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We suggest two semiparametric methods for accommodating depar-
tures from a Pareto model when estimating a tail exponent by fitting the
model to extreme-value data. The methods are based on approximate
likelihood and on least squares, respectively. The latter is somewhat
simpler to use and more robust against departures from classical
extreme-value approximations, but produces estimators with approxi-
mately 64% greater variance when conventional extreme-value approxi-
mations are appropriate. Relative to the conventional assumption that the
sampling population has exactly a Pareto distribution beyond a threshold,
our methods reduce bias by an order of magnitude without inflating the
order of variance. They are motivated by data on extrema of community
sizes and are illustrated by an application in that context.

1. Introduction. Estimating the tail exponent, or shape parameter, of a
distribution is motivated by a particularly wide variety of practical problems,
in areas ranging from linguistics to sociology and from hydrology to insur-

Ž . Ž . Žance. See, for example, Zipf 1941, 1949 , Todorovic 1978 , Smith 1984,
. Ž . Ž .1989 , NERC 1985 , Hosking and Wallis 1987 and Rootzen and Tajvidi´

Ž .1997 . Many models and estimators have been proposed, including those of
Ž . Ž . Ž . Ž .Hill 1975 , Pickands 1975 , de Haan and Resnick 1980 , Teugels 1981 ,

Ž . Ž .Csorgo, Deheuvels and Mason 1985 and Hosking, Wallis and Wood 1985 .¨ ˝
The goodness of fit of a Pareto model to the tail of a distribution can often be
explored visually by simply plotting the logarithms of extreme order-statistics
against the logarithms of their ranks. The plot should be approximately
linear if the Pareto model applies over the range of those order statistics, and
in this case the negative value of the slope of the line is an estimate of the
Pareto exponent. More efficient estimators are available, however, and those
in use today are generally of two types, based on likelihood and the method of
moments, respectively.

Both these approaches are susceptible to errors in the assumed model for
Ž .the distribution tail. As Rootzen and Tajvidi 1997 point out, none of the´

standard approaches is ‘‘robust against departures from the assumption that
� �the tail of the distribution is approximated by a GP generalized Pareto
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distribution. If there are marked deviations from a GP tail, the results will be
misleading.’’ On the other hand, if one confines attention to data that are so
far out in the tail that the Pareto assumption is valid, then the effective
sample size can be small and the estimator of tail exponent may have
relatively large variance.

Moreover, in some applications of the Pareto model, data that provide
evidence of departure from the model are of greater interest than those to

Ž .which the model fits well. A case in point is Zipf ’s 1941, 1949 classic study
of the dynamics of community sizes. A linear plot of the logarithm of
community size against the logarithm of rank, as in the case of U.S. cities

� Ž .during most of the twentieth century see, e.g., Zipf 1941 , Chapter 10; Hill
Ž .�1975 has been suggested as evidence of ‘‘stable intranational equilibrium’’;
while nonlinear plots, for example in the context of Austrian and Australian
communities 60 to 80 years ago, have been interpreted as implying instability
� Ž .�Zipf 1949 . As Zipf argues, it can be of greater sociological interest to
analyze data from countries or eras that depart from the benchmark of
‘‘intranational equilibrium,’’ than it is to analyze those which achieve the
benchmark.

In this paper we propose a simple and effective way of reducing the bias
that arises if one uses extreme-value data relatively deeply into the sample.
We show that the main effects of bias may be accommodated by modelling the
scale of log-spacings of order statistics. With this result in mind, we suggest
two bias-reduction methods, both developed from a simple scale-change model
for log-spacings, and based on likelihood and on least squares, respectively.
In the first method, a three-parameter approximation to likelihood is sug-
gested for the distribution of log-spacings. One of the parameters is the
desired tail exponent. In our least-squares approach, log�log spacings play
the role of response variables, the explanatory variables are ranks of order
statistics and the regression ‘‘errors’’ have a type-3 extreme-value distribu-
tion, with exponentially light tails.

These techniques reduce bias by an order of magnitude, without affecting
the order of variance. Therefore, they can lead to significant reductions in
mean squared error. Moreover, they allow us to model extreme-value data
that depart markedly from the standard asymptotic regime. This advantage
will be illustrated in Section 3 by application to highly non-Pareto data on
Australian community sizes. We are not aware of kernel or moment methods
that are competitive with our approach; they would be awkward to construct
in the context of a flexible and practicable class of distributions that repre-
sent departures from the Pareto model.

Statistical properties of estimators of tail exponents in Pareto models
Ž .sometimes referred to as models for Zipf ’s law have been studied exten-

Ž .sively. Early work in a parametric setting includes that of Hill 1970, 1974 ,
Ž . Ž . Ž .Hill and Woodroofe 1975 and Weissman 1978 . Smith 1985 points out the

anomalous behaviour of estimators of certain exponents in the context of
Ž .generalized Pareto distributions. Hall 1982, 1990 and Csorgo, Deheuvels¨ ˝

Ž .and Mason 1985 , among others, consider the effect of choice of threshold on
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Ž .performance of tail-exponent estimators. Rootzen and Tajvidi 1997 compare´
the performances of different approaches to tail-parameter estimation.

Ž . Ž .Davison 1984 and Smith 1984 provide statistical accounts of peaks-
over-threshold, or POT, methods. Those techniques are of course not identical
to methods based on extreme-order statistics, but the strong duality between

Ž .the two approaches means, as Smith 1984 notes, that virtually all methods
for one context have versions for the other. Our bias-correction methods are
no exception. However, for the sake of brevity we shall discuss them only in
the case of extreme order-statistics. Section 2 will introduce our methods, and
Section 3 will describe their numerical properties. Theoretical performance
will be outlined in Section 4, and technical arguments behind that work will
be summarized in Section 5.

2. Methodology.

2.1. Modelling the source of bias. We shall introduce methodology in the
case where the tail that is of interest is at the origin. Our methods extend
immediately from there to the case of a tail at infinity. Suppose the distribu-

Ž . �tion function F admits the approximation F x � Cx as x�0, or more
explicitly,

2.1 F x � Cx � 1 � � x ,� 4Ž . Ž . Ž .

where C, � are positive constants and � denotes a function that converges to
� 40 as x�0. We wish to estimate � from a random sample XX � X , . . . , X1 n

drawn from the distribution F. Often, one would proceed by assuming the
particular Pareto model

2.2 F x � Cx � ,Ž . Ž .0

Ž .assumed for 0 � x � � , say, rather than 2.1 , and alleviating bias problems
Ž . Ž .caused by discrepancies between 2.1 and 2.2 by using only particularly

small order-statistics from XX . However, this approach can have a detrimental
effect on performance, since it ignores information about � that lies further
into the sample. That information would be usable if we knew more about the

Ž .function � . In later work we shall refer to the model at 2.1 as a ‘‘perturbed’’
Pareto distribution, when it is necessary to distinguish it from the Pareto

Ž .distribution at 2.2 .
One approach to accessing the information is to model � , for example in

the fashion

2.3 � x � Dx � � o x �Ž . Ž . Ž .
as x � 0, where � � 0 and �� � D � � are unknown constants. In principle

Ž .we could drop the ‘‘small oh’’ remainder term at 2.3 , substitute the resulting
Ž .formula into 2.1 and estimate the four parameters C, D, � , � by maximum

likelihood. This means, in effect, working with the model

2.4 F x � C x �1 � C x �2 ,Ž . Ž .1 1 2
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assumed for 0 � x � � , say, where C , � , � are all positive and the model is1 1 2
made identifiable by insisting that � � � � � . The type of departure from a1 2

Ž . Ž .Pareto model suggested by 2.3 or 2.4 argues that the true distribution is,
to a first approximation, a mixture of two Pareto distributions. This is
sometimes implicitly assumed in accounts of departures from the Pareto. See

Ž .for example Zipf ’s 1949 , page 423 discussion of the contributions made by
distinct urban and rural communities to the overall distribution of commu-
nity sizes, and the remarks in the Appendix in this paper on data from
countries that have been formed from mergers of autonomous states.

2.2. Likelihood and least-squares approaches. Our methods are based on
the observation that, to a good approximation, the normalized log-spacings of
small order-statistics in the sample XX are very nearly rescaled exponential
variables, where the scale change may be simply represented in terms of the

Ž .model at 2.1 . Specifically, let X � ��� � X denote the order statisticsn1 nn
from XX and define

U � i log X � log X .Ž .i n , i�1 ni

Ž .Then, for a function � that can be expressed in terms of the � of 2.1 , it may1
be shown that

2.5 U � Z � 1 � � i�n � Z � exp � i�n ,� 4 � 4Ž . Ž . Ž .i i 1 i 1

where � � 1�� and the variables Z , Z , . . . are independent and exponen-1 2
Ž .tially distributed with unit mean. It can be proved that if � satisfies 2.1 and

Ž .2.3 then

2.6 � y � D y �1 � o y �1Ž . Ž . Ž .1 1

Ž . �� �� Ž .as y�0, where � � ��� and D � � ��� C D. In view of 2.5 ,1 1
this suggests regarding the variables U as exponential with meani

� Ž . �14� exp D i�n , and estimating � , D , � by maximum likelihood. In this1 1 1
case the negative log-likelihood is

r r
� ��11 12.7 r log � � D i�n � � U exp �D i�n .Ž . Ž . Ž .� 4Ý Ý1 i 1

i�1 i�1

ŽHere, r is the threshold or smoothing parameter, about which we shall say
.more in Section 2.4. Differentiating with respect to � , equating to zero and

Ž . Ž .solving for � , we obtain � � T D , � , say. Substituting back into 2.7 we1 1
ˆ ˆŽ .conclude that D , � should be chosen to minimize1 1

r r
� ��1 �11 12.8 L D , � � D r i�n � log r U exp �D i�n .Ž . Ž . Ž . Ž .� 4Ý Ý1 1 1 i 1

i�1 i�1

An alternative approach to inference may be based on the fact that, by
Ž .2.5 , the log�log spacings V � log U satisfyi i

2.9 V � 	 � � i�n � � ,Ž . Ž .i 1 i
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Žwhere 	 � log � � 	 , 	 is the mean of the distribution of log Z thus,0 0 1
.	 � �0.5772 . . . , the negative of the value of Euler’s constant , and � �0 i

Ž .log Z � 	 for 1 � i � n may be interpreted as an error in the approximatei 0
Ž . Ž . Žregression model 2.9 . Given that � may be expressed by 2.6 , we may for1

ˆ. Ž . Ž .fixed � compute explicit estimators 	 � , D � of the unknowns 	, Dˆ1 1 1 1 1
that minimize

r 2�12.10 S 	 , D , � � V � 	 � D i�n .Ž . Ž . Ž .� 4Ý1 1 i 1
i�1

Despite their having larger asymptotic variance than maximum likelihood
Ž .methods see Section 4 , we found in numerical studies that the least-squares

approaches were sometimes less biased and so could have superior overall
Ž .performance Section 3 .

Ž .The case where � is known, or is a known function of � see Section 3.1 ,
is of major interest. If we can reduce the number of unknown parameters,
then the variances of our estimates of those that remain should also be
reduced. Two canonical cases deserve special mention. In the first, one may

� �1� �think of X as being generated in the fashion X � Y , where Y has a
density that is nonzero and differentiable at the origin. Here, � � � and so

Ž . Ž .�� � 1. The second example is generated in the form F x � G x , where1
Žthe distribution function G is supported on the positive half-line and con-

.fined to that domain has a density that is nonzero and differentiable at the
origin. Here, � � 1 and so � � 1�� . In practice one may obtain empirical1
evidence for either of these cases by computing pilot estimates of D , � , � .1 1
See Section 3.1 for an example.

2.3. An exploratory least-squares approach. To obtain a preliminary ap-
proximation to � it is sometimes helpful to fit the semiparametric model at1
Ž . Ž . Ž . Ž .2.1 and 2.3 directly to log-spacings, as follows. Observe from 2.5 and 2.6
that

��1 1log X � log X � i Z � 1 � D i�n .Ž .� 4n , i�1 ni i 1

� Ž .4Hence, for i 	 j and with x � log i� j � 1 and y � log X � log X ,i j i j n, i�1 n j

2.11 y � � x � D exp � x � D ,Ž . Ž .i j i j 2 1 i j 3

Žwhere the ‘‘constants’’ D , D depend on j and n. The approximation is2 3
generally good, at least for i sufficiently greater than j, if D is omitted. We3
do, however, need j moderately large in order to neglect the stochastic

. Ž .component. We may fit the model at 2.11 by ordinary or weighted least-
squares for values i satisfying j � i � r, say.

2.4. Estimators of � . The analysis in Section 2.2 suggests three estima-
tors of � , of which the first is based on maximum likelihood and the others on

ˆ ˆŽ .least-squares. The likelihood-based estimator is found by taking D , � to1 1



ESTIMATING A TAIL EXPONENT 765

Ž . Ž .minimize L D , � , defined at 2.8 , and putting1 1

�1r�1
�̂�1 1ˆ ˆ ˆ2.12 � � T D , � � r U exp �D i�n .Ž . Ž .ˆ ½ 5Ýž /1 1 1 i 1

i�1

ŽTo derive the least-squares estimators, let V � log U � log log X �i i n, i�1
ˆ ˆ. Ž . Ž . � Ž .�log X � log i, choose 	, � , D to minimize S 	, D , � defined at 2.10ˆni 1 1 1 1

and let

�̂1ˆ2.13 W � i log X � log X exp �D i�n ,Ž . Ž . Ž .½ 5i n , i�1 ni 1

�1 �xŽ .W � r Ý W and 	 � H log x e dx � �0.5772157. Then two least-i� r i 0 x � 0
Ž .squares estimators of � are � � exp 	 � 	 and � � 1�W. When � isˆ ˆ ˆ2 0 3 1

ˆknown, or estimated separately, we replace � by that value at all its1
Ž . Ž . Žappearances, for example at 2.12 and 2.13 . If we take � � 1�� see1

.Sections 2.2 and 3.1 , then we should again make the obvious changes to the
algorithm, maximizing the likelihood or minimizing the sum of squares under
the constraint.

Given an estimator � of � , one may obtain an estimator of C quite simply,ˆ
��̂ˆ Ž .by substituting into the formula C � r X �n. As expected, the estimatorsnr

of � do not require the value of n, while those of C do. In practice, when only
extreme-order statistics are recorded, the value of n is usually unknown.

Ž . Ž .The value of r at 2.8 and 2.10 plays the role of a threshold, or smoothing
parameter, determining the depth into the data that we are prepared to go

Ž . Ž .when fitting the model defined by 2.1 and 2.3 . For conventional estimators,
Ž .such as those of Hill 1975 and also for our estimators � , increasing rˆj

Ž .results in an increase in bias, owing to departure of 2.1 from its ‘‘ideal’’ form
Ž .2.2 , but this is accompanied by a decrease in variance. One virtue of our
approach is that for it, bias does not increase so rapidly with increasing r,
and so r may be chosen an order of magnitude larger, producing an improve-
ment in mean-square performance by an order of magnitude. These proper-
ties will be demonstrated numerically in Section 3 and theoretically in
Section 4; see, for example, Remark 4.4.

3. Numerical properties.

�Ž . �3.1. Example: community sizes. Zipf 1949 , page 139 , showed graphi-
cally that data on large Australian community sizes in 1921 departed
markedly from a Pareto distribution with regularly varying tail at infinity.
He neither tabulated his data nor gave a source, but they were apparently

Ž .taken from Wickens 1921 . See the Appendix of the present paper for details.
Figure 1 graphs the logarithm of community size against the logarithm of
rank for these data for all 256 Australian communities that had 2000 or more

Žinhabitants in 1921. Zipf considered only communities of more than 3000
.people. The graph would of course be linear if the sampling distribution were

Pareto.
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FIG. 1. Logarithms of Australian community sizes, I. Plot of logarithm of community size
against logarithm of rank for all 256 Australian communities having 2000 or more inhabitants
in 1921.

Nevertheless, it is plausible that the data were generated as X � Y�1,
where X denotes the population of a randomly chosen Australian community

Ž . Ž .and Y has the perturbed Pareto distribution modelled by 2.1 and 2.3 . We
analyzed the data from that viewpoint and also as though they were from a
perturbed Pareto distribution with an upper bound at a fixed number N ,0
say. That is, we subtracted each population size from N and regarded the0
new data Z � N � X as coming from a population whose distribution func-0

Ž . Ž .tion had the form described by 2.1 and 2.3 . This approach has apparently
not been used before with community-size data and would be inimical to
Zipf ’s ideas, but there are nevertheless good empirical reasons for adopting
it. We shall report here only this type of analysis, since it produced residuals
whose empirical distribution was closer to the exponential than was that of
residuals obtained using the first approach.

Figure 2 shows a plot of values of the negative of the logarithm of Z
against the logarithm of rank. It represents the analogue of Figure 1 in this
context and would be linear if the single-component Pareto distribution at
Ž .2.2 were an appropriate model for departures of community size from an
upper bound.

When applying the exploratory least-squares approach suggested in Sec-
Ž .tion 2.3, we found that if we took j 	 5 then a plot of y against exp � x ,i j 1 i j

for j � i � 256 and with � chosen by least-squares, gave very nearly a1
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FIG. 2. Logarithms of Australian community sizes, II. Plot of negative value of the logarithm
Ž .of the difference between size of 10th largest community and size of the 10 � i th largest

community, for 1 � i � 245, against the logarithm of i.

straight line with negative slope. This suggests that for some N � 0, the0
distribution function G of city size has very nearly the property,

� �1 � G N � x � A 
 log 1 � A xŽ . Ž .0 1 2

� A A� x � 1 � � A x � O x 2 ,Ž .� 41 2 2

3.1Ž .

for positive constants � , A , A and small positive values of x. This is the1 2
Ž . Ž .perturbed Pareto model suggested by 2.1 and 2.3 , with � � 1. To appreci-

Ž .ate why 3.1 follows from linearity of the plot, note that linearity suggests
Ž �1.that to a good approximation, X � B exp �B i for constants B ,n, i�1 1 2 1

�1� Ž .4B � 0. Taking X � G 1 � i�n and writing x for i�n, we obtain2 n, i�1
� Ž �1.4 Ž .1 � x � G B exp �B x . This gives 3.1 exactly, with � � 1�� .1 3 1

Ž .Therefore, in our subsequent analysis, we took � � 1 at 2.3 , or equiva-
Ž . Žlently, � � 1�� at 2.6 . Of course, this � differs from that in the para-1 1

. Ž .graph immediately above. We used the maximum likelihood ML and least-
Ž .squares LS methods suggested in Sections 2.2 and 2.4, with � there1

constrained to equal 1�� . For brevity we took the LS estimator to be � ;ˆ2
results for � are similar. For the sake of simplicity we took N to equal theˆ3 0
population of the smallest community that was not used in the analysis. That
is, if attention was confined to communities whose size ranked in the range
k � 1 � i � k � r � 1, then we took N to equal the size of the kth largest0
community. Removal of large community sizes was necessary to avoid errors
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ˆ Ž .FIG. 3. Residual q-q plot. Ranked values of the residuals Z , defined by 3.2 , plotted againsti
corresponding quantiles of the exponential distribution with unit mean. The line ‘‘y � x ’’ is
superimposed on the plot. Raw data were those used to generate Figure 2.

due to arbitrariness of community boundaries in large Australian cities. The
definitions of Sydney and Sydney North, and Melbourne and Melbourne
South as distinct communities are among the obvious examples of this
problem.

The goodness-of-fit of the exponential distribution to residuals is apparent
ˆfrom q�q plots, of which Figure 3 is typical. There we graph log ZŽ i�k�1.

� Ž .4against �log 1 � i�r for 1 � i � r, where

1��̂ˆ ˆ3.2 Z � U 1�� exp D i�nŽ . Ž . Ž .ˆ ½ 5i i 1

Ž .is our estimate of the quantity Z appearing at 2.5 , the parameter estimatesi
Ž .on the right-hand side of 3.2 were obtained by maximum likelihood under

ˆthe constraint that � � 1 and Z denotes the ith largest value of Z . ForŽ i. i
ŽFigure 3 we took N to be the size of the 10th largest community so that0

. Žk � 10 and used all remaining communities of size 2000 or more so that
. Ž .r � 256 � 11 � 245 . We do not of course know the value of n in 3.2 , but

that is of no concern since it is absorbed into the estimator of D .1
The resulting estimates of � , for different values of r and the cut-off k,

range from about 0.9 to 1.2 and are given in Table 1. The ML estimates are a
little less variable than those based on LS and also tend to be a little larger.
Not much can be read into this, however, since all estimates were computed
from the same data. Both ML and LS estimates are strikingly resistant to
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substantial changes in r. The main source of variation appears to be random
fluctuation, rather than systematic variation with r. This reflects the very
low bias arising from the excellent fit of the model when � is constrained to

Ž .equal 1; see Figure 3. By way of contrast, the Hill 1975 estimate of �
increases virtually monotonically with increasing r, and more than doubles

Ž .in size from 1.57 to 3.53 within the range of Table 1. This substantial
systematic error reflects the very poor fit to data offered by the single-compo-

Ž .nent Pareto model at 2.2 . The poor fit is exemplified by a highly nonlinear
Ž .q�q plot analogous to that of Figure 3 and not given here for residuals

under the single-component model.
Ž .In the same setting as Figure 3, the ‘‘full’’ i.e., without � constrained ML

estimate of � equals 0.64, and the estimate of � is 0.54. To assess the
significance of these results we conducted a simulation study using data

Ž .generated from the distribution at 3.3 , with � � � � 1, n � 20,000 and
r � 250 and values of B that produced ‘‘Zipf plots’’ having moderate curva-

Žtures, as in Figure 2. The case of higher curvature will be treated in Sec-
.tion 3.2. These values of n and r were chosen because they lead to Zipf plots

broadly similar to that in Figure 2. For the sake of simplicity we shall
continue to use the same n and r in Section 3.2.

TABLE 1
Estimates of � for different values of k and r*

r � k

k 256 200 150 100

6 ML 1.215 1.051 1.053 1.157
LS 1.152 0.910 0.873 0.980
Hill 3.531 3.007 2.458 1.921

8 ML 1.149 0.986 0.964 0.993
LS 1.097 0.874 0.811 0.865
Hill 3.146 2.666 2.165 1.669

10 ML 1.166 1.001 0.981 1.017
LS 1.212 0.883 0.839 0.891
Hill 3.173 2.693 2.188 1.687

12 ML 1.211 1.043 1.043 1.149
LS 1.152 0.918 0.851 1.004
Hill 3.353 2.861 2.337 1.821

15 ML 1.165 0.997 0.980 1.026
LS 1.125 0.892 0.846 0.935
Hill 3.073 2.616 2.125 1.638

20 ML 1.167 0.995 0.974 1.007
LS 1.134 0.901 0.853 0.952
Hill 2.968 2.529 2.051 1.573

Ž* In each cell in the table, the maximum likelihood estimate denoted by ML, and computed
. Ž .under the constraint � � 1 is listed above the corresponding least-squares estimate LS , which

Ž .in turn is listed above the Hill 1975 estimate.
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Ž .We found that 1 the ‘‘full’’ ML and LS estimators of � have much higher
Žvariance than the ‘‘constrained’’ estimators i.e., with � constrained to

. Ž . Ž .equal 1 ; 2 the differences in bias are relatively minor; 3 the ‘‘constrained’’
Ž .ML estimator of � is substantially more accurate than the Hill 1975

Ž .estimator; and 4 the ‘‘full’’ ML estimator of � is biased downwards by a
1factor close to , with variance being less of a problem. This bias appears to2

be due to third-order effects, which are not captured by second-order models
Ž . Ž .such as the combination of 2.1 and 2.3 . In view of this bias, we do not find

the value � � 0.54, obtained using the ‘‘full’’ ML method, to be problematical.
Overall, the ‘‘full’’ ML estimator does not perform well for these data, since
departure from a single Pareto distribution is not sufficiently great; but the
‘‘constrained’’ ML method is effective.

We conclude that the true value of � is close to 1. This is the value claimed
Ž .by Zipf 1949 for countries such as the United States that satisfy his law of

‘‘intranational equilibrium,’’ although of course he was concerned with regu-
lar variation at infinity, not at an upper bound to city size.

3.2. Summary of numerical properties. When fitting mixture models, it is
generally found that a multicomponent model produces improved perfor-
mance only if there is clear evidence that more than one component is
necessary. When a single component is adequate, fitting a mixture of two or

Ž .more components typically leads to poor performance, because 1 the addi-
tional nuisance parameters use up information that would otherwise be

Ž .available for estimating the main parameters of interest, and 2 there are
problems of identifiability when the components are close. This gives rise to
relatively poor performance of the ‘‘full’’ ML and LS methods, noted in
Section 3.1, when the Zipf curve has only moderate curvature.

However, when fitting a single Pareto distribution to data such as those on
which Figure 2 is based, it is relatively important to determine the threshold,
r, by empirical means. It has been observed previously that, in a range of
settings, empirical choice of r can increase root mean squared error by a
factor of about 2 when � is unknown; see, for example, Hall and Welsh
Ž . Ž .1985 . As shown in Section 3.1 Table 1 , when fitting a Pareto mixture the
estimator of � is relatively robust against systematic effects resulting from
choice of r. Therefore, even if ‘‘full’’ or ‘‘constrained’’ ML or LS methods, for
fixed values of r, produce estimates that perform similarly to Hill’s estimator
when the latter is computed at an optimal threshold, the ML or LS methods
can be superior to the Hill estimator in practice. Analysis of threshold-choice
methods for Hill’s estimator is beyond the scope of this paper.

Since � is the parameter of a high-order term in the model, the likelihood1
surface is relatively flat near the maximizing value of � . Figure 4 depicts a1

Ž . Ž .typical graph of �L D , � , defined at 2.8 , and shows this property clearly.1 1
Ž .Similar behavior may be observed for the function S 	, D , � , defined at1 1

Ž .2.10 , and in this case one must also take care that the estimate of � is not1
taken to be a pathological extremum at infinity. These problems are not as
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Ž .FIG. 4. Likelihood surface. Typical plot of �L D, � for data generated in the simulation study1
in Section 3.2.

serious when data sets are analyzed individually, however. In our simulation
study we used grid search to approximate the minimum, but due to the
flatness of L and S it sometimes happened that the value we obtained was a
long way from the true minimum. Additionally, in some samples where the
Zipf plot was approximately linear, despite the average Zipf curve being
nonlinear, the estimate of � was a large distance from the true value of � .1 1

Ž .For these reasons we use median absolute deviation MAD instead of mean
squared error to describe performance.

We simulated data from the distribution

3.3 X � U 1� � exp BU��� ,Ž . Ž .

where � , � � 0, B � �D�� , �� � D � � and U had a Uniform distribution
� �on the interval 0, 1 . The parameters � , �, D have the meanings ascribed to

them in Section 2, and the value of C there is now 1. In particular, the
Ž . Ž .perturbed Pareto model defined at 2.1 and 2.3 is valid. In the context of

Ž .3.3 , and for n � 20,000 and r � 250, Table 2 gives median absolute devia-
tions of estimates computed by ‘‘full’’ or ‘‘constrained’’ ML and LS methods.
The ‘‘constrained’’ estimators are generally slightly superior, and the ML and
LS methods perform similarly. Throughout this section, the results reported
represent averages over 100 simulated independent samples.

Ž .The MAD of estimators suggested by Hill 1975 , for r � 250, exceeds that
of ‘‘full’’ ML estimators by a factor of between 1.3 and 3.6 across the range of
Table 2. If the Hill estimator is computed at the value of r that gave it
optimal MAD performance in the simulation study, then its MAD is generally
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TABLE 2
Values of mean absolute deviation*

� � 1 � � 1 ����� �1 1

Ž . Ž .B � 500 B � 15,000
Ž0. Ž0.ML 0.12 ML 0.061
Ž0. Ž0.LS1 0.13 LS1 0.071

1 Ž0. Ž0.� � LS2 0.13 LS2 0.0712
Ž1. Ž2.ML 0.10 ML 0.040
Ž1. Ž2.LS1 0.10 LS 0.068
Ž1.LS2 0.10

Ž . Ž .B � 300 B � 300
Ž0. Ž0.ML 0.30 ML 0.30
Ž0. Ž0.LS1 0.36 LS1 0.36
Ž0. Ž0.� � 1 LS2 0.35 LS2 0.35
Ž1. Ž2.ML 0.23 ML 0.47
Ž1. Ž2.LS1 0.22 LS 0.38
Ž1.LS2 0.23

Ž . Ž .B � 200 B � 30
Ž0. Ž0.ML 0.87 ML 1.0
Ž0. Ž0.LS1 0.58 LS1 0.93
Ž0. Ž0.� � 2 LS2 0.59 LS2 0.92
Ž1. Ž2.ML 0.61 ML 1.0
Ž1. Ž2.LS1 0.57 LS 1.0
Ž1.LS2 0.60

Ž . Ž . Ž .* The estimates are � abbreviated here to ML , � LS1 and � LS2 , and are as defined inˆ ˆ ˆ1 2 3
Section 2.4. Their unconstrained forms, constrained forms subject to � � 1, and constrained1
forms subject to � � 1�� , are indicated by the superscripts Ž0., Ž1. and Ž2., respectively. When the1
constraint is � � 1�� , the distinction between LS1 and LS2 is lost; there, the LS estimator of �1

Ž . Ž .is defined by minimizing S 	 � log � , 1�� , D with respect to � , D .0 1 1

close to that of the ‘‘full’’ ML and LS estimates. However, this does not take
into account the need in practice to choose r empirically so as to achieve good
performance. We made no attempt to optimize our ML or LS estimates over r.
When � � 1 or 2, in particular, performance can be improved significantly by
using smaller values of r. Guidance as to the appropriate r may be gained
by examining q�q plots; see Figure 3.

Ž .In each case, B in 3.1 was chosen so that average values of Zipf plots
showed curvature more marked than that in Figure 2 and of the opposite
sign. Subject to this constraint, B was selected so that curvatures were
visually similar in all the settings of the table. Figure 5 depicts average
values of Zipf plots in the case of the first column of Table 2, each curve
representing the mean of 100 independent synthetic samples.

If curvature is decreased then the performance of ‘‘full’’ ML and LS
methods relative to their ‘‘constrained’’ versions deteriorates, since the rela-
tive contribution of stochastic error to MAD increases. As noted in Section
3.1, the ML and LS estimators are relatively robust against changes in r.
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Ž .4. Theoretical properties. Assume that 2.1 holds, where � � 0 and
Ž .the function � is twice-differentiable on 0, � and satisfies

iŽ i. � 
�i4.1 � x � ��� x Dx � O x for i � 0, 1, 2Ž . Ž . Ž . Ž . Ž .
as x�0, with 0 � � � 
 � � and �� � D � �. Put � � ��� and 
 � 
�� ,1 1

Žand let � , . . . , � denote positive constants. In Remark 4.1 we shall give1 6
2 .the values of � for j � 1, 2, 4, 5. Define the estimators � , � , � as in Sec-ˆ ˆ ˆj 1 2 3

tion 2.4.

Ž . Ž .THEOREM. Assume condition 4.1 , and that r � r n � � at a rate such
�1 Ž . Ž �� .that r � r�n � O n for some � � 0. If � is estimated as part of the1

likelihood or least-squares procedure then, for j � 1, 2, 3,
Ž . 3min 2 � , 
�1�2 1 14.2 � � � 1 � r N � O r�n log nŽ . Ž . Ž .ˆ � 4j n j p

Ž 2 .as n � �, where the random variable N is asymptotically Normal N 0, � .n j j
If, in the estimation procedure, we substitute for � a random variable that is1

Ž . Ž �� .within O 
 of its true value, where 0 � 
 � O n for some � � 0, thenp
Ž . Ž .4.2 remains true provided 1 we interpret N as an asymptoticallyn j

Ž 2 . Ž .Normal N 0, � random variable, and 2 we replace the remainder termj�3

�Ž .minŽ2 �1, 
 1. 4by O r�n � 
 log n .p

Ž 2 .REMARK 4.1 Values of � . For integers j 	 1 and k 	 0, definej

1 kj �1� � x log x dx ,Ž .Hjk
0

Ž 2 .Ž 2 . Ž .2 2and put � � � � � � � � � � � � � , � � � � � � ,0 20 10 22 11 21 10 11 1 20 22 21
� � � � � � � and � � � � � � � . Then,2 11 21 10 22 3 10 21 11 20

1 22 �2 � �1 1� � � � � � x � � x log x dxŽ .H1 0 1 2 3
0

� ��2 �2 � �2 � � �2 � � 2 � � � � � � � � � � � ,Ž .� 40 1 2 20 3 22 1 2 10 1 3 11 2 3 21

and � 2 � � 2� 2, where � 2 � � 2�6 � 1.644934 is the variance of the loga-2 0 1 0
rithm of an exponential random variable. There is no such elementary
relationship in the cases of � 2 or � 2, for which the formulas are particularly3 6
complex and, for brevity, are not given here. More simply, however, � 2 �4
Ž 2 .�1 2 2 2� � � and � � � � .20 10 5 0 4

Ž . Ž .REMARK 4.2 Bias reduction . Condition 4.1 asks that to first order, �
decrease like x � as x�0, and to second order, decrease like x
. In these
circumstances the biases of more conventional estimators of � are asymptotic

Ž . �1 Ž .to a constant multiple of r�n ; see for example Hall 1982 and Csorgo,¨ ˝
Ž .Deheuvels and Mason 1985 . Our theorem shows that this level of bias has

been eliminated completely from the estimators � and � and that the newˆ ˆ1 2
Ž .minŽ2 �1, 
 1.bias is of order only r�n , multiplied by a logarithmic factor. This

represents an improvement by an order of magnitude.
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Ž .REMARK 4.3 Variance . The variance of conventional estimators is of size
�1 � Ž . Ž .�r Hall 1982 ; Csorgo, Deheuvels and Mason 1985 . It follows from the¨ ˝

theorem that this level of variance is preserved by our bias-reduced estima-
tors. Moreover, it may be proved that under the assumption that the model

Ž . � �at 2.4 holds exactly for x in some interval 0, � , the estimator � hasˆ1
asymptotic minimum variance among all estimators based on X , . . . , X .n1 nr

Ž .REMARK 4.4 Mean squared error reduction . The theoretically smallest
order of mean squared error is achieved by selecting the threshold, r, so that
squared asymptotic bias is of the same size as asymptotic variance. In view of
the results noted in Remarks 4.2 and 4.3, this will produce a mean squared
error that is an order of magnitude less for our estimators � , � and �ˆ ˆ ˆ1 2 3
than in cases of conventional methods. In the conventional cases mentioned
in Remarks 4.2 and 4.3, this balance would be achieved with a value r of the

Ž .2 �1same size as n�r , but for our estimators, the optimal r is an order of
magnitude larger.

Ž .REMARK 4.5 Estimators of C, D and � . By extending arguments in1 1
��̂ jˆ Ž .Section 5 it may be shown that the estimator C � r X �n has asymp-j nr

�1Ž .2 Ž .minŽ2 �1, 
 1.totic variance of size r log n and asymptotic bias of size r�n
Ž .multiplied by a power of log n the latter depending on j . Our estimators of

D and � , derived by either maximum likelihood or least squares, have1 1
�1Ž .�2 �1Ž .2 �1Ž .�2 �1variances of size r r�n log n and r r�n , respectively. There-

Ž .2 �1fore, these estimators will not be consistent unless r r�n � �. In view of
Remark 4.4, this requires r to be an order of magnitude larger than would
typically be used for conventional estimators of � . Note, however, that
despite our likelihood and least-squares estimators being derived as functions
of estimators of D and � , consistent estimation of these quantities is not1 1
required for consistent estimation of � .

5. Derivation of theorem. For brevity we treat only the case of � , inˆ1
the setting where � , � , D are estimated together. Let Z , Z , . . . be inde-1 1 1 2
pendent exponential random variables with unit mean and define

n�i�1

S � Z � n � j � 1Ž .Ýi n�j�1
j�1

Ž . �and T � exp �S . By Renyi’s representation for order statistics e.g., David´i i
Ž . � �1Ž .1970 , page 18 , we may choose the Z ’s so that X � F T for 1 � i � n.i ni i
Observe too that

5.1 S � log n�i � O i�1�2Ž . Ž . Ž .i p

Ž .uniformly in 1 � i � r and that the representation of F at 2.1 may equiva-
lently be written as

5.2 log F�1 x � � log x � C � � x ,Ž . Ž . Ž .1 2
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�1 Ž . Ž .where � � � , C � �� log C, and by 4.1 , defining � � min 2� , 
 ,1 1 1

� � �� C�� 1 Dx �1 � O x �Ž .2

as x�0. Furthermore, S � S � �i�1Z . It follows from the latter resulti�1 i i
Ž .and 5.2 that

U � i log X � log X � �Z � i � T � � T ,� 4Ž . Ž . Ž .i n , i�1 ni i 2 i�1 2 i

Ž .whence, defining 	 � E log Z , 	 � log � � 	 , � � log Z � 	 and0 1 0 i i 0

�1
� � log 1 � �Z i � T � � T ,� 4Ž . Ž . Ž .i i 2 i�1 2 i

we have
5.3 U � �Z exp 1 � � .Ž . Ž .i i i

Ž . Ž �z . Ž . Ž i.Ž . � Ž .4Put � z � � e . Then by 4.1 , � z � O exp �� z for i � 1, 2, as3 2 3 1
Ž . Ž . Ž .� Ž �1�2 .4z � �. In view of 5.1 , exp �S � i�n 1 � O i uniformly in 1 � i �i p

Ž . �1r, and so, defining � � i�n , we havei

� T � � T � � S � � SŽ . Ž . Ž . Ž .2 i�1 2 i 3 i�1 3 i

2��1� �i Z � S � O Z �i � .Ž . Ž .� 4i 3 i p i i

5.4Ž .

Ž .Moreover, by 5.1 ,

5.5 � � S � � � log n�i � O i�1�2� .� 4Ž . Ž . Ž . Ž .3 i 3 p i

� � Ž .4 Ž . � Ž . Ž . Ž .Define a � �� log n�i � i�n � i�n . Combining 5.4 and 5.5 , we de-i 3 2
duce that

� T � � T � i�1Z a � O i�3�2Z Z � 1 � .Ž . Ž . Ž .� 42 i�1 2 i i i p i i i

� �1�2Ž . Ž . � 4Therefore, �� � a � O i Z � 1 � � i�n , uniformly in 1 � i � r.i i p i i

Ž 2 . �� �� Ž . �1 �Ž . � 4Now, a � � ��� C D i�n � O i�n . Hence,i

� ��1�215.6 � � D � i�n � O i Z � 1 � � i�n ,Ž . Ž . Ž . Ž .� 4i 1 1 p i i

Ž . �� �� Ž .uniformly in 1 � i � r, where D � � ��� C D. Substituting 5.6 into1
Ž .5.3 we see that

� ��1�215.7 U � �Z exp D i�n � O i Z Z � 1 � � i�n ,Ž . Ž . Ž . Ž .� 4 � 4i i 1 p i i i

uniformly in 1 � i � r.
From this point it is convenient to write 	0, D0, � 0 rather than 	, D , �1 1 1 1

for the true values of 	, D , � and to write 	, D , � for general candidates1 1 1 1
0 0 0 0 Ž 0. 0for 	 , D , � . In this notation, put � � 	 � 	 , � � D � D �D and1 1 	 D 1 1 1

0 Ž . � 0
1 Ž 0 .� � � � � , and note that � � i�n and � � min 2� , 
 . Now,� 1 1 i 1 1

� 0�0 0 01 1D i�n � D � D � D i�n exp � � � log i�nŽ . Ž . Ž .� 4 � 4Ž . Ž .1 1 1 1

� 0 � 00 01 1� D i�n � D i�n � � � log i�nŽ . Ž . Ž .� 41 1 D �

0 2� 21� O i�n � � � log n ,Ž . Ž .½ 5D �
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Ž .uniformly in 1 � i � r. Therefore, by 5.7 ,
�1V � U exp �D i�nŽ .� 4i i 1

5.8Ž .
� �Z 1 � D0 � � � � l � O Q D , � ,� 4Ž .Ž .� 4i 1 i D � i p i 1 1

� �01 1V i�n � �Z � 1 � D � � � � l � �Z i�n � �Ž . Ž .Ž .� 4 � 4i i i 1 i D � i i i
5.9Ž .

� O � Q D , �� 4Ž .p i i 1 1

Ž .uniformly in 1 � i � r, where l � log i�n andi
2��1�2 2Q D , � � i Z Z � 1 � � i�n � � � � � log n .Ž . Ž . Ž . Ž .½ 5i 1 1 i i i i D �

For j � 1, 2, let B equal the average over 1 � i � r of the left-hand sidesj
Ž . Ž .of 5.8 and 5.9 , respectively, and let B equal the average over 1 � i � r of3

Ž .the left-hand side of 5.9 multiplied by l . Let Z, �Z and �mZ equal thei
averages of Z , � Z and � m Z , respectively, over the same range. Put l � li i i i i i r

Ž .and m � log i�r , and observe that l � l � m . For nonnegative integers k,i i i
�1 j k �1�2 Ž . � � 2 Ž .24define � � r Ý � m , and let q � r � � r�n � � � � � log n .jk i� r i i D �

Ž . Ž .In this notation we have, by 5.8 and 5.9 ,
�1 0� B � Z � D � � � � � l� � � O q ,Ž . Ž .� 41 1 10 D 11 10 � p

�1 0� B � �Z � D � � � � � l� �Ž .� 42 1 20 D 21 20 �

r
��1 1� r Z i�n � � � O �q ,Ž . Ž .� 4Ý i i p

i�1

�1 0� B � �mZ � l�Z � D � � l� �Ž .�3 1 21 20 D

5.10Ž .

� � � 2 l� � l 2� � 4Ž .22 21 20 �

r
��1 1� r Z i�n � � l � O �q log n .Ž . Ž .� 4Ý i i i p

i�1
Also,

r r
� ��1 �1 1b � r i�n � � � r i�n � � ,Ž . Ž .� 4Ý Ý1 10 i

i�1 i�1
r r

� ��1 �1 1b � r i�n log i�n � � � l� � r i�n � � l .Ž . Ž . Ž .� 4Ý Ý2 11 10 i i
i�1 i�1

Consequently,
�1 0� b B � � Z � D � � � � � l� �Ž .� 41 1 10 1 10 D 11 10 �

r
��1 1� Zr i�n � � � O � q ,Ž . Ž .� 4Ý i p

i�1

�1 0� b B � � � l� Z � D � � � � � l� �Ž . Ž .� 42 1 11 10 1 10 D 11 10 �

r
��1 1� Zr i�n � � l � O � q log n ,Ž . Ž .� 4Ý i i p

i�1
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whence

�1 0 2� b B � B � � Z � �Z � D � � � �Ž . Ž .1 1 2 10 1 20 10 D

� � � l� � � � � l� �� 4Ž .21 20 10 11 10 �5.11Ž .
�1�2 � �� O �q � r � � log n ,Ž .p �

�1� b B � B � � � l� Z � �mZ � l�ZŽ . Ž . Ž .2 1 3 11 10

0� D � � l� � � � � l� �� 4Ž .1 21 20 10 11 10 D

22� � � 2 l� � l � � � � l� �Ž .� 422 21 20 11 10 �

5.12Ž .

2�1�2 � �� O � q log n � r � � log n .Ž .½ 5p �

Here we have used the fact that, for j � 0, 1,
r

� j�1�1 j �1�21 � �Z � 1 r i�n � � l � O r � � log n .Ž . Ž . Ž .� 4Ý ½ 5i i p �
i�1

Ž . 2Let M � m denote the 2 � 2 symmetric matrix with m � � � � ,jk 11 20 10
Ž 2 .m � � � � � � l � � � and12 21 10 11 20 10

m � � � � 2 � 2 l � � � � � l 2 � � � 2 .Ž . Ž .22 22 11 21 10 11 20 11

Ž 2 .Ž 2 . Ž .2 Ž .Then, det M � � � � � � � � � � � � . Define w , w , w �20 10 22 11 21 10 11 1 2 3
Ž . Ž . Ž .E Z, �Z, �mZ , W , W , W � Z � w , �Z � w , �mZ � w , A � � W �1 2 3 1 2 3 1 10 1

Ž . Ž .W and A � � � l� W � W � lW . Let R , R , . . . denote generic2 2 11 10 1 3 2 1 2
Ž .random variables each of which equals 1 � o 1 . In this notation,p

T�1W � det M � , � � l� M A , AŽ . Ž . Ž .10 11 10 1 2

2� � � � � � � � � � � �Ž .� 4Ž .10 10 22 11 11 21 10 11
5.13Ž .

�� � � � � � WŽ .11 11 20 10 21 1

� � � � � 2 � � � � � � W � � � � � � W .Ž . Ž .� 4Ž .10 22 11 11 21 10 11 2 11 20 10 21 3

Hence,

�1W � det M WŽ .1

�1 2� det M � � � � WŽ . � Ž .20 22 21 15.14Ž .
� � � � � � WŽ .11 21 10 22 2

� � � � � � W .Ž . 410 21 11 20 3

j Ž .Since � � � � as n � � then the quantity at 5.14 is asymptoticallyjk jk
Normal with zero mean and variance r�1� 2, where � 2 is as defined in1 1
Remark 4.1.
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�1�2 Ž . �Let p � r � � r�n denote the part of q that does not involve � orD
Ž . Ž .� . If, in the quantity on the far left-hand side of 5.13 , we replace A , A� 1 2

by

A� , A� � A � O � p , A � O � p log n ,Ž . Ž . Ž .Ž .1 2 1 p 2 p

Ž . Ž .then the net change to the far right-hand side of 5.13 is to add a term O t ,p
4 Ž . Ž .where t � � p log n . Hence, the net change to 5.14 is to add a term of size

Ž . � Ž .3r�n log n . We claim that this gives the claimed limit theorem in the case
ˆ ˆof � . To appreciate why, let � , � denote the versions of � , � in whichˆ1 D � D �

ˆ ˆ Ž .D , � are replaced by D , � , respectively. Note that the function L D , � ,1 1 1 1 1 1
Ž .defined at 2.13 , is minimized when b B � B � 0 and b B � B � 0.1 1 2 2 1 3
ˆ ˆTherefore, D , � are given asymptotically by the equations formed by1 1

Ž . Ž .setting the right-hand sides of 5.11 and 5.12 equal to zero. This shows
ˆ ˆ T 0 �1 �1 TŽ . Ž . Ž . �that � , � equals � D M A , A note the appearance ofD � 1 1 2

�1Ž .T Ž .�M A , A on the left in 5.13 , plus terms that are either negligible or of1 2
�1 � 2 ˆ �1Ž . Ž .size � r�n log n . Moreover, our likelihood-based estimator � � � of �ˆ

ˆ ˆŽ . Ž . Ž .equals B � B D , � , evaluated at D , � . Using the expansion 5.10 of1 1 1 1 1
�1ˆB we see that � � equals1

T
0 ˆ ˆZ � D � , � � l� � , � ,Ž . ž /1 10 11 10 D �

Ž . � Ž .3 �plus terms that are either negligible or of size r�n log n . Note the
Ž . Ž . � Ž . Žappearance of � , � � l� on the left in 5.13 . Hence, by 5.13 modified10 11 10

�1ˆ. Ž .as suggested earlier , we deduce that � � equals the quantity at 5.14 , plus
a term of size t. The desired central limit theorem for � follows.ˆ1

APPENDIX

Notes on the data. The data analyzed in Section 3.1 were extracted
from tables prepared following the census of the Commonwealth of Australia

Ž .on the nights of 3 and 4 April, 1921. See Wickens 1921 . As definitions of
communities we took ‘‘Municipalities’’ for New South Wales, Western Aus-
tralia and Tasmania, ‘‘Cities, Towns and Boroughs’’ for Victoria, ‘‘Cities and
Towns’’ for Queensland, and ‘‘Corporations’’ for South Australia. Alternative
definitions, incorporating sparser communities in rural districts, would in-
clude data on ‘‘Shire’’ populations in New South Wales, Victoria and Queens-
land, ‘‘District Councils’’ for South Australia, and ‘‘Road Districts’’ for West-
ern Australia. However, our choice appears to reproduce exactly the data

�Ž . �presented graphically by Zipf 1949 , page 439 .
The populations of the two internal territories in 1921, the Federal Capital

Ž .Territory and the Northern Territory, were not tabulated by Wickens 1921
in a form which is readily comparable with that for the states, although
detailed geographic distributions were given. We judged from the latter that
the territories did not include any communities with populations exceeding
2000 and so did not include them in our data set.
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Ž .Explanations alternative to those of Zipf 1941, 1949 are possible for
nonlinear plots of log-community size against log-rank. They include the
hypothesis that the data are drawn from mixtures of Pareto distributions. For
example, the distribution of Australian community sizes in 1921 would have
reflected the strictures of development in six largely autonomous British
colonies, which had been federated into a ‘‘mixture’’ only 20 years previously.
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