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OPTIMAL CONVERGENCE RATES FOR
GOOD’S NONPARAMETRIC MAXIMUM
LIKELIHOOD DENSITY ESTIMATOR

BY P. P. B. EGGERMONT AND V. N. LARICCIA

University of Delaware

We study maximum penalized likelihood density estimation using the
first roughness penalty functional of Good. We prove a simple pointwise
comparison result with a kernel estimator based on the two-sided expo-
nential kernel. This leads to L1 convergence results similar to those for
kernel estimators. We also prove Hellinger distance bounds for the rough-
ness penalized estimator.

1. Introduction. We are interested in nonparametric density estimation
from independent identically distributed observations. Two standard exam-
ples are ‘‘plain’’ density estimation and the semiparametric deconvolution
problem. The standard estimation procedures for problems like these are
based on either kernel density estimators or maximum penalized likelihood

Ž .estimators MPLEs . For ‘‘plain’’ density estimation the success of kernel
estimators is just about uncontested, but for the deconvolution problem
mple’s seem much more appropriate. Unfortunately, since in the deconvolu-
tion problem explicit expressions for the MPLEs are lacking, it appears close
to impossible to prove reasonable convergence rates under reasonable condi-
tions for these estimators. Even for ‘‘plain’’ density estimation MPLEs have
resisted all attempts�until now. However, the actual purpose of this paper is
to show that there may be more to MPLEs than meets the eye and in the
process create a renewed interest in maximum penalized likelihood estima-
tion for indirect estimation problems.

Ž .Let X , X , . . . , X be univariate independent identically distributed iid1 2 n
random variables drawn from an unknown distribution F with density f .o o
We wish to estimate f without assuming a parametric model, by maximumo
penalized likelihood estimation; that is, we estimate f by the solution ofo

n1
2minimize � log f X � f x dx � h R fŽ . Ž . Ž .Ý Hi1.1Ž . n �i�1

subject to f is a pdf,
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Ž .where R f is the roughness penalization functional. The one that interests
Ž .us here is the first roughness penalty functional of Good 1971 given by

� � 2f � xŽ .
1.2 R f � dx ,Ž . Ž . H f xŽ .�

Ž .but other choices are possible. We mention those of Silverman 1982 and Cox
Ž .and O’Sullivan 1990 involving derivatives of the log-density. The drawbacks

of maximum penalized likelihood estimators are apparent. The computation
Žof these estimators is nontrivial although at present this is less of a concern

. Ž 1.than it was 20 years ago , and proving L convergence rates under reason-
able conditions was unexpectedly hard: either the rates or the conditions are

Ž . Ž .nowhere near optimal. See Klonias 1982, 1984 , Silverman 1982 and Cox
Ž . Ž . Ž . Ž .and O’Sullivan 1990 . So, when Wahba 1981 , Rudemo 1982 , Hall 1983

Ž .and Stone 1984 proposed cross validation for the selection of the window
parameter, the flood gates were opened and the kernel estimators of Akaike
Ž . Ž . Ž .1954 , Rosenblatt 1956 and Parzen 1962 became the sole object of study.
The success of the kernel estimators is easy to explain; for known smoothing
parameter h they are easy to compute, and the large sample asymptotic

Ž 1 .behavior L error is straightforward to determine, the kernel estimator
being a nice linear transformation of the empirical distribution function F .n
The kernel estimators may be written as

n1defnh1.3 f x � A � dF x � A x � X , x � �,Ž . Ž . Ž . Ž .Ýh n h in i�1

Ž . �1 Ž �1 .where A x � h A h x for a pdf A. However, despite the fact thath
maximum penalized likelihood estimators are such a pain, there are areas
where they are much more appropriate than kernel estimators, for example,
for the nonparametric deconvolution problem as demonstrated in Eggermont

Ž .and LaRiccia 1997 . In this paper we discuss maximum penalized likelihood
Ž .density estimation using the Good 1971 penalization. Although it would

seem that the progress made here is mostly technical in nature, we claim
that this was precisely what stood in the way of the possible success of

Ž .maximum penalized density estimators even for the generalized deconvolu-
tion problem. Thus we give a full analysis of the MPLEs using the penaliza-

Ž .tion of Good 1971 , but in the course of doing so we stumbled upon an
unexpected result.

In this paper we show that the maximum penalized likelihood estimator
with Good’s roughness penalization literally compares quite nicely with the
kernel estimator with two-sided exponential kernel, which implies that it has
the same L1 consistency behavior under the same minimal conditions on

Žsmoothness and tail behavior integrable second derivative, and existence of a
. Ž .moment of order greater than 1 . We use the old analysis of Klonias 1982 ,

but improve on it at a crucial juncture and override it all with the pointwise
comparison with kernel estimators. At the end of the paper we show some
simulation results comparing the mple under discussion with the kernel
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density estimator using the Epanechnikov kernel. By and large, the estima-
tors are indistinguishable.

We finish the introduction with the initial step that seems to lead natu-
Ž .rally to everything that follows. In problem 1.1 instead of minimizing over
Ž .all pdfs, we minimize over all nonnegative continuous functions. So we

consider
n1

2minimize � log f X � f x dx � h R fŽ . Ž . Ž .Ý Hi1.4Ž . n �i�1

subject to f � 0.

The solution is denoted by f . It appears that something is lost by ignoringnh
the pdf constraint. In fact, a simple scaling argument shows that

2
�1�221.5 f y dy � 1 � h f ,Ž . Ž . Ž .� 4H nh nh 2

�

� Ž . Ž .so that f is always a sub pdf. This is a trick of Silverman 1982 : in 1.4nh
minimize over f � tf , with scalar t � 0. The minimum is attained at t � 1,nh

Ž . �and setting the derivative with respect to t equal to 0 gives 1.5 . In the
course of the paper it will become clear that ignoring the pdf constraint is of
minimal importance and that it is actually quite natural and advantageous to
do so.

Ž .Following the suggestion of de Montricher, Tapia and Thompson 1975 , we
2 Žuse the transformation f � u which leads to the problem with h replaced

.by h�2

def 2 22� � � �minimize L u , F � � 2 log u x dF x � u � h u�� 4Ž . Ž . Ž .H 2 2h n n1.6Ž . �

subject to u � 0.

� � p Ž .Here � denotes the L norm on the line we need p � 1 and 2 . Indeed, dep
Ž . Ž . Ž .Montricher, Tapia and Thompson 1975 show that problems 1.4 and 1.6

Žare equivalent actually, they show this with the pdf constraint, but the same
.argument goes through without it . Both problems have unique, positive

solutions, which are related in the obvious way. Finally, it should come as no
surprise that the large sample asymptotic problem

minimize L u , FŽ .h o1.7Ž .
subject to u � 0

Ž .plays an important role as well. We denote the solution of 1.6 by u andnh
Ž . h 2the solution of 1.7 by u . The transformation f � u makes it quite natural

to study
1�2 1�2 1�22 2� � � �1.8 u � f � f � f � H f , f ,Ž . Ž . Ž . Ž . Ž .2 2nh o nh o nh o

Ž .2which is the Hellinger distance between f � u and f . Indeed, we shallnh nh o
Ž . Ž .derive upper bounds for 1.8 involving H T � dF , T � dF for suitableh n h o

kernels T .h
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Ž . Ž . Ž .Good 1971 , Good and Gaskins 1971 , Thompson and Tapia 1990 also
Ž . Ž 2 . � � 2discuss a second roughness penalization functional R f � R u � � u� �2

� � 2 Ž . Ž .� u� for which the associated problems 1.4 and 1.6 are not equivalent in2

general, but for the special choice
def 2 22 2 2 2 4� � � �1.9 h R u � R u � 2h u� � h u�Ž . Ž . Ž . 2 2h

they are, and this may be treated similarly to the first roughness penaliza-
Ž .tion, for example, the estimator is given implicitly by u � S �S � dF �u ;h h n

Ž .compare 4.2 below.

2. The main result. We make the standard assumptions about the
density f in the context of kernel density estimation, that is, that f � iso o
integrable, and that f has a moment of order � 1, but need to make a smallo

Ž .concession to the penalization functional involved, that is, R f � �. So weo
assume

1�2�� �2.1 f � �, f � � �,Ž . Ž .� 41o o 2

� � m� �2.2 � X � � for some m � 	 � 1.Ž .
These conditions are sufficient for the optimal asymptotic rate of convergence

1 � �for the L error f � f . For better bounds on the Hellinger distance we1nh o
need to assume finite moments of higher order, and to get good rates
essentially exponential decay is required, that is,

� r � X � �2.3 � e � � for some r � 0,Ž .
as well as the stronger smoothness condition

1�22.4 f � � �.Ž . Ž .� 4o 2

Ž . Ž .Indeed, 2.4 implies the second inequality of 2.1 , by the standard interpola-
� Ž .� Ž .tion inequalities see Adams 1975 and it implies the first inequality of 2.1

by writing
2

2 � � �1�2 1�2 1�2 1�2� 4f � � f � 2 f f � 2 f ,Ž . Ž . Ž . Ž .� 4 � 4Ž .½ 5o o o o o

and using Cauchy�Schwarz.
The bounds arrived at for the errors in various norms arise from various

bounds for kernel density estimators with one-sided and two-sided exponen-
tial kernels,

�1 �1 � �2.5 S x � 2h exp �h x , �� � x � �,Ž . Ž . Ž . Ž .h

2.6 T x � h�1 exp �h�1 x , x � 0,Ž . Ž . Ž .h

Ž .and T x � 0 for x � 0.h
The main theorem is as follows.

Ž . Ž .THEOREM 2.7. Under the assumptions 2.1 , 2.2 ,
� � �2�5f � f � OO n ,Ž .1nh o as

provided h � h 	 n�1�5.n
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Ž .There is no hint yet as to why Theorem 2.7 should be true. The one re-
sult that makes it possible is the direct comparison with kernel density
estimators:

THEOREM 2.8. For all h � 0 and all x � �,
1 S � dF x 
 f x 
 S � dF xŽ . Ž . Ž .'h �2 n nh h � 2 n2

and
21�22� �f � S � dF � h f � .Ž .� 41'nh h � 2 n nh 2

ŽNote that the upper bound on f is very good, since f an estimator fornh nh
.a pdf is bounded above by a pdf. This almost immediately implies the bound

on the L1 error given. The next step in getting good bounds on the L1 error
� � ��Ž .1�24 � 2f � f is bounding f � , for appropriate h. Then the same rates1 2nh o nh
of convergence as for kernel density estimation would follow.

Ž . Ž . �1�5THEOREM 2.9. Under the assumptions 2.1 , 2.2 , for h 	 n ,
1�2f � � OO 1 .Ž . Ž .� 4nh as2

In proving Theorem 2.9 it is quite natural to prove bounds on the Hellinger
distance.

Ž . Ž .THEOREM 2.10. a Under assumption 2.1 , if f has a finite moment ofo
order m � 	 � 1 then for deterministic h with h 	 n�1�5,

H f , f � OO n�2�5 .Ž . Ž .nh o as

Ž . Ž .b Under assumption 2.1 , if f has a finite moment of order m � 	 � 2o
then for deterministic h with h 	 n�	 �Ž5	�4., for all s � 1,

s�4	 �Ž5	�1.H f , f � OO n log n .Ž . Ž .Ž .nh o as

Ž . Ž .c If, moreover, assumption 2.3 holds, then for all s � 2,
s�4�5H f , f � OO n log n .Ž . Ž .Ž .nh o as

Finally we state the universal consistency of f under minimal condi-nh
tions.

Ž .1�2THEOREM 2.11. For every density f , with f integrable, if h � 0,o o
nh � �,

� �f � f � 0.1nh o

3. The main approach. To prove the results in Section 2 it may
be possible to take shortcuts here and there, but as argued in the Introduc-
tion, the interest is in a full analysis of the maximum penalized likelihood
estimator.
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The main tool in the analysis is provided by the Euler equations for the
Ž .maximum penalized likelihood estimation problem 1.6 and by their implicit

solution.

� Ž .�THEOREM 3.1 de Montricher, Tapia and Thompson 1975 . Let 
 be a
Ž . 2Ž .distribution function, and let v be the minimizer of L u, 
 over all u � L � ,h

u � 0. Then v solves the boundary value problem

d

2� h v� � v � , x � �,

3.2 vŽ .
v x � 0, x � ��.Ž .

Moreover, v then satisfies

d
 d
 yŽ .
3.3 v � S � � S x � y .Ž . Ž .Hh hv v yŽ .�

Ž .1�2Decomposing as usual the error u � f into an asymptotic variancenh o
and asymptotic bias term,

1�2 1�2h h� � � � � �3.4 u � f 
 u � u � u � f ,Ž . Ž . Ž .2 2 2nh o nh o

the above theorem allows us to determine bounds for each.

Ž . Ž .1�2 h Ž .THEOREM 3.5 The asymptotic bias . Let w � f and u � u . a If w�o
is square integrable, then

� h � � �u � 
 w� .Ž . 2 2

Ž .b If w� is square integrable, then

2 � � 2 � � 2 4 � � 2h u� � w� � u � w 
 h w� .2 2 2

Ž .THEOREM 3.6 The asymptotic variance . There exists a constant c such
that for all h, and with � � h�2,

22h 2 h� �u � u � h u � u � 
 cH T � dF , T � dF .Ž .Ž .2nh nh � n � o2

The well-known bound

� �3.7 H T � dF , T � dF 
 T � dF � T � dF ,Ž . Ž . 1� n � o � n � o

then yields the same asymptotic rates of convergence for the Good estimator
as for kernel density estimation.

In the following sections the claims made in Sections 2 and 3 are substan-
tiated.

4. Comparison with kernel estimators. Here we prove the compari-
Ž .son Theorem 2.8. We consider problem 1.6 , but the argument applies to

arbitrary distribution functions. From Theorem 3.1 it follows that u � unh
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solves
dFn2� h u� � u � , x � �,

4.1 uŽ .
u x � 0, x � ��Ž .

and
ndF 1 S x � XŽ .n h i

4.2 u � S � � , x � �.Ž . Ýh u n u XŽ .ii�1

We need to repeat another observation of de Montricher, Tapia and Thomp-
Ž . �Ž . Ž . �son 1975 , easily enough verified after the fact, that is, that S � x 
h

�1 Ž .h S x for all x, so thath

� � �14.3 u� x 
 h u x , x � �.Ž . Ž . Ž .
The comparison with kernel estimators is now at the surface. Observe that
for all u,

22u � � 2uu� � 2 u� ,Ž . Ž .
Ž .so that the differential equation 4.1 becomes

21 2 2 2 24.4 � h u � � u � dF � h u� .Ž . Ž . Ž .n2

It follows from Theorem 3.1 that u � u satisfiesnh

22 24.5 u � S � dF � h u� ,Ž . Ž .� 4'h � 2 n

whence
24.6 u 
 S � dF .Ž . 'h � 2 n

2 Ž .2The rather surprising consequence is that f � u � u satisfiesnh nh

� �f � S � dF � S � dF � fH H' 'nh h � 2 n h � 2 n nh
� �

21�22� �� 1 � f � h f � ,Ž .� 41nh nh 2

Ž .the last inequality by 1.5 . This proves the most important part of Theorem
Ž .2.8. For the remaining lower bound we observe from 4.4 that

1 1 12 2 2 2� h u � � u � dF � 1 � V u ,Ž . Ž .n4 2 2

2Ž .2where V � h u��u . Then, with S being Green’s function this time, weh �2
get that

12 24.7 u � S � dF � 1 � V u .Ž . Ž .� 4h �2 n2

Ž .In view of 4.3 we have that V 
 1, so that
124.8 u � S � dF .Ž . h �2 n2

This is the lower bound of Theorem 2.8.
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5. Proof of the asymptotic bias theorem. By Theorem 3.1, solving the
Ž .large sample asymptotic problem 1.8 is equivalent to solving the boundary

value problem
fo2� h u� � u � , x � �,

5.1 uŽ .
u x � 0, x � ��,Ž .

Ž .1�2 Ž . Ž .Ž .Let w � f . Note that f �u � w � w � u w�u . With assumptiono o
Ž .2.3 one obtains the differential equation for u � w,

w
2 25.2 � h u � w � � u � w 1 � � h w� .Ž . Ž . Ž . ž /u

Now multiply by u � w, and observe that integration by parts gives

� � 2u � w � u � w � � u � w �Ž . Ž . Ž .H H
� �

and conclude that
w222 2� �5.3 h u� � w� � u � w 1 � � h w� u � w .Ž . Ž . Ž .2 H Hž /u� �

2 � � � �Now, the right-hand side is bounded by h w� u � w . Upon ignoring2 2
Ž .the term involving w�u on the left of 5.3 , we get the nice inequality

2 � � 2 � � 2 2 � � � �5.4 h u� � w� � u � w 
 h w� u � w .Ž . 2 2 2 2

Now ignoring the first term on the left yields

� � 2 � �5.5 u � w 
 h w� .Ž . 2 2

Ž . 4 � � 2This also shows that the right-hand side of 5.4 is dominated by h w� ,2
Ž . Ž . Ž h . Ž .and proves Theorem 3.5 b . To prove a , we note that L u , F 
 L w, F .h o h o

This may be rewritten as
2 2 2h 2 h 2� � � �D u , f � h u � 
 h w� ,Ž . Ž . 2 2ž /o

Ž . Ž .where D �,  � H � log �� �  � � is the Kullback�Leibler divergence.�

Ž . �Ž h. � � �Since D �,  � 0, the conclusion u � 
 w� follows. �2 2

6. Proof of the variance theorem. For the proof of Theorem 3.6 we try
to repeat the material from Section 5. We start with the boundary value

Ž . Ž .problems 5.1 and 4.1 . Subtraction yields the differential equation

dF dFn o2 h h6.1 � h u � u � � u � u � � , x � �.Ž . Ž . Ž .nh nh hu unh

Upon multiplication by u � uh and integration over �, with integration bynh
parts on the first term, we get

2 22 h h� �6.2 h u � u � � u � u � dm ,Ž . Ž . 2 Hnh nh n , h2
�
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with

dF dFn o hdm � � u � u .Ž .n , h nhh½ 5u unh

This may be rewritten as

2h hu � u u � uŽ .nh nh
dm � � dF � dF � dF ,Ž .n , h n n oh hu u unh

and thus we get the inequality

u � uh
nh

6.3 dm 
 dF � dF .Ž . Ž .n , h n ohu

Alternatively, by interchanging the roles of F and F , we geto n

2h hu � u u � uŽ .uh nh
dm � � dF � dF � dFŽ .n , h o n oh uu u nhnh

and so

u � uh
nh

6.4 dm 
 dF � dF .Ž . Ž .n , h n ounh

Now these two inequalities may be combined into one inequality as fol-
Ž . � h4 � h4lows. Split the integration range in 6.2 into u 
 u and u � u . Onnh nh

� h4 Ž . � h4 Ž .u 
 u use 6.3 and on u � u use 6.4 . Thennh nh

6.5 dm 
 � dF � dF ,Ž . Ž .H Hn , h n o
� �

with

u � uh
nh

6.6 � � .Ž . hu � unh

Ž . Ž .Here a � b is the maximum of a and b. Klonias 1982 uses 6.3 over the
whole integration range, but this leads to trouble later on.

Ž . Ž .The next step in analyzing 6.2 � 6.6 is a well-known integration by parts
�trick or a reproducing kernel Hilbert space trick in the setting of Klonias

Ž .� Ž . Ž .1982 . Let T x be the one-sided exponential distribution 2.6 . The integra-�

tion by parts trick is as follows: for smooth functions � and distributions �
which decay fast enough at ��,

6.7 � x d� x � ��� x � � x T � d� x dx .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H �
� �

One would expect to use � � h, but it turns out that � � h�2 is what is
Ž .needed. We just keep writing � though. Applying 6.7 to the integral at hand
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Ž .gives the functions in question decay fast enough

6.8 � dF � dF � �� � � � T � dF � dF .Ž . Ž . Ž . Ž .Ž .H Hn o � n o
� �

Now we have that

u � uh �Ž .nhh h h6.9 u � u � � � u � u � � u � uŽ . Ž . Ž . Ž .nh nh nhhu � unh

Ž . hŽ . �and, except possibly on sets of measure 0 where u x � u x open inter-nh
Ž . hŽ . �vals on which u x � u x cause no problem ,nh

� u �Ž .nh h, if u � u ,nhhu � u � uŽ .nh nh�h hu � u u �Ž .nh
h, if u � u .� nhhu

Ž . hThus 4.3 and its analogue for u imply
hu � u �Ž .nh �16.10 
 h .Ž . hu � unh

Ž .Consequently, the right-hand side of 6.8 is bounded by

� �T � dF � dFŽ .� n oh �1 h� � � �� u � u � � 1 � �h u � uŽ .� 4Ž .H nh nh hu � u�6.11Ž . nh

� h � �1 � h �
 � u � u � � 1 � �h u � u � ,Ž .� 4Ž . 2 2nh nh

where

� � 2T � dF � dFŽ .� n o26.12 � � .Ž . H 2h� u � uŽ .nh

Ž .At this point we need the lower bound from Theorem 2.8 , as well as its
1h Ž . Ž . Ž .analogue for u . Since S x � T x , with � � h�2 and Theorem 2.8 we� �2

1 12 hŽ .get that u � S � dF � T � dF , and likewise for u . Thusnh � n � n2 4

T � dF � T � dFŽ . Ž .� n � o
6.13 
 4.Ž . 2hu � uŽ .nh

Then it is easy to see that

� � 2T � dF � dFŽ .� n o2� 
 4 
 16H ,H n�T � dF � T � dFŽ . Ž .� � n � o

in which H is a Hellinger distance, defined byn�

21�2 1�2H � T � dF � T � dF .Ž . Ž .n� � n � o 2
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Ž . Ž .Now going back to 6.11 with this bound for �, and then back to 6.2 gives
the inequality for e � u � uh,nh nh

1�22 2� �1 32 � � � � � � � �h e � e 
 4 h e � e H .Ž .� 42 2 2 2nh nh nh nh n�2 2

2 2'Since for all a, b we have a � 3b 
 10 a � b , it follows thatŽ .
2 � � � 2 � � 2h e � e 
 40H .2 2nh nh n�

This proves Theorem 3.6. �

7. Almost sure bounds for the Hellinger distance. In this section we
prove the statements of Theorem 2.10 regarding the Hellinger distance. We

Ž . Ž . �1 Ž �1 .begin with H A � dF , A � dF with A x � h A h x for arbitrary pdfh n h o h
A with a finite exponential moment,

7.1 A x er � x � dx � � for some r � 0.Ž . Ž .H
�

Ž .We cannot really handle H A � dF , A � dF , other than by using theh n h o
� Ž .�inequality see Devroye and Gyorfi 1985 ,¨

7.2 H A � dF , A � dF 
 D A � dF , A � dFŽ . Ž . Ž .h n h o h n h o

and using the following result.

� Ž .� ��THEOREM 7.3 Eggermont and LaRiccia 1999 . Assume that h 	 n for
Ž .some 0 � � � 1. a If f has a finite moment of order � 	 � 2 then for allo

s � 1,
sŽ .�	� 	�1D A � dF , A � dF � OO nh log n .Ž . Ž . Ž .Ž .h n h o as

Ž .b If f has a finite exponential moment, then for every s � 1,o

s�1 �1D A � dF , A � dF � OO nh log nh log n .Ž . Ž . Ž . Ž .Ž .h n h o as

Ž . Ž .1�2PROOF OF THEOREM 2.10. b With w � f the triangle inequalityo
gives

� h � 2 � h � 2H f , f 
 2 u � u � 2 u � w .Ž . 2 2nh o nh

Then by Theorems 3.5 and 3.6 for appropriate constants c,
4 � � 27.4 H f , f 
 cH T � dF , T � dF � ch w� ,Ž . Ž . Ž . 2nh o h �2 n h �2 o

and it follows that
4 � � 27.5 H f , f 
 cD T � dF , T � dF � ch w� .Ž . Ž . Ž . 2nh o h �2 n h �2 o

Ž .Now from Theorem 7.3 a , if f has a finite moment of order � 	 � 2 then foro
all s � 1,

sŽ .�	� 	�1 4H f , f � OO nh log n � h ,Ž . Ž . Ž .Ž .nh o as

and the asymptotic choice h 	 n�	 �Ž5	�4. gives the requisite bound.
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Ž . Ž . Ž . Ž .Part c is proved similarly, from 7.5 and Theorem 7.3 b . Part a is
Ž .proved starting from 7.4 by

� � 4 � � 2H f , f 
 c T � dF � T � dF � ch w� ,Ž . 1 2nh o h �2 n h �2 o

1 Ž .and using the well-known bound for the L error; see Theorem 8.1 below,
Ž .due to Devroye 1991 . �

8. Wrapping it all up: the proof of the main theorem. To prove the
main theorem we use the following result, a direct consequence of Devroye
Ž . Ž .1991 , section 4.3. See also section 9.1 in Devroye, Gyorfi and Lugosi 1996 .¨
The very last statement of the theorem is of course well known.

� Ž .�THEOREM 8.1 Devroye 1991 . Let A be a pdf, with finite moments of all
orders. For h deterministically varying with n,

1�2�1�2� � � �A � dF � dF � � A � dF � dF � OO n log n .Ž . Ž . Ž .Ž .1 1h n o h n o as

� � Ž .� � ŽŽ .�1�2 .Moreover, � A � dF � dF � OO nh , provided f has a moment of1h n o o
order � 1.

Ž .PROOF OF THEOREM 2.10. Theorem 3.6 and inequality 3.7 imply that
2 � h � 2 � �h u � � u � 
 c T � dF � T � dF ,Ž . Ž . 2 1nh h �2 n h �2 o

so that with Theorem 8.1,
�1�2 1�222 h �1�2� �h u � � u � � OO nh � n log n .Ž . Ž . Ž . Ž .Ž .2nh as

It follows that for deterministic h 	 n�1�5,

� h � �1�20u � � u � � OO n ,Ž . Ž . Ž .2nh as

whence

� � � h � � �8.2 u � � u � � o 1 
 w� � o 1 ,Ž . Ž . Ž . Ž . Ž .2 2 2nh as as

Ž .where we used Theorem 3.5 a . �

PROOF OF MAIN THEOREM 2.7. From the triangle inequality,

� � � �f � f 
 f � S � dF1 1'nh o nh h � 2 n

� � � �� S � dF � dF � f � S � f .Ž . 1 1' 'h � 2 n o o h � 2 o

8.3Ž .

The Green’s function property of S implies that f � S � f �'h o h � 2 o
1 2 Ž .� h S � f �, and hence'h � 2 o2

1 �2� � � �8.3 f � S � f 
 h f .Ž . 1 1'o h � 2 o o2

Together with Theorems 2.8 and 2.9 we then get, for an appropriate constant
c,

2 2 2� � � � � � � �8.4 f � f 
 ch w� � S � dF � dF � ch f � .Ž . Ž . Ž .1 2 1 1'nh o as h � 2 n o o
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Now applying Theorem 8.1 gives

�1�2 1�22 �1�2 2� �f � f � OO h � nh � n log n � h ,Ž . Ž .Ž .1nh o as

and with h 	 n�1�5 the main theorem follows. �

9. Universal consistency.

Ž . hPROOF OF THEOREM 2.11. We recall that u solves 1.7 , and u is thenh
Ž . Ž .solution to 1.8 . In view of Theorem 3.6 and the bound 3.7 , Theorem 8.1

implies that the variance part of the error tends to 0, that is,

� h �u � u � 0 provided nh � �.2nh

� h Ž .1�2 �It thus suffices to consider the bias term u � f . The way we go2o
about this is by smoothing f and applying the results for smooth f .o o

Ž .1�2 2Ž .Let � � 0 to be chosen later, and set f � S �S � f . Then f � L � ,� � � o �

and

� � 2S �S � f � S �S � f �Ž . Ž .� � o � � o
f � � � .Ž .� 3�22 f 4 S �S � fŽ .� � � o

Ž .Now the argument leading to 4.3 shows

�1S �S � f � x 
 � S �S � f x ,Ž . Ž . Ž .� � o � � o

�2S �S � f � x 
 � S �S � f x ,Ž . Ž . Ž .� � o � � o

and thus
3 �2� �f � x 
 � f x .Ž . Ž . Ž .� �4

It follows that
3 �2� �9.1 f � 
 � ,Ž . Ž . 2� 4

2, 2Ž . Ž .and thus f � W � . Now let � be the minimizer of L � , S �S � F ,� h, � h � � o
Ž .that is, � is the solution to the large sample asymptotic problem 1.8 withh, �

the true density f replaced by S �S � f . Now it is rather surprising thato � � o
the Asymptotic Variance Theorem 3.6 applies to yield

� h � 2 2 � h � 2u � � � h u � � �Ž .2 2h , � h , �

� �
 cH T � f , T �S �S � f 
 c f � S �S � fŽ . 1h �2 o h �2 � � o o � � o

and this last expression tends to 0 as � � 0. Thus

� h �9.2 u � � � 0 for � � 0, uniformly in h � 0.Ž . 2h , �

Finally, we apply the Asymptotic Bias Theorem 3.5 and obtain

2 2 �2� �� � f 
 h f � 
 h � ,� Ž .2h , � � � 2
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Ž . 1�2the last inequality by 9.1 . Thus, setting � � h does the trick:
1�2 1�2h h� � � � � �u � f 
 u � � � � � S �S � fŽ . Ž .2 2 2o h , � h , � � � o

1�2 1�2� �� S �S � f � f ,Ž . Ž . 2� � o o

� �where the last term may be bounded from above by S �S � f � f , and1� � o o
for h � 0 and � � h1�2, each term tends to 0. �

10. Some simulations. In this section we offer some simulation experi-
ments comparing kernel estimators with the Good estimator. Actually, since
the Good estimator f is a sub pdf, in the simulations to follow we replacenh
it by
10.1 � nh � f �p,Ž . nh

Ž .with p � H f x dx. It is well known that this improves the error, that is,� nh

� nh � � �10.2 � � f 
 f � f .Ž . 1 1o nh o

We consider the kernel estimators with the Epanechnikov kernel and the
two-sided exponential kernel. The criterion by which the estimators are
judged is the smallness of the L1 error, using the optimal smoothing parame-

Ž 1 .ter with respect to L error .
Ž . Ž .�1�2 Ž 2 .Let � x � 2� exp �y �2 denote the standard normal density with

Ž . �1 Ž �1 .mean 0 and variance 1, and set � y � � � � y . It is also useful to recall�

the beta density with parameters � and �,
��1��1

 x � B � , � x 1 � x .Ž . Ž . Ž . Ž .Ž .�� , � �

The simulations involve the following densities:
9 1nice mix f y � � y � 5 � � y � 7 ,Ž . Ž . Ž .o 1�2 1�210 10

normal f y � � y � 5 ,Ž . Ž .o

1uniform f x � � 3 � x � 8 ,Ž . Ž .o 5

1 1beta f x �  x � 3 with � � 1.4, � � 2.6,Ž . Ž .Ž .o � , �5 5

1 4bad mix f x � � x � 6 � � x � 2 ,Ž . Ž . Ž .o 9�5 1�105 5

1 1bimodal f x � � x � 3.5 � � x � 6.5 .Ž . Ž . Ž .o 1�2 1�22 2

Now to the actual simulation setup. For each density, random samples of size
100 were generated and the optimal smoothing parameter H determined for

� �each method, that is, h � H was chosen so as to realize inf f � f for1h nh o
each estimator f under consideration. The resulting estimator is denotednh

n, OPT Ž .by f . In all cases this was replicated 500 times, and the sample means
� n, OPT �and standard deviations of the error f � f were computed.1o

The results are tabulated in Table 1. The two-sided exponential kernel
does not give good results. It is thus surprising, in view of the comparison

Ž .theorem 2.8 , that the Good estimator is really a remarkably good estimator:
on average it gives the same optimal L1 errors as the Epanechnikov kernels.
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TABLE 1
� �Estimated means and standard deviations of f � f for various kernels and the1n, O P T o

Good estimator applied to various densities, for sample size 100, based on 500 replications

nice mix normal uniform beta bad mix bimodal

Ž . Ž . Ž . Ž . Ž . Ž .good 0.153 0.046 0.121 0.044 0.213 0.040 0.163 0.043 0.298 0.042 0.185 0.048
Ž . Ž . Ž . Ž . Ž . Ž .epan 0.155 0.052 0.129 0.051 0.216 0.039 0.164 0.042 0.336 0.054 0.185 0.051
Ž . Ž . Ž . Ž . Ž . Ž .exp 0.172 0.049 0.145 0.047 0.226 0.037 0.179 0.041 0.345 0.051 0.203 0.049

Ž .These observations also apply to larger sample sizes up to 1000 . It remains
of course to be seen if the smoothing parameter for the Good estimator can be
chosen as effectively as for kernel estimators.
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