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OPTIMAL TESTS FOR AUTOREGRESSIVE MODELS
BASED ON AUTOREGRESSION RANK SCORES

BY MARC HALLIN1 AND JANA JURECKOVA2ˇ ´
Universite Libre de Bruxelles and Charles University, Prague´

Locally asymptotically optimal tests based on autoregression rank
scores are constructed for testing linear constraints on the structural
parameters of AR processes. Such tests are asymptotically distribution
free and do not require the estimation of nuisance parameters. They
constitute robust, flexible and quite powerful alternatives to existing
methods such as the classical correlogram-based parametric tests, the
Gaussian Lagrange multiplier tests, the optimal non-Gaussian and ranked
residual tests described by Kreiss, as well as to the aligned rank tests of
Hallin and Puri. Optimality requires a nontrivial extension of existing
asymptotic representation results to the case of unbounded score functions
Ž . Ž .such as the Gaussian quantile function . The problem of testing AR p � 1

Ž .against AR p dependence is considered as an illustration. Asymptotic
local powers and asymptotic relative efficiencies are explicitly computed.
In the special case of van der Waerden scores, the asymptotic relative
efficiency with respect to optimal correlogram-based procedures is uni-
formly larger than one.

Ž .1. Introduction. Koenker and Bassett 1978 introduced the concept of
regression quantile extending the classical notion of sample quantile to the

Ž .linear regression model. Ruppert and Carroll 1980 showed that these re-
gression quantiles admit an asymptotic representation analogous to that of

Ž . Ž .Bahadur 1966 , a result which was completed by Jureckova 1984 , whereˇ ´
Ž .the exact rate for this representation is provided. Portnoy 1991 obtained

their asymptotic representation for linear models with dependent errors,
under the assumption of m-decomposability in the sense of Chanda, Puri,

Ž . Ž .and Ruymgaart 1990 . Koul and Saleh 1995 introduced the autoregression
quantiles as an extension of regression quantiles to the context of AR models,
and derived their asymptotic representation.

Regression rank scores, which are related to regression quantiles through a
duality property in the linear programming sense, were introduced by Guten-

Ž .brunner and Jureckova 1992 for the general linear model with independentˇ ´
observations. Regression rank score statistics, under appropriate technical
conditions, are asymptotically equivalent to the corresponding simple linear
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rank statistics computed from the ranks of the nonobservable errors. As such,
they are asymptotically invariant with respect to the group of order-preserv-
ing transformations acting on the errors, hence asymptotically distribution
free, and thus provide an alternative to the usual aligned rank statistics,
where the ranks are those of some estimated residuals. Contrary to aligned
ranks, however, regression rank scores do not rely on any estimation of
nuisance parameters, and therefore are not affected by possibly poor or
nonrobust estimates. Moreover, provided the appropriate technical conditions
are satisfied, the asymptotic equivalence of regression rank score statistics
with the corresponding rank statistic computed from the unobservable errors
holds for all of them, whereas the same equivalence does not hold for aligned
rank statistics unless some orthogonality conditions are satisfied. Regression
rank score statistics are thus particularly suitable for testing linear con-
straints on the parameters of linear regression models; regression rank score
tests in this context are indeed asymptotically equivalent to, hence asymptot-
ically as efficient as, their genuinely distribution-free rank-based counter-
parts for the model in which the value of nuisance parameters would be
specified.

Tests of linear subhypotheses based on regression rank scores first ap-
Ž .peared in Gutenbrunner and Jureckova 1992 . However, the test statisticsˇ ´

considered there are based on bounded score-generating functions whose
Ž .support is a compact subinterval of 0, 1 . Gutenbrunner, Jureckova, Koenkerˇ ´

Ž .and Portnoy 1993 , under appropriate assumptions on the tails of the
underlying distributions, extended these tests to score functions whose sup-

Ž . � Ž .�port is the entire interval 0, 1 . A different approach Jureckova 1999 ,ˇ ´
� �based on sequences of score functions which are constant outside � , 1 � � ,n n

lim � � 0, avoids these conditions and allows for possibly heavy-tailedn�� n
Ž .densities. In a slightly different direction, Jureckova 1991 proposes a regres-ˇ ´

sion rank score test of the Kolmogorov�Smirnov type.
A fairly complete theory of tests based on regression rank scores thus

exists in the linear regression model with independent observations. In view
of their flexibility, their robustness, their asymptotic distribution freeness
and their excellent asymptotic performances, such tests are extremely attrac-
tive and certainly could be recommended to practitioners. In particular, the
asymptotic relative efficiencies of regression rank score tests based on van der

Ž .Waerden normal scores, with respect to their normal-theory counterparts
based on traditional Student or Fisher�Snedecor procedures, are uniformly

Ž .larger than one; see Chernoff and Savage 1958 .
All these properties sound even more attractive in the context of time

series, where the need for robust and non-Gaussian procedures has been
stressed by many authors. Also, adequately defined tests based on analogues
of regression rank scores can be expected to retain most of the advantages
just described in the context of AR and other time series models. A first step
towards the application of these techniques in a time-series context was

Ž .taken by Koul and Saleh 1995 who introduce the concept of autoregression
rank scores and establish some of their basic properties similar to those in
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Ž .Gutenbrunner and Jureckova 1992 . However, these authors do not use themˇ ´
for testing purpose, and their assumptions rule out the construction of locally
asymptotically optimal tests corresponding to unbounded score functions,
such as the normal one. The results in this paper allow for such scores, the
practical importance of which is substantiated by a time-series version of

Ž . � Ž .Chernoff and Savage’s 1958 result see Hallin 1994 , or Hallin and Werker
Ž .� Ž .1998 ; the testing methods based on van der Waerden normal score
rank-based autocorrelations uniformly outperform, under finite Fisher infor-
mation conditions, their traditional counterparts, based on traditional correl-
ograms.

The main objective of the present paper is to show that locally asymptoti-
cally optimal tests based on autoregression rank scores and possibly un-
bounded score functions can be constructed for testing linear hypotheses on
the parameters of AR processes. These tests enjoy all the attractive features
of regression rank score tests in regression models with independent observa-
tions. They are natural competitors of the classical correlogram-based para-

� Ž .metric tests such as Gaussian Lagrange multipliers see Godfrey 1979 or
Ž .�Hosking 1980 , of the optimal non-Gaussian parametric and the ranked

Ž .residual tests described by Kreiss 1990 , and of the aligned rank tests of
Ž .Hallin and Puri 1994 . Whereas their performances are comparable, or even
� Ž .�uniformly better see Section 4.2 for asymptotic relative efficiencies AREs ,

they do not require any consistent estimation of nuisance parameters.
Autoregression quantiles and autoregression rank scores are briefly de-

fined in Section 2. Our definition, which includes an arbitrary p � q matrix
Q, is slightly more general than the traditional one; the presence of this
matrix Q, as we shall see, is motivated by the nature of the testing problem
under study. Section 3 presents the main theoretical results on the asymp-
totic behavior of linear autoregression rank score statistics with possibly
unbounded scores. These results constitute an extension to the unbounded

Ž .score case of those obtained by Koul and Saleh 1995 in the bounded score
case. These statistics then are used in the derivation of the optimal testing
procedures described in Section 4. The general problem of testing arbitrary

Ž .linear constraints on the parameter � of an AR p model is addressed in
Ž .Section 4.1. Section 4.2 concentrates on the particular case of testing AR p�1

Ž .against AR p dependence, with obvious implications in the context of order
identification. Section 4.3 discusses the asymptotic relative efficiencies of our
autoregression rank score tests with respect to their main parametric and
nonparametric competitors.

The numerical performance of the tests we are proposing is illustrated in
Ž .Hallin, Jureckova, Kalvova, Picek and Zahaf 1997 and Kalvova, Jureckova,ˇ ´ ´ ´ ˇ ´

Ž .Nemesova and Picek 1998 .ˇ ´

2. Autoregression rank scores.

2.1. Autoregression quantiles and autoregression rank scores. Consider
Ž .the autoregressive model under which X , . . . , X , X , . . . , X �, an ob-�p�1 0 1 n
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Ž .served series of length n � p , satisfies the linear recursion of order p
� Ž . �AR p model ,

� 42.1 X � � X � ��� �� X � � , t � � � 0, � 1, � 2, . . . ,Ž . t 1 t�1 p t�p t

� 4where � , t � � is a sequence of i.i.d. random variables with distributiont
Ž .function F and density f the innovation density . We do not assume that f

is known; we only require that it belongs to a family FF of densities satisfying
� �

2 22.2 x dF x � 0, 0 � x dF x � � � �,Ž . Ž . Ž .H H
�� ��

�Ž Ž . Ž . Ž . �and a few other assumptions F1 a , b and F2 ; see Section 3.1 . As usual,
Ž . pthe autoregression parameter � � � , . . . , � � � � is supposed to be such1 p

that the polynomial
p

i2.3 � z � 1 � � z , z � �Ž . Ž . Ý i
i�1

Žhas no root within the unit disk the classical causality assumption; see, e.g.,
Ž ..Brockwell and Davis 1991 . The set of parameter values satisfying this

assumption is denoted as �.
The causality assumption ensures the existence and unicity of a strictly

Ž .stationary solution of the stochastic difference equation 2.1 . Throughout, we
assume that the observed series is a finite realization of that stationary
solution. Our objective is to test the null hypothesis that the parameter � lies
in some linear subspace of �, while the innovation density f remains
unspecified. This subspace can be characterized as the intersection of � and

Ž . pthe linear subspace LLLLL Q of � spanned by the columns of some p � q
Ž . �matrix Q of maximal rank q q 	 p . Equivalently, denoting by Q a

Ž . Ž .p � p � q matrix whose columns constitute a basis of the p � q -
p Ž .dimensional subspace of � orthogonal to LL Q , this hypothesis can be

characterized by the p � q linear constraints on � � �,

2.4 Q��� � 0.Ž .
In the context of linear models with independent observations, such hypothe-

� Ž . �ses easily reduce to a canonical form see, e.g., Scheffe 1959 Section 2.6 by´
means of some adequate linear reparametrization. Under this new

� Ž .parametrization, Q� has the simpler form Q � I 
0 , where I stands for0 q q
the q � q identity matrix. Such reparametrizations also can be considered
Ž .see Section 2.2 in the autoregressive context, but they do not preserve the
autoregressive form of the model. This is why a generalized form of autore-
gression quantiles and autoregression rank scores involving the matrix Q is
introduced here.

Ž . Ž . Ž .Denote by Q a full-rank p � q p � q matrix of constants, and by LL Q
the linear q-dimensional subspace of � p spanned by the columns of Q: the

Ž .null hypotheses considered in Section 4 are of the form � � � � LLLLL Q . In
order to test such linear hypotheses, we need slightly more general concepts
of autoregression quantiles and autoregression rank scores than in Koul and
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Ž .Saleh 1995 . Letting

2.5 y� � X , . . . , X � and y � 1, y�� �, t � 0, . . . , n � 1,Ž . Ž .Ž .t t t�p�1 t t

� Ž . �consider the n � p and n � p � 1 , respectively random matrices,

Y� � y� , . . . , y� � and Y � y , . . . , y �Ž . Ž .n 0 n�1 n 0 n�1

and define the �-autoregression quantile associated with Q as a solution

� � � 	 0 � , �1�

� �, 	 0 � �, �1 � � qŽ . Ž . Ž .ˆ ˆ ˆ ˆ ˆŽ .Q ; n Q ; n Q ; n Q ; n Q ; n

� Ž . Ž Ž . � Ž .. �in short, � � � 	 � , � � � ofˆ ˆ ˆ0 1

n
��2.6 h X � r � y Qr � min,Ž . Ž .Ý � t 0 t�1 1

t�1

Ž � . q�1where the minimum is taken with respect to r � r , r � � � , and0 1

� � � � � � � �h u � u �I u � 0 � 1 � � I u 	 0 , u � �, � � 0, 1 .Ž . Ž .Ž .�

Subscripts n and Q are omitted whenever no confusion is possible. It follows
Ž Ž . Ž Ž .. .from the definition that 	 � , Q� � � � formally coincides with Koenkerˆ ˆ0 1

Ž .and Bassett’s 1978 �-regression quantile in the linear model with design
Ž . Ž .matrix Y and response vector X � X , . . . , X �. Accordingly, � � coin-ˆn n 1 n

Ž . Ž � .cides with the first q � 1 components, r � r , r �, of the optimal solutionˆ ˆ ˆ0 1
Ž � �.r, � , � of the parametric linear programming problem,ˆ ˆ ˆ

�1� ��� 1 � � 1� ��� minŽ .n n
� � �X � 1 r � Y Qr � � � � ,2.7Ž . n n 0 n 1

q � nr � �, r � � , � � � , 0 	 � 	 1,0 1 �

Ž .where 1 stands for the n-dimensional vector 1, . . . , 1 �.n
Ž .The dual program associated with 2.7 is

X� a � max,n
�1 a � n 1 � � ,Ž .n

2.8Ž . ��Q�Y a � 1 � � 1 � 0,Ž .Ž .n n
n� �a � 0, 1 , 0 	 � 	 1.

Ž . Ž .Following Jureckova and Gutenbrunner 1992 and Koul and Saleh 1995 ,ˇ ´
Ž . Ž Ž .we call the components of the optimal solution a � � a � , . . . ,ˆ ˆQ; n Q; n; 1

Ž .. Ž .a � �, 0 	 � 	 1, of 2.8 the autoregression rank scores associatedˆQ; n; n
with Q.

Ž . � Ž .�Note that a � in short, a � is a continuous, piecewise linearˆ ˆQ; n; t t
Ž . Ž . Ž .function, with a 0 � 1, a 1 � 0, t � 1, . . . , n; moreover, letting TT � �ˆ ˆt t

� � Ž . �� Ž .4t X � 	 � � y Q� � ,ˆ ˆt 0 t�1 1

1, if X � 	 � � y�� Q� � ,Ž . Ž .ˆ ˆt 0 t�1 12.9 a � � t � TT � ,Ž . Ž . Ž .ˆ ��t ½ 0, if X � 	 � � y Q� � ,Ž . Ž .ˆ ˆt 0 t�1 1
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Ž . Ž .whereas, for t � TT � , a � is obtained as the solution of the system ofˆt
q � 1 linear equations

n1 1
a � � 1 � �� �Ž . Ž .ˆÝ ÝtQ�y Q�yž / ž /t�1 t�1Ž . t�1t�TT �

n 1 ��
�� I X � 	 � � y Q� � .� Ž . Ž .ˆ ˆÝ t 0 t�1 1Q yž /t�1t�1

One of the most appealing properties of the autoregression rank scores
Ž . Ž .a � is that they are autoregression invariant. More precisely, 2.8 im-ˆ Q; n

Ž .plies that a � formally also could be written as a solution of the linearˆ Q; n
program

��a � max,
�1 a � n 1 � � ,Ž .n

2.10 ��Ž . Q�Y a � 1 � � 1 � 0,Ž .Ž .n n
n� �a � 0, 1 , 0 	 � 	 1,

Ž .where � � � , . . . , � � is the unobservable white noise process. This autore-1 n
gression-invariance property is essential to our approach of the testing

Ž . Ž .problem considered here. It follows indeed from 2.10 that a � , hence ourˆ Q; n
Ž .test statistic 4.1 , does not explicitly depend on the unknown parameters

Ž .� , . . . , � , so that inference based on a � does not require any prelimi-ˆ1 p Q; n
nary estimation of �.

The algebraic relations between the autoregression quantiles and autore-
gression rank scores, proved in the following lemma, help to understand the
structure of these concepts.

Ž .LEMMA 2.1. i Let 0 � � � � � 1. Then1 2

n
��1� � � 	 � � n y �Q� �Ž . Ž . Ž .ˆ ˆÝ2 1 0 1 t�1 1 1ž /

t�1

n1
	 � X a � � a �Ž . Ž .Ž .ˆ ˆÝ t t 2 t 1n t�1

2.11Ž .

n
��1	 � � � 	 � � n y �Q� � .Ž . Ž . Ž .ˆ ˆÝ2 1 0 2 t�1 1 2ž /

t�1

Ž . Ž . Ž .ii If � � 0, 1 is a continuity point of � � , thenˆ
n n d

��12.12 	 � � n y �Q� � � � X a � .Ž . Ž . Ž . Ž .ˆ ˆ ˆÝ Ý0 t�1 1 t tž / d�t�1 t�1

Ž . Ž . Ž �1 n � . Ž . n Ž . Ž .iii 	 � � n Ý y �Q� � , hence also �Ý X d�d� a � ,ˆ ˆ ˆ0 t�1 t�1 1 t�1 t t
� �are nondecreasing step-functions of � � 0, 1 .
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� � Ž . Ž .PROOF. For all fixed � � 0, 1 , the duality between � � and a � impliesˆ ˆ
that

n n
��h X � 	 � � y Q� � � X a � � 1 � � .Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆÝ Ý� t 0 t�1 1 t t

t�1 t�1

Ž . Ž .Note that, for all 0 	 � 	 � 	 1 and u � �, we have h u � h u �1 2 � �2 1
Ž .� � � u. Hence,2 1

n
��� � � X � 	 � � y Q� �Ž . Ž . Ž .Ž .ˆ ˆÝ2 1 t 0 1 t�1 1 1

t�1
n

��� h X � 	 � � y Q� �Ž . Ž .Ž .ˆ ˆÝ � t 0 1 t�1 1 12
t�1

���h X � 	 � � y Q� �Ž . Ž .Ž .ˆ ˆ� t 0 1 t�1 1 11

n

� X a � � a � � � � � ,Ž . Ž . Ž .ˆ ˆÝ t t 2 t 1 2 1
t�1

Ž .where the last inequality follows from the definition of � � as a minimizer ofˆ
Ž .2.6 . Thus,

n n
��� � � 	 � � y Q� � 	 � X a � � a � .Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆÝ Ý2 1 0 1 t�1 1 1 t t 2 t 1

t�1 t�1

Similarly, we have
n n

��� � � 	 � � y Q� � � � X a � � a � ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆÝ Ý2 1 0 2 t�1 1 2 t t 2 t 1
t�1 t�1

Ž . Ž .which leads to 2.11 and entails the monotonicity of 	 � �ˆ0
Ž �1 n � . Ž . Ž . Ž .n Ý y �Q� � . On the other hand, � � is a step-function, a � is aˆ ˆ ˆt�1 t�1 1
piecewise linear function of � , and their points of discontinuity coincide. This

Ž . Ž . Ž .proves ii , and, jointly with i , further implies iii . �

2.2. Linear reparametrization. The following linear reparametrization of
Ž .2.1 will be convenient in the context of the testing problem briefly described
at the beginning of Section 2.1 and will simplify the proofs. Recall that Q�

Ž . Ž .denotes a p � p � q matrix whose columns are spanning the p � q -
p Ž . �dimensional subspace of � orthogonal to LL Q . The matrices Q and Q

here clearly are defined up to a positive multiplicative constant, so that we
Ž �.safely can assume that the p � p full-rank matrix A� � Q
Q has modu-

	 	 �lus one: A � 1 all usual matrix norms are equivalent here; one may choose,
	 	 � Ž .2 �1�2 �for instance, the Euclidean norm A � Ý A .i, j i, j

Ž . Ž . Ž .Letting X � X , . . . , X � and � � � , . . . , � �, the AR model 2.1 thenn 1 n n 1 n
also can be written as

X � Y� � � � � Y�A�1 A� � �Ž .Ž .n n n n n
2.13Ž .

ˇ � ˇ � ˇ� Y � � � � Y � � Y � � � ,n n I ; n I II ; n II n
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with
� �Q �I

� � � A� � ��ž /ž /� Q �II

and
�1�1� � � � ��1 � � �ˇ ˇ ˇY � Y 
Y � Y A � Y Q Q�Q 
Q Q �Q .Ž . Ž .ž / ž /n I ; n II ; n n n

Ž .The null hypothesis 2.4 under this reparametrization takes the simple form
Ž . � Ž .� � 0 or, equivalently, � � A� � LL Q , with Q � I 
0 ; I stands forII 0 0 q q

the q � q identity matrix.
Ž .If the linear program 2.7 defining the autoregression quantiles is rewrit-

ˇ � ��ten in this new parametrization i.e., if Y is substituted for Y and Q forn n 0
� Ž Ž . � Ž .. Ž Ž . � Ž ..Q , the resulting quantiles, 	 � , � � � are such that 	 � , � � � �ˇ ˇ ˇ ˇ0 1 0 1

Ž Ž . � Ž . .	 � , � � Q�Q �.0 1
Ž .As for the dual program 2.8 , its solution remains totally unchanged in the

ˇ � � Ž .reparametrization: substituting Y for Y and Q for Q in 2.8 leaves then n 0
autoregression rank scores unaffected, since the residuals � themselves aren
not affected. The advantage of this reparametrization is that the matrix Q�

Ž .now can be assumed to be of the form I 
0 , a form that will be easier toq
handle in the proofs.

However, a major difference between the present AR case and the classical
regression setting is that � in general cannot be considered as an autoregres-
sion parameter anymore. The y vectors indeed no longer consist of laggedˇt

�1�Ž .values of the observations and, substituting A X , . . . , X � for X wouldt t�p t
Ž .introduce a moving average MA component into the model.

Note that, in case the hypothesis to be tested is of the slightly more
�� Ž .general form Q � � q , for some constant p-dimensional vector q � LL Q ,0 0

� Ž � .the substitution of X � Y q for X with unchanged Y and Q brings usn n 0 n n
back to the former situation.

3. Linear autoregression rank score statistics.

nŽ .3.1. Definitions and distributional assumptions. Let H � stand for thef
Ž .simple hypothesis under which the observed series is a realization of length
Ž . Ž .n � p of a solution of 2.1 , with innovation density f. The null hypothesis

Ž .under which � belongs to the intersection LL Q between � and the q-dimen-
Ž .sional linear subspace spanned by the columns of the p � q matrix Q will

be denoted as

3.1 H n Q � H n Q � H n � .Ž . Ž . Ž . Ž .� � �f f
f Ž .f�FF �� LL Q

nŽ .Under H Q , the innovation density f remains unspecified within the family
Ž .FF of densities satisfying 2.2 and the following conditions.

Ž .F1a f is positive and absolutely continuous with a.e. derivative f � and finite
Ž . Ž Ž . Ž ..2 Ž .Fisher information for location II f � H f � x �f x f x dx � �;

moreover,
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Ž . � �F1b There exists K � K � 0 such that, for all x � K, f has two boundedf
derivatives, f � and f 
, respectively, and

Ž .F2 f is monotonically decreasing to 0 as x � �� and, for some b � b � 0,f
r � r � 1,f

�log F x �log 1 � F xŽ . Ž .Ž .
lim � 1 � lim .r r� � � �b x b xx��� x��

Ž .Assumption F2 implies that innovations � with densities in FF aret
exponentially tailed, with exponent r and coefficient b. This and the causality
Ž . Ž . Ž .2.3 of the AR p model 2.1 in turn implies that X , hence y are alsot t
exponentially tailed, with the same exponent r as � ; see Lemma A.2 for at
precise statement. It follows that

k k� � 	 	3.2 E � � � and E y � �, k � �.Ž . 0 0

Ž . �Note that F1 does not require that f be twice differentiable on � only
Ž .�the tails are involved in F1b and is satisfied by such nondifferentiable

Ž .densities as the double exponential. Assumption F1a implies the quadratic
1�2 Ž .mean differentiability of f , and the local asymptotic normality LAN of

� Ž . Ž . Ž .�the model Swensen 1985 , Kreiss 1987 , see also Koul and Schick 1997 .
Choose a nondecreasing, square integrable score generating function
Ž . Ž . Ž . 2�: 0, 1 � �, such that � 1 � u � �� u , 0 � u � 1, and let K ��

1 2 ˆ ˆ ˆŽ . Ž .H � u du. The scores generated by � are defined by b � b , . . . , b �,0 n n; 1 n; n
Ž .with dropping the subscript n when no confusion is possible

1ˆ3.3 b � � � u da u , t � 1, . . . , n.Ž . Ž . Ž .ˆHt t
0

Note that this integral, for given n and t, is finite, since � is square-integra-
� �ble, and a is piecewise linear, continuous and bounded on 0, 1 , with a finiteˆ

number of angular points. Efficient algorithms for the computation of such
Ž . Ž .scores can be found in Koenker and d’Orey 1987, 1994 , and Osborne 1992 .

The tests we are proposing will be based on linear autoregression rank
� Ž . �score statistics of the form similar to Koul and Saleh’s 1995 Vn g

n
� ���1�2 �1�2ˆ ˆ3.4 S � n y b � n Y b ,Ž . Ý� ; n t�1 n ; t n n

t�1

� nŽ .�the asymptotic behavior under H Q of which we now investigate.

3.2. Main results. The main results of this section consist of three theo-
Ž .rems. The first one Theorem 3.1 provides an asymptotic representation,

uniform over � 	 � 	 1 � � , wheren n

2 2�1� � n log n log log n ,Ž . Ž .n

Ž .of the autoregression quantiles � � , along with the corresponding rate ofˆQ; n
consistency. This result constitutes a nontrivial extension of Lemma 2.2 in

Ž .Koul and Saleh 1995 , which only applies to bounded intervals of the form
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� 	 � 	 1 � � , 0 � � 	 1�2. This limitation rules out, for instance, the opti-
mal van der Waerden tests, which uniformly dominate the traditional para-
metric correlogram-based techniques, whereas our Theorem 3.1 allows for the
consideration of such unbounded score functions, hence for the locally asymp-
totically optimal van der Waerden tests described in Section 4. On the other
hand, Koul and Saleh’s results apply to a larger class of innovation densities,
so that neither of the two results is strictly more general than the other.

For all 0 � � � 1 and z � �, let
1�2

� 1 � �Ž .Ž . �1� � � � , � � � � F � ,Ž .� � ; f t ; � t�1f F �Ž .Ž .
� �� x � � � I z 	 0Ž .�

and
n

� � ���1Ý � n y y .Ýn t�1 t�1
t�1

nŽ . Ž .THEOREM 3.1. Under H Q , the autoregression quantile � � �ˆQ; n
Ž Ž . Ž � Ž ..	 � , � � � satisfiesˆ ˆ0 1

�1	 � � F �Ž . Ž .ˆ0�1 �1�2sup � � O n C ,Ž .� P nž /Q� � � �Ž .ˆ� 	�	1�� 1n n

Ž .1�2where C � C log log n , 0 � C � �, and admits the asymptotic represen-n
tation

n
�1�21�2 �1 �1 �1�2n � 	 � � F � � n � 1 � � � � � o 1 ,Ž . Ž . Ž . Ž . Ž .Ž .ˆŽ . Ý� 0 � t ; � P

t�1

n1�2��1 Q� � � �Ž .Ž .ˆ� 1
n

�1�2 �1� ��1�2� n � 1 � � Ý y � �Ž . Ž . Ž .Ž . Ýn t�1 � t ; �
t�1

� o 1Ž .P

� �uniformly in � � � , 1 � � , as n � �.n n

The second theorem of this section provides an approximation of the
autoregression rank score process by an empirical process under null hy-

nŽ . � �potheses of the form H Q ; this approximation is uniform over 0, 1 .f
Denote by

n
� � ���1 �13.5 y � n y � n Y 1Ž . Ýn t�1 n n

t�1

the arithmetic mean of the y� ’s, and byt�1

�1� �� � ��3.6 � � Y Q Q�Y Y Q Q�YŽ . Ž .YQ n n n n
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Ž . nthe random projection matrix projecting � onto the linear space spanned
by the columns of Y� Q. Putn

n
� � � � � ��0 �1 �1ˆ ˆY � � Y � y , . . . , y �, y � n y � n Y 1 ,ˆ ˆ ˆŽ . Ýn YQ n 0 n�1 n t�1 n n

3.7 t�1Ž .
� � �� 0 � � �y � y � y � y � y and Y � y , . . . , y �.ˆ Ž . Ž .t t t n n n 0 n�1

Ž . � �1Ž .� nŽ .THEOREM 3.2. Let a � � I � � F � . Then, under H Q ,˜t t

n
� � � 1�23.8 sup y � y a � � y a � � o nŽ . Ž . Ž . Ž .Ž . ˆ ˜Ý t�1 n t t t P

0	�	1 t�1

as n � �.

The proofs of Theorems 3.1 and 3.2 mainly rely on a crucial uniform
Ž .quadratic approximation Lemma 3.1 of the criterion function to be mini-

Ž .mized in 2.6 .

LEMMA 3.1. For all z � � p�1, define
n

�1 �1�2r z, � � � h � � n � z�y � h �Ž . Ž .Ž .Ýn � � t ; � � t�1 � t ; �
t�1

n
1�21�1�2 p�1�n z� y � � � � 1 � � z�� z, z � � ,Ž . Ž .Ž .Ý t�1 � t ; � n2

t�1

3.9Ž .

�1 n � nŽ . Ž .where � � n Ý y y . Then, under any H � � � �, f � FF , asn t�1 t�1 t�1 f
n � �,

�1�4	 	3.10 sup r z, � � 	 � 	 1 � � , z 	 C � o n .Ž . Ž . Ž .� 4n n n n P

For the proof, see the Appendix, Section A.2.

PROOF OF THEOREM 3.1. Theorem 3.1 follows from Lemma 3.1, via the
linear reparametrization described in Section 2.2 and a convexity argument
� Ž . Ž .�see Heiler and Willers 1988 or Pollard 1991 , along the same steps as in
the proof of Theorem 3.1 in Gutenbrunner, Jureckova, Koenker and Portnoyˇ ´
Ž .1993 ; we thus omit the details. �

The proof of Theorem 3.2 still requires another lemma.

nŽ .LEMMA 3.2. Under H Q , as n � �, we have
n

�1�2 � �1�2sup n y � � � n � z�y � � �Ž .Ž .Ý t�1 � t ; � � t�1 � t ; �
� 	�	1�� t�1n n3.11Ž . 	 	z 	Cn

�1�4 1�2� o n C ,Ž .P n

Ž ��. Ž .where the sup is taken over all vectors of the form z � z , z � � � � LL Q .z 0 1
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For the proof of the lemma and Theorem 3.2, see the Appendix, Sections
A.3 and A.4.

We now turn back to the behavior of the linear autoregression rank score
Ž .statistic S defined in 3.4 . The third theorem in this section provides an�; n

nŽ .asymptotic representation of S under the hypothesis H Q .�; n

Ž .THEOREM 3.3. Let �: 0, 1 � � be a nondecreasing square-integrable
Ž . Ž .score function such that �� u exists in some domain of the form 0, � 0

Ž .1 � � , 1 , 0 � � 	 1�2. Assume furthermore that �� in this domain satis-0 0
fies the Chernoff�Savage condition

�1� 13.12 �� u 	 c u 1 � u , 0 �  � .Ž . Ž . Ž .Ž . 4

nŽ .Then, under H Q , with f � FF, the autoregression rank score statistic Sf � ; n
Ž .defined in 3.4 admits the asymptotic representation

n
�1�2 �S � n y � F � � o 1Ž . Ž .Ž .Ý� ; n t�1 t P

t�1

as n � �. Moreover,
DD�1�2�� �1�2 �1 0 0� �n K Y I � � Y � y � y y � y � S � NN 0, I ,Ž .Ž . Ž .� n n YQ n n n n n � ; n p

2 1 2Ž . 1�2as n � �, where K � H � u du, and M denotes any symmetric square� 0
root of a positive definite matrix M.

For the proof, see the Appendix, Section A.4.

4. Optimal tests based on autoregression rank scores.

Ž .4.1. Testing linear restrictions on AR p parameters. Consider the prob-
nŽ .lem of testing the null hypothesis H Q under which � belongs to the

Ž .intersection between � and the linear space LL Q spanned by the columns of
Q against the alternative

H n � .Ž .� � f
f Ž .��LL Q

We propose the simple test statistic
�1� �� ��24.1 T � T Q � nK S Y Y S ,Ž . Ž . Ž .� ; n � ; n � � ; n n n � ; n

Ž .where S is the linear regression rank score statistic defined in 3.4 .�; n
The following theorem shows that the tests based on statistics of the type

Ž .4.1 are asymptotically distribution free, and that, for an adequate choice of
�, they are asymptotically equivalent to the ranked residuals tests of Kreiss
Ž . � Ž .�1990 see also Hallin and Werker 1998 . Contrary to the latter, however,
they do not require any preliminary estimation of �. Moreover, the class of

Ž .tests based on 4.1 contains a locally asymptotically optimal element against
nŽ .any alternative of the form � H � associated with any symmetric�� LL ŽQ. g
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scale family of densities g � FF. For local asymptotic optimality, we refer to
Ž . Ž . Ž . Ž .Strasser 1985 , Le Cam 1986 , Kreiss 1987 or Hallin and Puri 1994 .

Ž .Note that the symmetry assumption made on g in part iii of the theorem
is motivated by the skew-symmetry assumption on �. In practice, all innova-

Žtion densities under which optimality properties are expected Gaussian,
.logistic, double exponential, . . . are symmetric. On the other hand, we insist

that this assumption of symmetry is never made on the actual innovation
density f , which remains entirely unspecified within FF.

Ž .THEOREM 4.1. Let T Q be the autoregression rank score statistic de-�; n
Ž . Ž .fined in 4.1 , with the score function � satisfying 3.11 . Then:

Ž . nŽ . Ž . 2i Under H Q , as n � �, T Q is asymptotically � , with p � q�; n
degrees of freedom.

Ž . nŽ �1�2 . Ž . Ž . Ž .ii Under H � � n h , f � FF, � � LL Q and h � LL Q , T Q isf � ; n
asymptotically noncentral � 2, with p � q degrees of freedom and noncentral-
ity parameter

2
�

�2c h, � � K C h, � � F x f � x dx ,Ž . Ž . Ž . Ž .Ž .Hf � ž /��

Ž . �where the constant C h, � depends only on h and �, not on � and f see
Ž . �Kreiss 1990 for an explicit form .

Ž .iii Let g � FF be symmetric with respect to 0; denote by G the distribution1
function associated with the standardized version g of g, and assume that1

� Ž �1Ž .. Ž �1Ž .. Ž .�: u � �g G u �g G u , 0 � u � 1 satisfies 3.12 . Then, the test1 1 1
nŽ .rejecting H Q whenever

T Q � � 2 , 0 � � � 1,Ž .� ; n p�q ; 1��

nŽ . nŽ .is locally asymptotically maximin for H Q against � H � , at� � LL ŽQ. g
2 Ž . 2asymptotic level � ; � denotes the 1 � � -quantile of the central �p�q ; 1��

distribution with p � q degrees of freedom.

Ž . Ž . Ž .PROOF. Assumptions 2.2 , 2.3 and F1a guarantee the LAN structure of
� Ž .�the problem for innovation densities f � FF Kreiss 1987 . Letting � �Y *

� Ž �� � .�1 ��Y Y Y Y , rewrite T asn n n n � ; n

22�1 �1� �� � � �� � ���2 �2 ˆ ˆT �nK Y Y Y S �K Y Y Y Y b , . . . , b �Ž . Ž . ž /� ; n � n n n � ; n � n n n n n ; 1 n ; n

2
�2 ˆ ˆ� K � b , . . . , b � .ž /� Y * n ; 1 n ; n

nŽ .It follows from Theorem 3.3 that T under H Q is asymptotically equiva-�; n f
lent to

2��2 �1� �4.2 K � I � � I � n 1 1 � F � , . . . , � F � �Ž . Ž . Ž .Ž . Ž .Ž .� Y * n YQ n n n 1 n

2�2 � �4.3 � K � I � � � F � , . . . , � F � � � o 1 ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .� Y * n YQ 1 n P
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Ž . Ž . Ž .where � is given in 3.6 . Part i of the theorem readily follows from 4.2YQ
Ž . Ž .and theorem 3.3. Lemma 4.2 of Kreiss 1990 in turn implies that 4.3 , still

nŽ .under H Q , is asymptotically equivalent tof

2R Rn ; 1 n ; n�2 � �4.4 K � I � � � , . . . , � � ,Ž . � Y * n YQ ž / ž /ž /n � 1 n � 1
p ˆwhere R denotes the rank of the estimated residual � � X � Ý � Xˆn; t t t i�1 n; i t�i

n' � Ž .�associated with a n -consistent under H Q , asymptotically discrete se-f
ˆ Ž .quence � of estimates of �. Now, the statistic in 4.4 is precisely the statisticn

on which the Kreiss ranked residuals test is based: hence, our tests based on
Ž .T enjoy the same asymptotic properties. Part ii of the theorem thus�; n

� Ž .�follows, as well as part iii the local asymptotic minimaxity under innova-
tion density g, for score generating functions of the form

g � G�1 uŽ .Ž .
� u � � .Ž . �1g G uŽ .Ž .

Ž . � Ž �1Ž .. Ž �1Ž ..Note that � actually can be taken as � u � �g G u �g G u �1 1 1 1
� Ž �1Ž .. Ž �1Ž ..�� g G u �g G u ; the influence of � indeed is annihilated, in this� � � �

2 Ž . 2 Ž .case, through the standardizing factor K � II g � � II g , and thus can� 1 �

be safely ignored. �

Ž . Ž .4.2. Testing AR p � 1 against AR p dependence. Due to its special role
in the identification of the order of an AR model, the problem of testing

Ž . Ž .AR p � 1 against AR p dependence is an important special case of the
problem treated in the previous section. The null hypothesis here includes all

Ž . � Ž . �AR p � 1 models � of the form � , . . . , � , 0 � with unspecified innova-1 p�1
I p� 1Ž .tion density f � FF and thus corresponds to the matrix Q � , with rank
0 ��� 0

p � 1. The test can be based on the simple one-dimensional autoregression
rank score statistic

n
�1�2 ˆS � n X b ;Ý� ; n t�p n ; t

t�1

ˆ Ž .the scores b defined in 3.3 , are computed from the autoregression rankn; t
scores a resulting from the linear programˆ n

X�a � max,
n

a � n 1 � � ,Ž .Ý t
t�1

n n4.5Ž .
X a � 1 � � X , i � 1, . . . , p � 1,Ž .Ý Ýt�i t t�i

t�1 t�1
n� �a � 0, 1 , 0 	 � 	 1.

� Ž . Ž .Writing Y � Y 
Y , with Y of order n � p � 1 and Y �n n; I n; II n; I n; II
Ž . Ž .X , . . . , X � of order n � 1 , let�p�1 n�p

t � n1�2K�1D�1S ,� ; n � Y � ; n
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where
�1� � �2D � Y I � Y Y Y Y Y .Ž .Y n ; II n n ; I n ; I n ; I n ; I n ; II

THEOREM 4.2. Let the score function � satisfy the assumptions of Theorem
�1Ž .3.3. Denote, as usual, by � and z � � 1 � � the standard normal�

distribution function and quantiles. Then the test rejecting the null hypothesis
Ž . Ž .of AR p � 1 dependence with unspecified innovation density in FF when-

� �ever t � z :�; n � �2

Ž .i has asymptotic level � , and
Ž .ii has asymptotic power

4.6 1 � F 2 z 2 ;  2 �Ž . Ž .Ž .� � �2 � ; f1

Ž . Ž �1�2 .against AR p alternatives with parameter value � , . . . , � , n � � and1 p�1
Ž 2 .2innovation density f � FF, where F �;  stands for the noncentral chi-square�1

distribution function with one degree of freedom and noncentrality parameter
 2, and

2
12 �2 �1 24.7  � � K � u � F u du � with � � �f ��f .Ž . Ž . Ž . Ž .Ž .H� ; f � f

0

PROOF. The projection matrix � here takes the form � �YQ YI
Ž � .�1 � � � �� Ž . Ž .Y Y Y Y , and I � � Y � 0
Y �. Hence, the test statistic T QI I I I Y II � ; nI

Ž .given in 4.1 , which, from Theorem 3.3, is asymptotically equivalent to
�2ˆ � �1 ˆ� � Ž . � �K b I � � Y* Y*�Y* Y*� I � � b , is also asymptotically equiva-� n Y Y nI I�2ˆ � �� � �1 ˆŽ .Ž . Ž .lent to K b 0Y Y Y 0
Y �b . The form of the test then follows� n II II n

from Theorem 4.1 by writing
�1� �Y Y Y YI I I II�1Y*�Y* �Ž . � �ž /Y Y Y YII I II II

A aŽ . Ž .under partitioned form , with A of order p � p anda� c

�1�1 �2� � � � �c � Y Y � Y Y Y Y Y Y � D .Ž . Ž .n ; II n ; II n ; II n ; I n ; I n ; I n ; I n ; II Y

Ž . �The local asymptotic power 4.6 follows after some routine algebra for the
Ž .� Ž .exact form of the noncentrality parameter 4.7 either from Kreiss 1990 ,

Ž .Theorem 4.1 or from Hallin and Puri 1994 , Proposition 6.1.
Ž .Hallin, Jureckova, Kalvova, Picek and Zahaf 1997 provide a simulationˇ ´ ´

study of the tests described in Theorem 4.2. The same tests are used there
Ž .and also in Kalvova, Jureckova, Nemesova and Picek 1998 , in the analysis´ ˇ ´ ˇ ´

of meteorological data.

4.3. Comparison with existing procedures: AREs. In this section, we com-
Ž .pute the asymptotic relative efficiencies AREs of the testing procedures

� Ž . �described in Theorems 3.1 and 3.2 based on T Q and t , respectively ,� ; n � ; n
with respect to a variety of existing methods. All AREs are derived under
innovation densities f belonging to FF.
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Ž . Ž . �1. ARE with respect to Kreiss’s 1990 test 4.5 general score test based on
�the score function � :

21 �12 H � u � F u duK Ž . Ž .Ž .0 f 1� 1ARE � .1 2 1 �1K H � u � F u duŽ . Ž .Ž .� 0 f

Ž . Ž . �2. ARE with respect to Kreiss’s 1990 test 4.4 ranked residual test based
�on the score function � :

ARE � 1.2

Ž . Ž . �3. ARE with respect to Hallin and Puri’s 1994 test 3.3 aligned rank test
based on the rank autocorrelation coefficients associated with innovation

Ž .density g, where g is assumed to satisfy the assumptions of part iii of
�Theorem 4.1; the notation g , G , � , . . . is used in an obvious fashion :1 1 g1

H1 � 2 G�1 u duŽ .Ž .0 g 11ARE �3 2K�

21 �1H � u � F u duŽ . Ž .Ž .0 f 11� 1 �1 �1 1 �1 �1H F u G u duH � F u � G u duŽ . Ž . Ž . Ž .Ž . Ž .0 1 1 0 f 1 g 11 1

which, on account of the Cauchy�Schwarz inequality, reduces to
�2

1� �1 �1ARE � F u G u du � 1,Ž . Ž .H3 1 1
0

Ž . Ž �1Ž ..for � u � � G u , with equality at F � G only.g 1 1 11
Ž .4. ARE with respect to traditional i.e., Gaussian Lagrange multiplier tests

� Ž . Ž . Ž .�cf., for example, Godfrey 1979 , Hosking 1980 , Potscher 1983 :¨
21 1 �1ARE � � u � F u du ,Ž . Ž .Ž .H4 f 12 1K 0�

Ž . �1Ž . Ž .a value which, for � u � � u the standard normal quantile function ,
�is uniformly larger than one, with equality at F � � only Chernoff and1

Ž .�Savage 1958 .

These ARE values again follow easily from inspecting the noncentrality
parameters associated with the various noncentral chi-square distributions

Ž . Žunder local alternatives, as given in Kreiss 1990 or Hallin and Puri 1988,
.1994 . All these noncentrality parameters indeed only differ by multiplicative

constants, the ratios of which yield the desired results.
Some numerical values for ARE are provided in Hallin and Werker4

Ž .1998 .

APPENDIX

A.1. Some properties of exponentially tailed densities. Before turn-
ing to the proof of Lemma 3.1, let us summarize some of the consequences of

Ž . Ž .assumptions F1 and F2 .
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LEMMA A.1. Let f � FF. Then

f F�1 u f F�1 uŽ . Ž .Ž . Ž . 1� ri lim � lim � rb ;Ž . 1�1�r 1�1�ru�0 u�1u �log u 1 � u �log 1 � uŽ . Ž . Ž .Ž .
f � x f � xŽ . Ž .1�r 1�r� �ii lim � x � lim � x � rb;Ž . ž / ž /f x f xx��� x��Ž . Ž .

�F�1 u F�1 uŽ . Ž . 1�riii lim � lim � 1�b .Ž . Ž .1�r 1�ru�0 u�1�log u �log 1 � uŽ . Ž .Ž .

Ž . Ž .The proof follows straightforwardly from F1a, b , F2 and l’Hospital rule.

LEMMA A.2. Denote by F X the marginal distribution of the stationary�

Ž .solution of 2.1 , where � and the innovation density f satisfy the causality
Ž .assumption and F2 , respectively. Then, there exists b* � 0 such that

�log F X x �log 1 � F X xŽ . Ž .Ž .� �
A.1 lim inf � 1 and lim inf � 1.Ž . r r� �b* x b*xx��� x��

Ž .PROOF. The stationary solution of 2.1 can be written as X �t
� � � kÝ c � , with c � A � for some positive constant A and 0 � � � 1.k�0 k t�k k � �

Denote by � , k � 0, 1, . . . an arbitrary sequence of positive weights suchk
that Ý� � � 1. Then, for all x � 0,k�0 k

� �

� 4P c � � x 	 P c � � � xÝ �k t�k k t�k k
k�0 k�0

� � �k k	 max 1 � F x , F � x .Ý ½ 5ž / ž /ž /� � � �c ck kk�0

� 1� rŽ .1� r � � � �Let � � B k � 1 c , where B is such that Ý � � 1; such a valuek k k�0 k
of B exists, since

� � �1�r 1�r k� �0 � k � 1 c � A k � 1 � � A � �.Ž . Ž .Ý Ýk � � 1 � �k�0 k�0

Ž . Ž .In view of F2 , for all � � 0, there exists M � such that, for x � M ,1 1

r� � �� � �k k k
max 1 � F x , F � x 	 exp � 1 � � b xŽ .½ 5ž / ž / ž /ž /� � � � � �c c ck k k

k�1r� exp � 1 � � bBx ,� 4Ž .Ž .
k � 0, 1, . . . .
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Hence
� �

k�1rP c � � x 	 exp �b 1 � � Bx� 4Ž .Ž .Ý Ýk t�k
k�0 k�0

exp �b 1 � � Bx r� 4Ž .
� .r1 � exp �b 1 � � Bx� 4Ž .
Ž . � Ž . r4For x larger than some M � , 1 � exp �b 1 � � Bx � 1 � �, so that, for2

Ž Ž . Ž ..all x � max M � , M � ,1 2

� 1
rP c � � x 	 exp �b 1 � � Bx .� 4Ž .Ý k t�k 1 � �k�0

This holds for any � � 0; taking logarithms and changing signs, we thus
obtain

��log P Ý c � � xk�0 k t�k
lim inf � 1.rbBxx��

The proof is entirely similar for left tails. The lemma follows, with b* � bB.
�

y 	 	COROLLARY A.1. Denote by F the distribution function of y defined in� t
Ž .2.5 . Under the same assumptions as in Lemma A.2,

�log 1 � F y yŽ .Ž .�
A.2 lim inf � 1Ž . rb**yy��

for some b** � 0.

	 	 2The proof follows immediately from Lemma A.2, since y is the sum of pt
successive squared values of X .t

Ž .A.2. Proof of Lemma 3.1. Since the convergence in 3.10 , uniform over
1	 	 Ž . Ž .� 	 � 	 1 � � and z 	 C for fixed � � 0, and C � 0, � , follows0 0 0 2

Ž .from Koul and Saleh 1995 , Lemma 2.2, we may concentrate mainly on
values of � which are close to � or 1 � � . For given z � � p�1, letn n

A.3  �  z � n�1�2� z�y , t � 0, 1, 2, . . . .Ž . Ž .t ; � n ; t ; � � t�1

By Lemma A.1,
�11�1�r1�2 1� rA.4 � � 1 � � �log � 1 � � � rbŽ . Ž . Ž . Ž .Ž . Ž .Ž .�

as � � 0 or 1; hence, for � sufficiently close to � ,n

Ž . �11�r �2�1� r� � 	 	A.5  	 2b log n log log n C max y .Ž . Ž . Ž .t ; � n t�1
1	t	n

�As a stationary AR process, X is strongly mixing see, e.g., Pham andt
Ž .� 	 	 �Tran 1985 . Hence, y and y also are strongly mixing see, e.g., Theoremt t

Ž . �5.2 in O’Brien 1987 , under the terminology 1-strongly mixing . It follows
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Ž . 	 	from Theorem 5.1 same reference that y has asymptotic independence oft
� 4 Ž Ž .. � 4maxima relative to r AIM r for any real sequence r such thatn n n

lim , r � �.n�� n
Let

1�r 1�4A.6 R � log n log log n .Ž . Ž . Ž .n

Ž .It follows from Corollary A.1 that, for any � � 0, there exists a N � N �0 0
such that

n rylog 1 � F R 	 log n � 1 � � b** RŽ . Ž . Ž .Ž .Ž .� n n

for all n � N . Hence, for n sufficiently large,0
n r�4 r�8y �Ž1�� .b**Žlog log n. �1 �b**Žlog log n. �1A.7 1 � F R 	 n � n .Ž . Ž .Ž .� n

Ž . Ž . 	 	O’Brien’s 1987 Theorem 2.1 applies to the AIM R sequence y , wheren t
Ž . Ž .R , defined in A.6 satisfies O’Brien’s condition 2.3 . It follows thatn

ny	 	A.8 P max y � R � 1 � F R 1 � o 1 � o 1Ž . Ž . Ž . Ž .Ž .Ž .Ž .t�1 n � n
1	t	n

as n � �. Hence,
1�r 1�4� 	 	A.9 � � max y � O R � O log n log log nŽ . Ž . Ž . Ž .Ž .n t�1 P n P

1	t	n
� 1 �KŽ . � �as n � �, and, for any K � 0 and n � N K , P � � R 	 n . It follows0 n n 2

that
��1 �1�2	 	sup �  z : 0 	 � 	 1, z 	 C � O n C � .Ž .� 4 Ž .� t ; � n P n n

Let

Q z, � � Q � ��1 h � �  z � h � �  z � � .� 4Ž . Ž . Ž . Ž . Ž .Ž .t t � � t ; � t ; � � t ; � t ; � � t ; �

Obviously,
�1 � � � �Q � � � �  I  � � 	 0 �  � � I 0 � � �  .� 4Ž . Ž .t � t ; � t ; � t ; � t ; � t ; � t ; � t ; � t ; �

� � 4Denote by AA the �-algebra generated by X , . . . , X ; � s 	 t . For each t,t �p�1 0 s
� is independent of AA , and the sequencet t�1

n n

�A.10 Q � E Q AA � �Ž . Ž .Ý Ýt t t�1 n ; t
t�1 t�1

� 4forms a square-integrable martingale with respect to the filtration AA . Fort
 �  � 0, elementary algebra yieldsn; t ; �

�1Ž .F � ��1 �1 �1�E Q AA � �  � x � F � f x � f F � dxŽ . Ž . Ž .Ž . Ž . Ž .Ž .Ht t�1 � �1Ž .F �

 2 f F�1 �Ž .Ž .
�

2��

1 1�2 2� � 1 � � z�yŽ . Ž .Ž . t�12n
x�1Ž .F � ��1 �1� �  � x � F � f � z dz dx .Ž . Ž .Ž .H H� �1 �1Ž . Ž .F � F �
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Ž . Ž .It follows from F1a, b and F2 that

f � xŽ .
lim F x 1 � F x � 1.Ž . Ž .Ž .2f xx��� Ž .

Hence, for  �  � 0 and � close to zero, and for all � � 0, there exists nn; t ; � 0
such that, for all n � n ,0

1 1�2 2�E Q AA � � 1 � � z�yŽ . Ž .Ž .Ž .t t�1 t�12n

	 1 � � ��1Ž . �

�1f F u�1 Ž .Ž .Ž .Ž . F xF � � �1�  � x � F � du dxŽ .Ž .H H
�1 u 1 � uŽ .Ž .F � �A.11Ž .

2 �1	 1 � � �Ž . �

�1 Ž . r�1Ž . F xF � � �1 �1�  � x � F � F u du dxŽ . Ž .Ž .H H
�1Ž .F � �

r�1 3�1 �1 �1 � �	 K � F � f F � �   .Ž . Ž .Ž .2 �

Similar approximations are valid for  � 0 and�or for � close to 1 � � .n; t ; � n
Ž . Ž . Ž . � �Furthermore, by A.4 , A.5 and A.9 we have, for any � � 0, � � �n

sufficiently close to zero and n sufficiently large,

�1 ��1� �A.12 max  	 F � log n C � 1 � � .Ž . Ž . Ž . Ž .n ; t ; � n n
1	t	n

�1Ž . �1Ž .Note that, since � is close to � , F � � 0. If  � 0, then F � �n t ; �
�1Ž . Ž �1Ž . . ŽŽ �1Ž .. � F � , hence f F � �  	 f F � . If  � 0, then, byt ; � t ; � t ; �

Ž .A.12 ,

A.13 F�1 � �  	 F�1 � 1 � � � � 1 � � ,Ž . Ž . Ž . Ž .Ž .t ; � n n

Ž .�1 � Ž .where � � C log n . Provided that � � R , A.13 and Lemma A.1n n n n
entail

r��1 �1f F � �  	 f F � 1 � � � 1 � �Ž . Ž . Ž .Ž .Ž . Ž .t ; � n n

� r r�11�1�r �Ž1�� � Ž1�� ..n n	 r �log � � 1 � � � 1 � �Ž . Ž .Ž .n n

� r�11�1�r �1�r� � Ž1�� .n n	 r �log � � 1 � � � 1 � � ,Ž . Ž .Ž .n n

Ž .rwhere we used the fact that 1 � x � 1 � rx for r � 1 and 0 � x � 1.
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Ž . Ž . Ž .Then, by A.11 , A.4 and A.5 ,
n

1�21�E Q AA � � 1 � � z�� zŽ .Ž .Ž .Ý n ; t t�1 n2
t�1

n
� 33 �r� � Ž1�� . �1�2 �1n n 	 		 K C � n n yÝ2 n t�1

t�1

A.14Ž .

	 K C3n�Ž1 �2.�r� n� �
n Ž1�� . C � o 1Ž .Ž .3 n P

� � 	 	as � � � � 0 and n � �; indeed, it follows from Corollary A.1 that y hasn t
finite moments of all orders, and thus, as n � �,

n
1 0 3�1 	 	� � � o 1 � � � o 1 and n y 	 C � o 1 ,Ž . Ž . Ž .Ýn P P t�1 Pž /0 �*

t�1

where �* is the p � p autocovariance matrix in the distribution of the
Ž .stationary solution of 2.1 , and C � 0 is some constant. Putting

25�2 �Ž1�2.�2 r� Rn nA.15 B � C n log n ,Ž . Ž .n n

Ž .we have, by A.8 , for any � � 0 and n � n ,0

n n
� 1 �KA.16 P � � �B 	 P � � �B , � 	 R � n .Ž . Ý Ýn ; t n n ; t n n n 2½ 5 ½ 5

t�1 t�1

Ž . Ž . 2Moreover, A.6 and A.9 imply that �a 	 � 	 a for n � n , withn n; t n 0

1�r 1�4�1�2a � C n log n log log n .Ž . Ž .n n

Ž .Hence, applying Hoeffding’s 1963 inequality to the martingale

n 2� � an ; t n
, t � 1, . . . , nÝ a 1 � aŽ .n nt�1

Ž 2 . Ž Ž ..with bounded increments 0 	 � � a � a 1 � a 	 1, we obtain, for anyn; t n n n
� � 0 and n � n ,0

n
�P � � �B , � 	 RÝ n ; t n n n½ 5

t�1

2 2n � � a � � a �Bn ; t n n ; t n n	 P � E �Ý½ 5ž /a 1 � a a 1 � a a 1 � aŽ . Ž . Ž .n n n n n nt�1
A.17Ž .

�2 B3 1 2n �� �2	 exp � 	 n .3½ 52 2�n

Ž . Ž . Ž . 2Combining A.8 , A.16 and A.17 , and taking K � � �2, we obtain
n

2�� �2�A.18 P Q � E Q AA � �B 	 nŽ . Ž .Ý t t t�1 n½ 5
t�1
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Ž . Ž .for n � n . Finally, A.18 , along with A.14 , yields0

n
1�21P Q � � 1 � � z��z � � � 1 BŽ . Ž .Ž .Ý t n2½ 5

t�1

n

�	 P Q � E Q AA � �BŽ .Ý t t t�1 n½ 5
t�1

n
1�21�� P E Q AA � � 1 � � z��z � BŽ .Ž .Ž .Ý t t�1 n2½ 5

t�1A.19Ž .
n

2 1�21 1 1�� �2 �K �	 n � n � P E Q AA � � 1 � � z��zŽ .Ž .Ž .Ý t t�12 2 2½
t�1

� B , � � 	 Rn n n 5
1 2 1 2�� �2 �K �� �2� n � n � 0 	 n2 2

2 Ž .for K � � �2 and n � n ; the vanishing of the last probability term in A.190
Ž .follows from the fact that, by A.14 ,

n
1�21 3 �Ž1�2.�r� R Ž1�� . 3n n�E Q AA � � 1 � � z��z 	 K C n RŽ .Ž .Ž .Ý t t�1 2 n n2

t�1

25�2 �Ž1�2.�2 r� Rn n	 B � C n log n .Ž .n n

� � �5Now, let us choose a collection of intervals � , � , of length n , covering� ��1
� � �5 � 	 	 4� , 1 � � and a collection of balls of radius n covering z: z 	 C . Letn n n
Ž . Ž . Ž .� , � � � , � , and let z , z lie in the same ball. Then, by A.4 ,1 2 � ��1 1 2

2�1�r�4A.20 � �� � 1 � O n log n .Ž . Ž .Ž . Ž .� �1 2

For fixed t, 1 	 t 	 n, we have

Q z , � � Q z , � 	 Q z , � � Q z , �Ž . Ž . Ž . Ž .t 2 2 t 1 1 t 2 2 t 1 2A.21Ž .
� Q z , � � Q z , � .Ž . Ž .t 1 2 t 1 1

Consider the two terms on the right-hand side separately. Starting with the
first one,

�1�2 �5 .5 	 	Q z , � � Q z , � 	 n z � z �y � O n y .Ž . Ž . Ž . Ž .t 2 2 t 1 2 2 1 t�1 P t�1

For the corresponding centering term, we obtain the bound

1�2 2 2 2� �1 �1 �6 	 	A.22 � 1 � � n z y � z y � O n C y .Ž . Ž . Ž . Ž .Ž . Ž .2 2 2 t�1 1 t�1 P n t�12

Ž . ŽNext, consider the second term on the right-hand side of A.21 denoted as
.Q* for the sake of brevity . We should distinguish two cases.
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�1. Either  � � 	 0 and  � � 	 0 or 0 � � �  andt ; � z t ; � t ; � z t ; � t ; � t ; � z2 1 2 1 1 1 2 2 1�0 � � �  ; then,t ; � t ; � z1 1 1

��1�2 �1 �1 �1� �Q* 	 2n 1 � � �� z y � � F � � F �Ž . Ž .Ž .� � 1 t�1 � 2 12 1 1

�4 	 	 �3� O n C y � O n .Ž .Ž .P n t�1 P

�2. Or  �� 	0 and � � �0 or  �� 	0 and � �t ; � z t ; � t ; � t ; � z t ; � z t ; � t ; �2 1 2 1 1 1 1 1 1 2� � 0 ; then,t ; � z2 1

�1 �1 �1 �1� � � �Q* � � � �  � � � � F � � F � � Ž . Ž .� t ; � t ; � z � t ; � 1 2 t ; � z2 2 2 1 2 1 2 1

�1 �1 �1� �	 �  �  � F � � F �Ž . Ž .ž /� t ; � z t ; � z 2 11 1 2 1
A.23Ž .

�3 .5 	 	 �3� O n C y � O n .Ž .Ž .P n t�1 P

Moreover, the centering term of Q* can be estimated as
1�2 1�22�1 �1 � �n z y � 1 � � � � 1 � �Ž . Ž .Ž . Ž .1 t�1 2 2 1 12A.24Ž .

�6 2 	 	 2� O n C y .Ž .P n t�1

� � � 	 	 4Let us fix one set S in the decomposition of � , 1 � � � z: z 	 C ; the� n n n
Ž . p�1 5Ž p�1. Ž . Ž .number of such sets is at most 2C n . It follows from A.20 � A.24n

that
n

�3 �3	 	sup r z , � � r z , � 	 K n y � K n ,Ž . Ž . Ýn 2 2 n 1 1 1 t�1 2
S t�1�

Ž . Ž .where K and K are positive constants. By A.7 � A.9 , for n sufficiently1 2
large,

P sup r z , � � r z , � � �BŽ . Ž .n 2 2 n 1 1 n½ 5
SA.25 �Ž .

� 1�3 �1 2 �K	 P � � �B � K n K n 	 n .� 4Ž .n n 2 1 2

Ž . Ž . � � Ž . � Ž . 4 �� 2 �2Hence, from A.19 and A.25 , P sup r z, � �2 � �1 B 	n �S n n�1 3 2�K �� �2n 	 n , and finally,2 2

2�Ž1�2.�2 � 5�2P sup r z, � � 2 � � 1 n log n CŽ . Ž . Ž .n n½ 5
	 	z 	C , � 	�	1��n n n

2�Ž1�2.�2 � 5�2	 P sup r z, � � 2 � � 1 n log n CŽ . Ž . Ž .Ý n n½ 5
S� �

2 2p�1 5Ž p�1. �� �2 �Ž1�2.�2 � 5�2	 3C n n � n log n C � o 1Ž . Ž .n n

2 Ž . Ž .for all � � 0 and � � 10 p � 1 . This in turn implies 3.10 , and completes
the proof of the lemma. �

A.3. Proof of Lemma 3.2. The proof proceeds in two steps. The particu-
lar case of a unit matrix Q is considered first; the general case is treated as a
second step.
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� Ž .Step 1. Assume that Q is of the form Q � I 
0 considered in Section0 q
2.2. Without loss of generality, we may as well assume q � p � 1. Then, Yn
decomposes into

˜ � ˜1 
Y 
 X , . . . , X � � Y 
 X , . . . , X � .Ž . Ž .ž / ž /n n 1�p n�p n 1�p n�p

� Ž �� . Ž � .Similarly, y decomposes into 1, y , X � y , X . Denote by˜ ˜t�1 t�1 t�p t�1 t�p

ˆ ˆX , . . . , X � � X , . . . , X �,Ž .ˆž /1�p n�p Y 1�p n�p

˜ ˜ � ˜ �1 ˜ �Ž .with � � Y Y Y Y , the projection of Y ’s last column onto the linearỸ n n n n n
Ž � � .� � �space spanned by the first p ones, and let X , . . . , X � I �� ˜1�p n�p n Y

Ž .X , . . . , X �. It is easily checked that, in the notation introduced in1�p n�p
Ž .3.7 , we have

Y �� 0 
 X � , . . . , X � � hence y � � 0, . . . , 0, X � .Ž . Ž .ž /n n�Ž p�1. 1�p n�p t�1 t�p

Ž � . p�1 �For any z � z , z � � � , z�y decomposes into z y � z X .˜ ˜ ˜p t�1 t�1 p t�p

Letting A � C1�2 n�1�4, Lemma 3.1 yieldsn n

n
��1 �1�2sup � h � � n � z y � h �Ž .Ž .Ý� � t ; � � t�1 � t ; �½

	 	z 	C , � 	�	1�� t�1n n n

n
1�21�1�2�n z� y � � � � 1 � � z�� zŽ . Ž .Ž .Ý t�1 � t ; � n2 5

t�1

A.26Ž .

� o A .Ž .P n

Hence also

n
�1 �1�2sup � h � � n � z�yŽ .Ý� � t ; � � t�1½

	 	z 	C , � 	�	1�� t�1n n n

n
��1�2 �1�2�h � � n � z y � n z X � �Ž .˜ ˜ ÝŽ .� t ; � � t�1 p t�p t ; �

t�1

n n
1�2 �1 �1 �1 2 2� � 1 � � 2n z z y X � n z XŽ .Ž . ˜ ˜Ý Ýp t�1 t�p p t�p2 5

t�1 t�1

� o A .Ž .P n

Ž .For z �  � 0, C , we have the identityp n

n
�1 �1�2 �1�2� h � � n � z�y � h � � n � z�y˜ ˜Ž .Ý Ž .� � t ; � � t�1 � t ; � � t�1

t�1
n

 ��1�2 �1�2� �n X � � � n � z y � X u du.˜ ˜Ž .Ý H ž /t�p � t ; � � t�1 t�p
0t�1
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Ž . Ž .It follows from A.26 that, for any  � 0, C ,n

n
�1�2 �1�2sup �n X � � � n � zy � X u˜˜Ž .Ý H ž /t�p � t ; � � t�1 t�p

0	 	z 	C , � 	�	1�� t�1n n n

�� � duŽ .� t ; �

n
1�2 ��1� � 1 � � n X z y duŽ .Ž . ˜ ˜Ý Ht�p t�1½

0t�1

A.27Ž .

n
2� X u du � o A .Ž .Ý Ht�p P n5

0t�1

ˆ �Now, splitting X into X � X , t � 1, . . . , n, and taking into accountt�p t�p t�p
n ˆ ˆ � �Ž . Ž . Ž .the orthogonality in � of X , . . . , X � and X , . . . , X �, A.271�p n�p 1�p n�p

ˆ �still holds if X is replaced either by X or by X . Since moreover thet�p t�p t�p
� n � Ž .definition of X implies that Ý X y � 0, it follows from A.23 that,˜t�p t�1 t�p t�1

Ž . Ž .for all  � 0, C , all � � 0 and � � 0, there exists N � N  , � , � such thatn 0 0
n

�1�2 � �1�2sup �n X � � � n � z�y � X u˜ ˜Ž .Ý H ž /t�p � t ; � � t�1 t�p
0	 	z 	C , � 	�	1�� t�1n n n

�� � duŽ .� t ; �A.28Ž .
n

21�2 �1 �� � 1 � � n X u du 	 A �Ž .Ž . Ž .Ý Ht�p n
0t�1

with probability at least equal to 1 � � for all n � N . A similar statement0
Ž .can be made for the integral running over � , 0 ; � is a nondecreasing�

�1 n Ž � .2 �1 n Ž .2function, and n Ý X is bounded by n Ý X , which con-t�1 t�p t�1 t�p
Ž .verges in probability to the variance of the stationary solution of 2.1 , so

Ž . 	 	that, for all  � 0, C , and uniformly in z 	 C and � 	 � 	 1 � � ,n n n n
n

�1�2 � �1�2�n X � � � n � z�y � � �Ž .˜ ˜Ý Ž .t�p � t ; � � t�1 � t ; �
t�1

n1  ��1�2 � �1�2	 �n X � � � n � z y � X u˜ ˜Ž .ÝH žt�p � t ; � � t�1 t�p½ 0 t�1

�� � duŽ .� t ; � 5
n  A � A �2 n n1�2 �1 �	 � 1 � � n X � 	 K �Ž .Ž . Ž .Ý t�p 2  t�1

with probability larger than or equal to 1 � �, for n � N . Similarly, we0
obtain that

n A �n��1�2 � �1�2�n X � � � n � z y � � � � �K � ,Ž .˜ ˜Ý Ž .t�p � t ; � � t�1 � t ; � t�1
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still with probability larger than or equal to 1 � �, for n � N . Hence,0
Ž .1�2putting  � A � , we obtainn

n
�1�2 � �1�2P sup n X � � � n � z�y � � �Ž .˜ ˜Ý Ž .t�p � t ; � � t�1 � t ; �½

	 	z 	C , � 	�	1�� t�1n n n

1�2
� K � 1 A � � �Ž . Ž .n 5

Ž � .for n � N . This first part of the proof is thus complete, since, for z � z , z ,0 0 1
� Ž .z � LL Q , we have z�y � z�y .˜ ˜1 0 t�1 t�1

Step 2. We now turn to the general case of an arbitrary matrix Q.
Ž �Consider the linear reparametrization described in Section 2.2 with y �ˇt�1

�1� � 	 	 .A y , A � 1 . Lemma 3.1 is totally unaffected, in the sense that, writingt�1
ˇŽ . Ž . Ž . Ž . 	 	r z, � ; Y instead of r z, � , we have r z, � ; Y �r Az, � ; Y and Az 	n n n n n n n

	 	z . Step 1 of the proof implies that
n

��1�2 � �1�2sup n y � � � n � z yˇ ˇ ˇÝ Ž .t�1 � t ; � � t�1
	 	 t�1z 	C , � 	�	1��ˇ n n n

�� � � o AŽ . Ž .� t ; � P n
A.29Ž .

Ž . Ž .for all z of the form z , z , . . . , z , 0, . . . , 0 �. The desired result 3.11 thenˇ ˇ ˇ ˇ0 1 q
Ž . �1Ž . Ž .follows from letting z , . . . , z � � A z , z , . . . , z , 0, . . . , 0 � � LL Q inˇ ˇ ˇ1 p 0 1 q

Ž . 	 	A.29 and noting again that A � 1. �

1�2 �1Ž Ž . �1Ž .A.4. Proof of Theorem 3.2. Inserting z� �n � 	 � �F � ,ˆ� 0
� Ž . . � Ž �� . Ž .� � Q� � �� a random vector of the form z � z , z � � � � LL Q , which,ˆ1 0 1

Ž .� Ž .in view of Theorem 3.1, is O C into 3.11 yieldsP n

n
� ��1�2 �sup n y I � � 	 � � � � Q� � �� yŽ . Ž .Ž .ˆ ˆŽÝ t�1 t 0 1 t�1

� 	�	1�� t�1n n

�1� 1 � � � I � � F � � 1 � �Ž . Ž . Ž .. Ž .t

A.30Ž .

� o n�1�4C1�2 .Ž .P n

Ž . � Ž . Ž � Ž . . � �Now, from 2.9 , we have that I � � 	 � � � � Q� � �� y � 1 iffˆ ˆt 0 1 t�1
Ž . Ž .a � � 1, and, in view of A.9 ,ˆt

n
� ��1�2 �sup n y I � � 	 � � � � Q� � �� yŽ . Ž .Ž .ˆ ˆÝ t�1 t 0 1 t�1

� 	�	1�� t�1n n

�1�2 	 � 	� O n max yP t�1ž /
1	t	n

A.31Ž .

� o n�1�4C1�2 .Ž .P n
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ˆ �� � �� � �� � �1 � ��Ž .On the other hand, since Y � Y Y Q Q Y Y Q Q Y , the linearn n n n n n
ˆ ��Ž . Ž Ž . Ž . .constraints in 2.8 imply that, for all � and n, Y a � � 1 � � 1 � 0.ˆn Q; n n

n Ž Ž . Ž ..Moreover, Ý a � � 1 � � � 0, so thatˆt�1 n; t

n
� � 0y � y � y a � � 1 � � � 0.Ž . Ž .Ž .ˆ ˆŽ .Ž .Ý t�1 n n n ; t

t�1

Ž .Going back to A.30 , we obtain

n
��1�2sup n y a � � 1 � �Ž . Ž .Ž .ˆÝ t�1 n ; t

� 	�	1�� t�1n n

��y a � � 1 � �Ž . Ž .Ž .˜t�1 n ; t

A.32Ž .

� O n�1�4Ž .P

Ž .as n � �. Thus, it is sufficient to consider the behavior of the process 3.8 on
� � � �the intervals 0, � and 1 � � , 1 , where we haven n

n n
�1�2 � �1�2 �sup n y a � � sup n y 1 � a �Ž . Ž .Ž .ˆ ˆÝ Ýt�1 n ; t t�1 n ; t

0	�	� 0	�	�t�1 t�1n n

n
� �1�2	 � n sup 1 � a �Ž .Ž .ˆÝn n ; t

� t�1A.33Ž .
� O � � n1�2�Ž .P n n

2�1�r 2�1�4�1�2 1� O n log n log log nŽ . Ž .Ž .P

� o n�1�4 .Ž .P

Similarly,
n

�1�2 � �1�4sup n y a � � o n .Ž . Ž .˜Ý t�1 n ; t P
0	�	� t�1n

The treatment is entirely the same for 1 � � 	 � 	 1. �n

Ž . Ž .A.5. Proof of Theorem 3.3. First, note that a � � a � � 0 atˆ ˜n; t n; t
�� � 0 and � � 1. Integrating by parts note that the integrals involved in the

Ž .�definition converge: see 3.3 , we obtain

1 1
� � u d a u � a u � a u � a u d� u .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .ˆ ˜ ˆ ˜H Hn ; t n ; t n ; t n ; t

0 0

By Theorem 3.2 and the dominated convergence theorem,
n

1��0�1�2 �n y a u � a u d� u � o 1 .Ž . Ž . Ž . Ž .Ž .ˆ ˜Ý Ht�1 n ; t n ; t P
�0t�1
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� � Ž . Ž .For u � � , � , by 3.12 and A.32 ,n 0

n �0�1�2 �n y a u � a u d� uŽ . Ž . Ž .Ž .ˆ ˜Ý Ht�1 n ; t n ; t
�nt�1

n�0 �1� �1�2 �	 c u 1 � u n y a u � a u duŽ . Ž . Ž .Ž . Ž .ˆ ˜ÝH t�1 n ; t n ; t
�n t�1

�0 �2 � �1�4 �Ž1�4.�� �	 u O n � O n log n log log n � o 1 .Ž . Ž . Ž .Ž .� P P Pn

Ž �Finally, for u � 0, � , the inequalityn

n n
�1�2 � �1�2 � 1�2 �	 	n y a u � n y 1 � a u 	 n max y uŽ . Ž .Ž .ˆ ˆÝ Ýt�1 n ; t t�1 n ; t t�1

1	t	nt�1 t�1

leads to
n �n�1�2 �n y a u d� uŽ . Ž .ˆÝ Ht�1 n ; t

0t�1

n�n �1��1�2 �	 n u 1 � u y a u duŽ . Ž .Ž . ˆÝH t�1 n ; t
0 t�1A.34Ž .

�n �1�1�2 � �	 		 n max y u 1 � u duŽ .Ht�1
1	t	n 0

Ž .2 1��Ž1�4.�� O n log n log log n � o 1 .Ž . Ž .Ž .P P

Similarly,
n �n�1�2 �n y a u d� uŽ . Ž .˜Ý Ht�1 n ; t

0t�1

n�n �1��1�2 � �1	 n u 1 � u y I � � F u duŽ . Ž .Ž . ÝH t�1 t
0 t�1

A.35Ž .

�2 �Ž1�4.�� o n log n log log nŽ .Ž .P

as n � �. The treatment, again, is entirely similar for 1 � � � � � 1.0
Asymptotic normality readily follows. �
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