation are given
by the RCM.

Note especially in the contaminated normal case (D) that the rays high-
light the extreme observations. Further, compare (A) and (D) and notice that

Fic. 1.

DISCUSSION

Sunburst plots. (a) (A), (b) (B), (¢) (C) and (d) (D).

(b)
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Fic. 1. (Continued)

the contamination did not change the ellipse by very much. This is a
reflection of the robustness of the RCM approach.

Next, in Figure 2 we show the DD-plots for comparisons of (A) to (B), (C)
and (D). In our DD-plots we use d(x) rather than (1 + d(x)) ! since the latter
compresses outliers into the lower left corner of the plot near the origin. Our
plots correspond to some of the Figure 20(a—h) in the paper.
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Fic. 2. DD-plots. (a) (A) versus (B), (b) (A) versus (C).

The shape and distribution in these plots reflect differences in location in
(A) versus (B), differences in location and orientation in (A) versus (C) and
effects of contamination in (A) versus (D). In cases where there is a high
concentration of points near the origin, a logarithmic scale may be more
revealing but we do not pursue that here.
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Fic. 2. (Continued). (¢) (A) versus (D).

The scale plot is, in the bivariate case, a plot of the area of the ellipse
enclosing a proportion p of the data versus the proportion p. A more rapid
increase in the plot indicates larger underlying scale. In Figure 3 we compare
(A) to (D) on both the natural scale and on a logarithmic scale. Only scale
differences A are revealed since the scale plot does not depend on the location
u, shape C or orientation U.

The log scale facilitates comparison of scale near the centers. Compare
these plots to Figure 7(a, b) in the paper. The other nice application discussed
by the authors is for the comparison of scatter of the multivariate estimates
of location; see Figure 8(a, b, ¢) in the paper. The comparison based on
ellipses would be quite natural here since, typically, the estimators will have
multivariate normal limiting distributions.

Another way to compare scales for two distributions is to look at a PP-plot
of the elliptical areas for the two samples. Essentially, it is a plot of the
empirical cdf’s of the elliptical areas determined by the data in each sample.
Figure 3 shows a PP-scale plot of (A) versus (D). A
_ Note that beyond 0.5 the empirical cdf’s of the elliptical areas, F,(u)>
F,(w), indicating that (D) has more scatter or larger scale than (A). The area
under the curve could provide a measure and, hence, in the elliptical case, an
asymptotically distribution-free test for scale differences. The test statistic
then is the Mann—Whitney—Wilcoxon U-statistic calculated from the depths.
In the univariate case, this corresponds to a rank test based on magnitudes of
the centered observations. In the comparison in Figure 4, the observed
p-value (one-sided test) is 0.22.
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Fic. 3. Scale plots. (a) (A) versus (D), (b) (A) versus (D) (logarithm scale).

Finally, we consider a simple plot for comparing tailweight or kurtosis
across two samples. First we must standardize the scales in some way. We
simply standardize the depths by dividing the depths by their respective
medians of depths in the two samples. Then both samples have median depth
equal to 1. Now an S-shaped curve in the standardized PP scale plot
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indicates difference in kurtosis; see Figure 5 which compares (A) to (D). The
increased kurtosis due to contamination can now be seen. An asymptotically
distribution-free test for comparing the kurtosis in elliptic cases could be
constructed using the difference between the areas under the curve for lower
values (0 < p < 0.5) and above the curve for upper values (0.5 < p < 1). The
observed p-value (one-sided test) for this comparison is now 0.07.

The paper contains many more interesting plots for other features such as
skewness. We look forward to the development of associated inferences.
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REGINA Y. L1u AND KESAR SINGH

Rutgers University

We thank all discussants for their interesting and encouraging comments.
Since the three discussions focus on largely different aspects of our paper, we
shall respond to each of them separately.

Discussion by W. F. Eddy. The Schervish paper (1987) recommended
by Eddy is indeed a useful reference. It provides a good survey of develop-
ments in multivariate analysis from the 1960s to the 1980s, concentrating
mostly however on normal distributions. As for Eddy’s other comments:

Exploratory data analysis. We agree that our work has a strong ex-
ploratory data analysis flavor, although we certainly think that it has a solid
theoretical foundation and belongs definitely to “standard” nonparametric
statistics! In fact, by selecting a suitable notion of depth, we also recover
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many traditional approaches. Thus classical multivariate analysis corre-
sponds to the notion of Mahalanobis depth and the general density estima-
tion approach to the likelihood depth.

We are gratified that Eddy views the sunburst plot as a nice and “in the
right spirit” generalization of the boxplot. We note only that:

1. The many whiskers (rays) may seem redundant, but their concentration
reflects the directions of probability mass concentration. This can be useful
in characterizing the underlying multivariate distribution and may be
viewed as an advantage of the sunburst plot over the univariate boxplot.

2. More contours would admittedly provide more information about the
distribution, but may obscure the simplicity of the idea of the boxplot.

3. As already indicated in our paper, the bagplot in Rousseeuw and Ruts
(1997) is the same as our sunburst plot with an additional “fence” built in
to detect outliers. This fence is a generalization of the fence in the
univariate boxplot.

Computing and graphics. We share with Eddy his enthusiasm for com-
puter graphics and believe that dynamic graphics will be a powerful aid to
multivariate analysis. Although dynamic graphics have not been treated as
yet in the present paper, it may be worth pointing out that our plots made
full use of state-of-the-art algorithms for computing data depths and could
hardly be done “by hand.” In fact, the best algorithms so far for the computa-
tion of the two- or three-dimensional half-space or simplicial depths still
require the order of computations O(n?~ ! log n) [Rousseeuw and Ruts (1996)
and Rousseeuw and Struyf (1997)]. In plotting scale curves, the computation
of the area or volume of the sample pth central region (which is the convex
hull of the 100p% deepest points) adds another layer of complexity. Some
problems, such as large data sets of the size of 120 billion, may be more an
issue of computational power or of applying a suitable data reduction method
to make the data set more manageable. But others, such as designing better
algorithms, may lead to new and interesting questions of both a theoretical
and practical nature. We view the improvement of computational feasibility
as one of the most important research directions in the next stage of the
development of the theory, one which will hopefully attract the attention of
statisticians and computer scientists alike. In this context, we note that the
computational aspects of various geometric notions of data depth, particu-
larly the simplicial and half-space depths, have and continue to generate
much interest in computer science. See, for example, Gil, Steiger and Wigder-
son (1992), Cheng and Ouyan (1998) and Johnson, Kwok and Ng (1998).

We believe that one of the main achievements of our paper is actually to
have provided a way of visualizing multivariate distributional characteristics
by one-dimensional curves. It is the very simplicity of such objects which
makes them powerful as a general tool for the practicing statistician. For
example, the scale curves described in Section 4.2 have been applied with
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much success in Cheng, Liu and Luxhoj (1999) to provide a clear ranking of
ten air carriers in terms of the degree of consistency of their multiple
performance measures collected by the Federal Aviation Administration. For
some special purposes, it may be really necessary to visualize the data depth
or sunburst plot of a ten-dimensional distribution or to layer our fan plots for
the purpose of comparing several multidimensional distributions. Computer
graphical tools such as the pan and zoom, rotation and other methods
discussed in the article Becker, Cleveland and Wilks (1987) may then come in
handy.

Dependence. In this paper, we have introduced basic descriptive statistics
based on data depth. Our approach is both exploratory (geometric) and
probabilistic, but it is only the first step in developing a broader and more
flexible alternative to classical, normal-based multivariate analysis. Clearly,
dependence is one of the most important steps further down the road. Others
include general inference methods and regression methods. It should be
mentioned that Rousseeuw and Hubert (1999) and Teng (1999) have recently
introduced very promising regression methods based on depth, so that the
prospects for rapid progress are quite real.

Discussion by K. A. Baggerly and D. W. Scott. As Baggerly and Scott
noted and as is also apparent from our response to Eddy, our approach
requires at this moment considerable computational power. This difficulty
should lessen over time with the advent of ever better computers and
softwares. More important, we share with Baggerly and Scott the opinion
that the computational aspects of the data depth approach should be viewed
as a research opportunity, in statistics as well as in related fields such as
computer science and combinatorics. On the other hand, we would like to
stress that the approach is not limited to two or three dimensions or to just
unimodal data, as may be inferred from Baggerly and Scott’s last paragraph.
From a conceptual viewpoint, the computation of, say, simplicial depth in any
dimension is actually easy, since it requires only the solution of a system of
linear equations.

Baggerly and Scott also observe that there is no unique way of extending
ordering to the multivariate setting, and we readily agree. This is why we felt
it was important for our data depth approach to be applicable to as many
notions of depth as possible. For a specific purpose of a given statistical
analysis, a certain notion of depth may be more suitable than others. For
example, the Mahalanobis depth captures well the mean of an elliptical
distribution, the simplicial and half-space depths are more adept at identify-
ing a central (or median) point of a general distribution, while the likelihood
depth (i.e., density estimation) is more desirable for identifying the modes. If
a “center” for a distribution is required, as in statistical process control, then
either the simplicial or the half-space depth would be more appropriate than
density estimates. This is supported by the nearly convex contour plot in (a)
of Figure 1. Note that the notion of a center is very different from the notion
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of a mode. The center of a distribution is well understood conceptually even
when the distribution has multiple modes. Of course, the method of density
estimation is particularly well suited to detecting modes or separating mix-
tures, as amply shown in the book of Scott (1992). In this novel field of
computer-aided statistical analysis, this may be yet another argument for
exploring simultaneously as many approaches as possible. In the context of
Bayesian analysis, we believe that the likelihood depth can be particularly
useful for defining P-values in testing hypotheses using a posterior distribu-
tion, and we plan to explore this topic further.

Discussion by T. P. Hettmansperger, H. Oja and S. Visuri. We
appreciate very much the strong endorsement of our approach by
Hettmansperger, Oja and Visuri. Indeed, the results of most of our proposals
are graphs with easy interpretations. To us, this was in fact the main
motivation for this research. The best illustration is perhaps the scale curve.
It tells a simple and yet rather complete story of scale in terms of some
positive numbers which are just the volumes of the growing central regions.
We are very excited to see that Hettmansperger, Oja and Visuri (HOV) have
carried our proposals to the next stage of inference. Their illustrations of our
various plots in the elliptical setting together with many P-values demon-
strate well the potential of the data depth approach in multivariate analysis.

Among all notions of depth, the Mahalanobis depth is clearly the most
suitable for the analysis of elliptical models. HOV have replaced the center
and the dispersion matrix in the Mahalanobis depth with their robust
estimators and produced more robust outcomes. This provides a robust
alternative to the standard analysis of elliptical models. A minor clarification
here: the expression d(x) in HOV is the distance of x to the center and, in our
framework, a smaller d(x) value is actually associated with a deeper point. In
order to be consistent with our notion that a higher depth value indicates a
deeper position with respect to the underlying distribution, we chose in our
paper to define depth by (1 + d(x))"! instead of d(x). Obviously, the results
of the analysis will be the same with either choice.

One of our current projects is to develop formal inference based on our
proposals. We are naturally very encouraged by the successes shown in the
P-values obtained by HOV. We also hope to add some asymptotics and
bootstrap-related developments to provide a fuller range of depth-based
inference. The idea of pp-plots for scale and kurtosis comparisons introduced
in HOV is very nice indeed! It seems to us, however, that the orientations (as
well as the locations) of the distributions may need to be aligned before
plotting the pp-plot; consider two populations which are elliptical and quite
elongated, and assume that they are orthogonal in terms of orientation but
otherwise identical. It appears then that the pp-plot may not provide an
accurate picture of the scale comparison, since it will imply that one distribu-
tion has a higher scale than the other. This concern should be easily taken
care of, and we expect this type of plot to become soon a standard tool in
multivariate data analysis.
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