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CONCENTRATION AND GOODNESS-OF-FIT IN
( )HIGHER DIMENSIONS: ASYMPTOTICALLY

DISTRIBUTION-FREE METHODS1

BY WOLFGANG POLONIK

University of California, Davis

A novel approach for constructing goodness-of-fit techniques in arbi-
Ž .trary finite dimensions is presented. Testing problems are considered as

well as the construction of diagnostic plots. The approach is based on some
new notions of mass concentration, and in fact, our basic testing problems
are formulated as problems of ‘‘goodness-of-concentration.’’ It is this con-
nection to concentration of measure that makes the approach conceptually
simple. The presented test statistics are continuous functionals of certain
processes which behave like the standard one-dimensional uniform empir-
ical process. Hence, the test statistics behave like classical test statistics
for goodness-of-fit. In particular, for simple hypotheses they are asymptot-
ically distribution free with well-known asymptotic distribution. The sim-
ple technical idea behind the approach may be called a generalized
quantile transformation, where the role of one-dimensional quantiles in
classical situations is taken over by so-called minimum volume sets.

1. Introduction. Many goodness-of-fit techniques in one-dimensional
situations are based on distances between the empirical and the hypothetical
distribution functions. To this category belong well-known tests like the
Kolmogoroff�Smirnov test and Cramer�von Mises test and several modifica-´
tions thereof as well as graphical techniques like P-P-plots and Q-Q-plots.
These techniques, however, lack easy extensions to higher dimensions. As is
well known, one reason for this is that the probability integral or quantile
transformation does not work in higher dimensions, so that the correspond-
ing straightforward extensions of the above mentioned tests to higher dimen-
sions are no longer distribution free.

A successful approach for extending one-dimensional goodness-of-fit tech-
Žniques to higher dimensions has been developed by Khmaladze 1981, 1988,

.1993 , who used a martingale approach to construct transformations of the
empirical process which led to asymptotically distribution free test statistics

Ž .for goodness-of-fit. Foutz 1980 studied another approach based on empirical
probability measures. As a test statistic Foutz proposed the maximal differ-
ence of the empirical and hypothetical distribution over a certain data-depen-
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dent class of sets, which are constructed out of so-called statistically equiva-
Ž .lent blocks. Another related work is Bickel and Breiman 1983 .

The approach studied in the present paper also is based on the idea of
comparing empirical and hypothetical probability measures over a certain
class of sets. The underlying idea, which formally can be understood as a
generalized quantile transformation, also allows the construction of diagnos-
tic plots which can be considered as generalized P-P-plots. Moreover, the
method presented can be used to construct techniques for inspecting mass
concentration of the underlying distribution. It is this connection to concen-
tration that helps to get a more intuitive understanding of the techniques
presented.

Ž .Let us first recall the classical one-dimensional quantile transformation.
For the moment let F denote a one-dimensional distribution function, and Fn
the empirical distribution function based on n i.i.d. observations drawn from
F. Assume that F is continuous. Then it is a classical result that the
distribution of

�1KS � sup F x � F x � sup F F � � �Ž . Ž . Ž .Ž .n n n
x�R � ��� 0, 1

�1 Ž .does not depend on F, where F denotes the generalized inverse of F.
'Moreover, the asymptotic distribution of n KS is well known, namely, then

� Ž . �distribution of sup B � for a standard Brownian bridge B. These� ��0, 1�
facts, among others, make statistics based on the empirical process in one
dimension very attractive. A generalization to higher dimensions is the

�1Ž . Ž �1Ž .�following. Identify the quantiles F � with the interval ��, F � and
� Ž . � �4 Ž . Ž . Ž .replace this family of sets by a family C � , � � 0, 1 with i C � � C �

Ž . Ž Ž .. � �for 0 � � � � � 1 and ii F C � � � � � � 0, 1 . Then, clearly, the statis-
�Ž .Ž Ž .. �tic sup F � F C � has exactly the same distribution as KS . This� ��0, 1� n n

is easy to see and is part of the statistical folklore. However, it is worth
pointing out that this property holds regardless of the dimension of the
underlying space. The important question now is, which family of sets to
choose in order to get a ‘‘good’’ test statistic for our goodness-of-fit problem?
Here we propose to use minimum volume sets.

Let X , X , . . . be i.i.d. observations drawn from a probability measure F1 2
Ž .on a measurable space XX , AA , and let CC � AA. Let further F denote then

empirical measure putting mass 1�n on each of the first n observations.

� �DEFINITION 1.1. Let � be a real-valued function on CC and let � � 0, 1 .
Ž .Any set C � � CC such thatF , CC

C � � argmin � C : F C 	 �� 4Ž . Ž . Ž .F , CC C � CC

Ž .is called a minimum volume set MV-set in CC for F at level � with respect to
Ž . Ž .� . Instead of C � we write C � and call them empirical MV-sets.F , CC n, CCn

�Ž � 4Obviously, quantiles are MV-sets in CC � ��, x , x � R with respect to
ŽŽ �. Ž �� ��, x � x, if x � R is identified with the interval ��, x . Below we
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mainly think of � as a dominating measure for F, like the Lebesgue measure
on Rd, which is denoted by Leb.

The prototype of our test statistic for the hypothesis H : F � G, where G0
is a fixed known probability measure, is of the form

1 T � sup F � G C � 
 F � G C � .Ž . Ž . Ž . Ž . Ž .Ž . Ž .n , CC n G , CC n n , CC

� ��� 0, 1

The crucial role of the choice of CC will of course be discussed in detail below.
If the sup were taken over the first summand only, then T would be an, CC

direct generalization of the Kolmogoroff�Smirnov test statistic. Such types of
statistics will also be considered below. However, the second summand in

Ž .general is necessary and sufficient in order to get a test for goodness-of-fit,
Ž .consistent against all or at least a large class of alternatives. Lemma 1.2

motivates the construction of T using level sets as special MV-sets. A moren, CC

general version of this lemma is given in Section 2 below.
Ž .For a nonnegative real-valued function f let

� � � x : f x 	 �� 4Ž . Ž .f

denote the level set of f at level � 	 0. Note that if � � Leb and f has no flat
� Ž . 4parts, that is, � x: f x � � � 0, � � � 0, then the class of level sets,

Ž . Ž .appropriately reparametrized, satisfies conditions i and ii above.

Ž .LEMMA 1.2. Let � be a measure on XX , AA . Suppose that F and G are
Ž .probability measures on XX , AA with �-densities f and g, respectively. The

following two statements are equivalent:

Ž .a F � G;
Ž . Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..b F � � � G � � and G � � � F � � for almost all � � 0.g g f f

That level sets of probability densities are MV-sets with respect to the
underlying dominating measure is a basic fact and can be seen easily by

Ž . Ž . Ž . Ž .observing that F C � �� C � H f x � � d� x is maximized over all mea-C
Ž . Ž .surable sets by � � . In particular, if � � � CC then it is a MV-set in CC atf f

Ž Ž ..the level � � F � � . Hence, the above test statistic T can be understoodf n, CC

as an estimator for the quantity

2 sup F � � � G � � 
 G � � � F � � ,Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .g g f f
��0

which under the conditions of Lemma 1.2 equals zero iff H holds. Using only0
Ž .one of the summands in 2 is not enough to get such an equivalence, as the

2Ž . Ž Ž .. Ž Ž ..'example F � NN 0, 1 , G � 	 , shows, where G � � � F � � , � � 	 0.f f
We want to stress here that using T , or its modifications introducedn, CC

below, makes sense in more general situations than the one given in Lemma
1.2. For instance, the existence of a density is not necessary at all for defining
MV-sets and hence for defining T , and MV-sets have a clear interpretationn, CC

as regions carrying a high mass concentration even if they are not level sets.
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The crucial point, of course, is the choice of the class CC. Here again level sets
will be used as a guideline.

Note that as in classical one-dimensional situations our test statistic is a
continuous functional of processes indexed by a one-dimensional parameter

� �in 0, 1 . As indicated above, these processes behave asymptotically as the
classical uniform empirical process under appropriate assumptions. It follows

Ž .that for simple hypotheses these test statistics are in every finite dimension
asymptotically distribution free and that they have the same well-known
limiting distribution as the corresponding classical one-dimensional test
statistics for goodness-of-fit. Moreover, this structure allows the construction
of P-P type plots in higher dimensions. Such plots, which we call C-C-plots,
contain information about if and where the two distributions under consider-
ation differ.

In order to formalize the connection to concentration functions, we intro-
duce the notion of CC-concentration in Section 2. The formulation of our basic
testing problems using CC-concentration can also be found there, as well as
some discussion on the choice of the class CC. Section 3 deals with asymptotic
properties of the test statistics. We state consistency results and formulate
conditions under which the test statistics have the above mentioned distribu-
tion free limit. In Section 4 some modifications of the above test statistic,
which have an improved computational performance, are studied. The con-

Ž .struction of diagnostic plots C-C-plots is considered in Section 5. Section 6
contains some discussion, and the proofs can be found in Section 7.

2. Comparing concentrations. In all of what follows we denote by
Ž .F, G, H probability measures on XX , AA . For a measure 
 on AA and C, D, � AA

we let

d C , D � 
 C� D ,Ž . Ž .


where � denotes set theoretic symmetric difference. We say that the MV-sets
for a distribution F in CC are uniquely determined up to �-nullsets if any two
MV-sets in CC at the same level � have d -distance 0.�

First we are going to present our basic Lemma 2.1. This lemma also
underlies the central notion of CC-concentration defined below. For a distribu-

� Ž . 4tion F with density f we let LL � � � , � 	 0 denote the family of all levelf f
sets of f.

Consider the following two properties:

Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..P : F C � � G C � and G C � � F C � ;1 G, CC G, CC F , CC F , CC

Ž Ž . Ž ..P : d C � , C � � 0.2 � F , CC G, CC

LEMMA 2.1. Suppose that MV-sets in CC for F and G, respectively, are
determined uniquely up to �-nullsets:

Ž . � �a For every � � 0, 1 : P � P .1 2
Ž . � � � �b P holds � � � 0, 1 � P holds � � � 0, 1 .1 2
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Note that Lemma 1.2 does not follow from Lemma 2.1 trivially. In fact,
under the assumption LL � LL � CC level sets of f and g are MV-sets in CC;f g

Ž Ž . Ž ..however at different levels � . So that d C � , C � � 0 for some fixed� F , CC G, CC

Ž Ž . Ž ..� does not imply d � � , � � � 0 for some �.� f g
It is interesting to note that P and P are not equivalent for a fixed � in1 2

� 4general. As an example just take CC � �, A, XX , where A � AA is such that
Ž . Ž . Ž Ž .�0 � F A � G A � 1. Then it is easy to see that for � � 0, F A we have

Ž . Ž .C � � A � C � , and hence, P holds, but not P .F , CC G, CC 2 1
It follows from Lemma 2.1 together with Lemma 1.2 that if LL � LL � CCf g

� �then ‘‘P holds � � � 0, 1 ’’ iff ‘‘F � G’’ or1

sup F C � � G C �Ž . Ž .Ž . Ž .G , CC G , CC

� ��� 0, 1


 G C � � F C � � 0 iff F � G.Ž . Ž .Ž . Ž .F , CC F , CC

3Ž .

Ž . Ž .If we think of MV-sets as one-dimensional quantiles, then 3 can be read as
Ž . Ž �1Ž .. Ž �1Ž .. Ž . Ž �1Ž .. Ž �1Ž ..F � G iff i F G � � G G � and ii G F � � F F � , where

here F, G denote the corresponding distribution functions. In this case,
Ž �1 .however, it is actually enough to consider only one of the functions F G or

Ž �1 . Ž . Ž .G F , since we have F � G iff either i or ii holds.
Ž �1 . � �Lemma 2.1 also motivates considering the function FG from 0, 1CC

� �into 0, 1 defined through

FG�1 � � F C � .Ž . Ž . Ž .Ž .CC G , CC

Ž �1 .FG can be used to compare concentrations of F and G. The notationCC

Ž �1 .FG comes from the fact that in the situation where the one-dimensionalCC

Ž �1 . Ž . Ž �1Ž ..quantiles are MV-sets, we have FG � � F G � , where on theCC

right-hand side F and G denote distribution functions. Of course we need
Ž �1 .uniqueness of MV-sets for FG to be well defined.CC

Basic assumptions.

Ž .1. � is a �-finite measure on XX , AA , and F and G have �-densities f, g,
respectively.

2. MV-sets in CC for F and G are uniquely determined up to �-null sets.

The basic assumptions can be relaxed at several places, but for clarity of
presentation we assume them to hold in all of what follows.

Ž . Ž .DEFINITION 2.2 CC-concentration . Given � we say that F � CONC GCC

iff

FG�1 � GG�1 .Ž . Ž .CC CC

We say that ‘‘F and G have the same CC-concentration’’, or F � G, iffCC

G � CONC F and F � CONC G .Ž . Ž .CC CC
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We first list some properties of CC-concentration.

Ž . Ž .A Using Lemma 2.1 a it is easy to see that ‘‘� ’’ defines an equivalenceCC

relation on the class of probability distributions with uniquely deter-
mined MV-sets in CC.

Ž .B In view of Lemma 2.1, F � G means that F and G have the sameCC

MV-sets in CC up to �-nullsets.
Ž .C It is easy to construct examples where F � G, but F � G. However,CC

Lemma 1.2 says that F � G iff F � G, provided LL � LL � CC.CC f g
Ž . Ž .D In general, F � CONC G does not define an equivalence relations onCC

� Ž .�the same large class of distributions as ‘‘� ’’ does cf. A . For instance,CC

2 2Ž . Ž . Ž Ž ..' 'we have NN 0, 1 � CONC 	 , but 	 � CONC NN 0, 1 , if CC is theCC CC

Ž .class of all intervals on the real line and � � Leb cf. Introduction .
However, we have the following lemma.

LEMMA 2.3. Let F and G be such that LL � LL � CC. Thenf g

F � CONC G � F � G.Ž .CC

Ž .E Suppose that LL � CC and that g has a global maximum at 0, say. If fg
Ž . Ž .and g are continuous at 0 and f 0 � g 0 then it is easy to see that

Ž .F � CONC G , because F and G cannot give the same mass to levelCC

sets of g close to the mode.

Using the above definitions we now formulate the two testing problems
that we are interested in. The first problem is

H Ž1. : F � CONC G versus H Ž1. : F � CONC G .Ž . Ž .0 CC 1 CC

This testing problem in general is a problem for testing for concentration
rather than for goodness-of-fit. Our second problem is

H Ž2. : F � G versus H Ž2. : F � G.0 CC 1 CC

As a test statistic for the problem H Ž1., we propose

4 S � sup F � G C � ,Ž . Ž . Ž .Ž .n , CC n G , CC

� ��� 0, 1

and for the problem H Ž2. we propose to use T . Comparing S and Tn, CC n, CC n, CC

Ž .one can roughly say that S only ‘‘looks in one direction’’ from F to G ,n, CC

Ž .whereas T looks in both from F to G and from G to F .n, CC

For the rest of this section we discuss some aspects concerning the choice
of CC.

CC-concentration and order restrictions. For the interpretation of CC-con-
centration we often used the assumption LL � CC. This assumption defines af

Žshape restriction on f. If, in addition, CC is a �-lattice closed under countable
.unions and intersections , then we know that the assumption LL � CC isf

equivalent to an order restriction on f , which means that f is monotone with
Ž .respect to some pseudo order determined through CC, where CC is the class of
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�so-called upper sets for the order restriction e.g., Robertson, Wright and
Ž .�Dykstra 1988 . Suppose we know that f satisfies an order restriction and we

choose CC as the corresponding class of upper sets. Then Lemma 1.2 says that
there is no distribution G different from F with �-density g satisfying this
order restriction and having the same CC-concentration as F.

Sparse classes CC and the curse of dimensionality. The above indicates
that it is reasonable to choose CC such that the level sets of the density of the
hypothetical distribution lie in CC. This means, in order to have a rich model,
we should choose CC as a rich class. In contrast, from a mathematical point of
view sparse classes are better, because they lead to better asymptotic proper-

Ž . Ž .ties see Section 3 . An example for a very sparse class CC is the class CC of0
balls in Rd with fixed midpoint 0, say. If the density of g is strictly positive,
then MV-sets in CC for G are uniquely determined, and every set in CC is a0 0

Ž . Ž .MV-set for G, such that, in particular i and ii from the introduction are
fulfilled. It follows from Theorem 3.5 below that under H Ž1. the statistic S0 n, CC

is distribution free with the same distribution for every dimension! Almost
trivially, our two basic testing problems coincide in such simple situations. In
the above situation we are just testing whether F and G put the same
probability mass on each of the balls with midpoint 0. Of course, this has
nothing to do with MV-sets directly. However, in practice such types of
testing problems might be helpful, especially in higher dimensions. It should
be possible to extract more useful information out of the data by choosing
several such sparse testing classes than by using, let’s say, the half-space
distance. Deviations from the hypothetical distribution can be interpreted
more easily, especially because one also has available corresponding diagnos-

Ž .tic plots see Section 5 .

3. Asymptotics of the test statistics. In the following we assume that
all considered random quantities are measurable. Otherwise, we would have

�to work with ‘‘outer’’ and ‘‘inner’’ probabilities and integrals, respectively cf.
Ž .�van der Vaart and Wellner 1996 . Let us recall here that the basic assump-

tions formulated in Section 2 are assumed to hold everywhere.
Consistency: Some terminology from empirical process theory is used in

the sequel. A class CC is called the Glivenko�Cantelli class for a distribution
Ž . � Ž . Ž . �F, or GC F -class, iff sup F C � F C � 0 a.s. as n � �. Well-knownC � CC n

Ž .examples for GC F -classes are the classes of intervals, balls and ellipsoids
d Ž . din R . They possess the GC F -property for all F. Convex sets in R also

Ž .form GC F -classes, however, not for all F. A sufficient condition for F to
Ž .ensure the GC F -property of the convex sets is that F has a bounded

� Ž .Lebesgue density cf. Eddy and Hartigan 1977 for necessary and sufficient
�conditions .

THEOREM 3.1. Suppose that the class of all MV-sets in CC for G is a
Ž .GC F -class. Then we have

S � 0 a.s. as n � � � F � CONC G .Ž .n , CC CC



CONCENTRATION AND GOODNESS-OF-FIT 1217

Ž .The assumption that the MV-sets for G form a GC F -class obviously
Ž .holds if CC itself is a GC F -class. However, even if CC is too rich to be a

Ž .GC F -class the MV-sets in CC might form such a class, as for instance if
� � Leb on Rd, the density of g has no flat part, and LL � CC. In this case theg
class of MV-sets in CC equals the class LL which is a totally ordered class ofg
sets with respect to inclusion. Such classes are so-called Vapnik�Cervonenkis

Ž . �classes and hence they also have the GC F -property. For a definition of
Ž . �Vapnik�Cervonenkis classes, see, e.g., van der Vaart and Wellner 1996 .

Ž .THEOREM 3.2. Suppose that CC is a GC F -class. Then we have the follow-
ing:

Ž .a F � G � T � 0 a.s. as n � �.n, CC

Ž . � �b Let � � 0, 1 be fixed. If
�1 �15 sup F F � � FF � � 0 a.s. as n � �, andŽ . Ž . Ž . Ž .Ž . CCn n CC

� ��� 0, 1

6 d C � , C � � 0 a.s. as n � �,Ž . Ž . Ž .Ž .G F , CC n , CC

then we have as n � � that

T 	 F C � � G C �Ž . Ž .Ž . Ž .n , CC G , CC G , CC


 G C � � F C � 
 o 1 a.s.Ž . Ž . Ž .Ž . Ž .F , CC F , CC

Ž . Ž . � �Hence, if 5 and 6 hold for every � � 0, 1 , then

F � G �  c � 0 s.th. T 	 c 
 o 1 a.s. as n � �.Ž .CC n , CC

Ž . Ž . Ž . � �c If 5 and 6 hold uniformly in � � 0, 1 , then

7 F � G � T � 0 a.s. as n � �.Ž . CC n , CC

Ž .Assumption 5 is satisfied in many situations, for instance, if � � Leb and
Ž .CC is the class of closed balls, ellipsoids or convex sets. Consistency of C �n, CC

Ž .needs to be controlled in view of 6 . Suppose that XX is a finite set, � is a
counting measure and CC consists of subsets of XX . Then it is easy to see that

Ž . Ž .for every fixed � we have C � � C � for n large enough, such that inn, CC F , CC

Ž .this simple case 6 is satisfied trivially. Under some regularity assumptions,
Ž .consistency of MV-sets has been studied in Polonik 1997 . Besides consis-

tency results, also rates of convergence can be found there in the special case
where LL � CC. We state two uniform consistency results which can be provedf
by using ideas from that paper.

Ž . Ž .LEMMA 3.3. Let CC be a GC F -class and suppose that 5 holds.

Ž . Ž �1 . Ž �1 . Ž .a Suppose that FF � GG and that CC, d is quasi-compact.CC CC G
Suppose further that on each compact set, G is equivalent to � and that the

Ž Ž .. � �function � C � is continuous on 0, 1 . ThenF , CC

sup d C � , C � � 0 a.s. as n � �.Ž . Ž .Ž .G n , CC F , CC

� ��� 0, 1
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Ž . db Let � � Leb on R . Suppose that f has no flat parts, and that LL � CC.f
If in addition g is bounded, then

sup d C � , C � � 0 a.s. as n � �.Ž . Ž .Ž .G n , CC F , CC

� ��� 0, 1

Ž .We would like to stress here, that in part a we do not use assumptions on
Ž .level sets at all. In part b we only assume that LL � CC, but not that LL � CC.f g

Of course, the assumptions could be weakened if we would look at pointwise
Ž �1 . Ž �1 . Ž .consistency of MV-sets only. The condition FF � GG of part aCC CC

Ž .holds automatically if F � G see the proof of Lemma 2.1 .CC

The next theorem, which covers the goodness-of-fit case, follows from
Ž . Ž .Theorem 3.2 b , together with Lemma 3.3 b and Lemma 1.2.

d Ž .THEOREM 3.4. Let � � Leb on R . Suppose that CC is a GC F -class and
Ž .LL � LL � CC. If 5 holds, f has no flat parts and g is bounded, then we havef g

F � G � T � 0 a.s. as n � �.n , CC

In particular, this theorem says that if there is a priori information
available indicating that the underlying distribution on Rd is spherically
symmetric and unimodal, and hence we choose CC as the class of balls, then
T is a consistent test against all other spherically symmetric, unimodal,n, CC

distributions. If we choose CC as the class of convex sets in Rd as another,
more general, ‘‘model’’ for unimodality then T is consistent against alln, CC

distributions with convex level sets, provided the underlying density is
� Ž . �bounded to ensure the GC F -property of the convex sets . However, the

assumption that both F and G have densities with level sets in CC is not
necessary. The class of alternatives that can be detected by means of Tn, CC

actually is much larger than the one given in Theorem 3.4, as follows from
Ž . Ž .Theorem 3.2 b , together with property E from Section 2.

Asymptotic distribution under the null hypotheses. The next result about
the asymptotic distribution of S follows directly from the definition ofn, CC

Ž .F � CONC G together with the generalized quantile transformation dis-CC

cussed in the Introduction.

Ž .THEOREM 3.5. Suppose that F, G and CC are such that F � CONC G .CC

Ž . Ž .Suppose further that C � � C � for 0 � � � � � 1, and the map-G , CC G, CC

Ž Ž .. � �ping � � F C � is one-to-one onto 0, 1 . Then the distribution of SG, CC n, CC
Ž1. Ž .under H is exactly the same as the distribution of the one-dimensional0

Kolmogoroff�Smirnov statistic KS for an underlying uniform distribution.n
In particular, as n � �,

'n S � sup B � in distribution,Ž .n , CC

� ��� 0, 1

� �where B denotes a standard Brownian bridge on 0, 1 .
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The ‘‘continuity assumptions’’ on MV-sets for G used in Theorem 3.5 are
satisfied, if, for instance, G has a �-density g without flat parts and LL � CC.g
If the underlying distribution has flat parts, then, although the corresponding
level sets do not satisfy these ‘‘continuity assumptions,’’ a class CC can in
general be chosen such that the corresponding MV-sets do. This is an
advantage of using MV-sets instead of level sets in our basic approach.

For the next theorem we need the notion of asymptotic equicontinuity. Let
'� Ž . Ž .Ž . 4� C � n F � F C , C � CC , denote the CC-indexed empirical process.n, CC n

Then � is called asymptotically equicontinuous if for each � , � � 0 theren, CC

exists an � � 0 such that

lim sup P sup � C � � D 	 � � � .Ž . Ž .n , CC n , CC½ 5
n�� � Ž . 4C , D�CC : d C , D ��F

For many standard classes CC, such as intervals, balls, or ellipsoids in Rd the
empirical process has this property. For further examples see, for instance,

Ž .Dudley 1984 .

THEOREM 3.6. Suppose that all the assumptions of Theorem 3.5 hold. If in
addition:

Ž . Ž Ž . Ž .. Ž .i sup d C � , C � � o 1 as n � � and� ��0, 1� F n, CC F , CC P
Ž .ii � is asymptotically equicontinuous,n, CC

then we have under the hypothesis ‘‘F � G’’ that as n � �,

'n T � 2 sup B � in distribution,Ž .n , CC

� ��� 0, 1

� �where B denotes a standard Brownian bridge on 0, 1 .

Again, the asymptotic distribution of T is independent of the underlyingn, CC

distribution F, and the same well-known asymptotic distribution appears.
Hence, the above results can easily be used to construct asymptotically valid
tests for H Ž1. and H Ž2., respectively.

4. Modifications of T . For calculating T it is necessary to calcu-n, CC n, CC

late all the empirical MV-sets. This is in general not an easy task. Let, for
example, CC be the class of convex sets in R3. The calculation of a convex hull
of n data points in three dimensions already is a formidable task, and this is
just one empirical MV-set in the class of convex sets. Even in the class of
ellipsoids, calculation of all MV-sets still takes too much time to really use
the corresponding test statistic in practice. From an asymptotical point of
view, however, there is no need to use empirical MV-sets. Other consistent
estimators for the theoretical MV-sets can be used as well. Statistics of the
form

˜ ˜T � sup F � G C � 
 F � G C �Ž . Ž . Ž . Ž .Ž . Ž .n , CC n G , CC n n
� ��� 0, 1
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˜ ˜Ž . Ž . Ž .can be used, where C � denotes some estimator of C � . If C � hasn F , CC n
Ž . Ž .the same consistency properties as C � as an estimator of C � , thenn, CC F , CC

˜ ˜T and T essentially give equivalent tests. In particular, T will also ben, CC n, CC n, CC

asymptotically distribution free under mild assumptions. We do not formu-
late explicit results here, since the modifications of the results of Section 3
are more or less obvious.

4.1. Estimating the shape of MV-sets. Here we discuss the possibility of
estimating the shape of MV-sets first and then calculating the MV-sets in a
much smaller, estimated class of sets. For instance, consider ellipsoids in Rd

Ž . � d Ž .t Ž . 4of the form C c � x � R : x � 
 � x � 
 � c and suppose the under-
, �

Ž .lying distribution has elliptical contours C c , c 	 0. Choose CC �
 , �0 0
� Ž . d 4C c , c 	 0, 
 � R , � a positive semidefinit d � d matrix . Then, in a
, �

first step, one can estimate the ‘‘true’’ values 
 and � by some estimator 
̂0 0
ˆand �, respectively. Several estimators are available here. Then, in a second

� Ž .step, the MV-sets are calculated in the estimated class of ellipsoids C c , cˆ
, �ˆ
4	 0 . This second step in fact is a one-dimensional problem and can be solved

very fast computationally. This idea of approximating MV-ellipsoids of course
� Ž .�is not new see, e.g., Davies 1987 .

4.2. Using density estimators. If the underlying distribution has a density
with level sets lying in the class CC under consideration, then these level sets
are MV-sets. Hence, one can try to use a density estimator and use level sets
of this estimator as estimators for MV-sets. In contrast to the theory above

Žwe have to give up the idea of including shape restrictions by prespecifying a
.class CC . Moreover, densities with flat parts have to be excluded to get the

Ž .desired asymptotic distribution see also the discussion after Theorem 3.5 .
ˆ ˆ Ž .Let f denote a density estimator for f , and let � � denote the corre-n n

ˆsponding level sets of f . We consider statistics of the formn

ˆ ˆT � sup F � G � � 
 F � G � � .Ž . Ž . Ž . Ž .Ž . Ž .ž /n n g n n
�	0

In principle, there is no need for prespecifying a class CC. However, for
deriving asymptotic results, a class CC containing all the estimated level sets
comes in again.

ˆ Ž .First we formulate a general consistency result for � � which says thatn
pointwise consistent density estimators give uniformly consistent estimators
for level sets.

ˆPROPOSITION 4.1. Let f be any density estimator converging to f inn
probability a.e. If f is bounded and has no flat parts, then

ˆsup d � � , � � � o 1 as n � �.Ž . Ž . Ž .ž /F n f P
�	0

This result can in principle be combined with the results of Section 3 to get
ˆconsistency and a distributional result for T . However, this does not alwaysn

go through without problems, as our first example shows.
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4.2.1. Histogram estimators. Let us consider histograms based on regular
grids. Level sets of such estimators can be handled computationally quite

ˆeasily in arbitrary dimension, and the corresponding test based on T isn
Ž .consistent under mild additional assumptions if the number of cells of the

regular grid does not grow too fast. This can be seen as follows. Let PPk n

denote a regular grid in Rd where k is the number of partitions in eachn
dimension, such that k d is the number of overall cells, and assume that then

d Ž .cells have boundaries parallel to the coordinate axes. If k � O n�log n thenn
Ž .the �-algebra generated by these cells has the GC F -property for any

distribution F. This can be proved by using well-known results from empiri-
� Ž . Ž .�cal process theory e.g., Alexander 1984 , Pollard 1984 . However, as for the

distributional result, it turns out, that the class of possible level sets of
histograms based on regular grids is growing too fast in order to get the same

� Ž .asymptotic distribution as for T condition ii of Theorem 3.6 cannot ben, CC

�verified .

4.2.2. Kernel estimators. In contrast to the histograms considered above,
ˆ Ž .level sets of a kernel estimator f can be forced to lie asymptotically in an

certain class CC of sets with smooth boundaries. Asymptotic properties of the
empirical process indexed by classes of sets depend on the richness of the
indexing class, measured, for instance, in terms of so-called metric entropy
with inclusion. There exist several results ensuring, for instance, the asymp-
totic equicontinuity of the empirical process indexed by classes of smooth sets
� Ž .�e.g., Dudley 1974 . In general, however, the higher the dimension, the
stronger are the smoothness assumptions needed. To make all this mathe-
matically precise, lots of technicalities are necessary. We do not formulate
such a result here. Everything seems to work under appropriate assumptions.

4.3. Granulometric smoothing. Another way of estimating level sets of
Ž .densities has recently been proposed in Walther 1997 . His approach also

depends on density estimation. However, in contrast to the above, no assump-
tions to ensure the convergence of the derivatives of the estimators are
necessary. By construction the estimators lie in a class of sets with smooth
boundaries. The idea is the following. First, pick out subsets of the observa-

ˆ 
Ž . �tions by means of a density estimator f , namely, look at the sets � � � Xn n
ˆ� 4 Ž . 4� X , . . . , X : f X 	 � . Then these sets of points are ‘‘smoothed’’ by1 n n

� Ž .�means of a smoothing operation called ‘‘granulometry’’ Matheron 1975 .
Ž .The resulting sets � � which lie in a class GG of sets with smooth bound-n r

Ž .aries with r as a smoothness parameter; see below are the final estimators
ˆŽ .of the level sets � � and can be used in T . Empirical processes indexed byn

Ž .this class of sets can be controlled, as follows from results in Walther 1997 ,
˜ Ž .such that under appropriate conditions T based on � � has the samen, CC n

asymptotically distribution free limit distribution as T . The notion ofn, CC

smoothness used in this context is connected to Blaschkes rolling theorem.
� Ž .�An analytical definition is as follows cf. Theorem 1, Walther 1997 : S � GGr

Ž . 1 dif �S is a d � 1 -dimensional C submanifold in R with outward pointing
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Ž .unit normal vector n s at s � �S satisfying the Lipschitz condition

1
� �n s � n t � s � t for all s, t � �S.Ž . Ž .

r

The smoothing parameter r has to tend to zero not too fast as the sample size
tends to infinity, in order to ensure a good rate of convergence. Such results

Ž .can be found in Walther 1997 . However, these results are not uniform over
all � 	 0 as is needed in our context. For achieving this, some additional
technical assumptions seem to be necessary.

Ž �1 .5. C-C-plots. As already discussed in Section 2, the functions FG CC

Ž �1 .and GF contain information about the concentration of F relative to GCC

and vice versa. We use these functions to construct generalized P-P-plots.
Ž �1 . Ž �1 .This is in analogy to the one-dimensional case where F G and G F are

Ž �1 . Ž �1 .used to construct P-P-plots. Note, however, F G and G F are inverse
Ž �1 .functions if F and G are continuous. However, for the functions FG andCC

Ž �1 . Ž .GF this is only true in very special cases see below . And in general, itCC

is essential to consider both functions.
ŽMotivated by Lemma 2.1 we define a C-C-plot ‘‘C’’ here stands for concen-

.tration as a plot consisting of the graphs of the two curves

8 � � F G�1 � and � � GF�1 �Ž . Ž . Ž .Ž . Ž .n nCC CC

together with the diagonal. Note that in order to calculate the second function
Ž .in 8 we have to calculate all the empirical MV-sets in CC. This can be quite

time consuming. Therefore, analogously to the idea underlying the construc-
˜tion of the modified test statistic T considered in Section 4, one can use then, CC

Ž Ž .. Ž Ž ..two curves � � F � � and � � G � � and rescale them. This leads ton g n
modified C-C-plots based on the functions

ˆ9 � � F � � � and � � G � � � ,Ž . Ž . Ž .Ž . Ž .ˆŽ . ž /n g g n fn

ˆ Ž .where f denotes a density estimator, and where � � is defined through then f
Ž Ž Ž ... Ž .equation F � � � � � . Similarly, we define � � . Calculation ofˆf f fnˆŽ Ž Ž ...G � � � is feasible by means of Monte Carlo integration.ˆn fn
Ž . Ž . Ž .Figure 1 a � c shows such modified empirical C-C-plots using a kernel

density estimator with a normal kernel. The graphs of the two curves are
linearized there. They are simulated with both F and G, a standard normal
distribution in different dimensions, respectively. The sample size is n � 25,

Žand the bandwidth is chosen by hand. Our simulation studies indicate that
the plots are not very sensitive to the choice of the bandwidth if under-

.smoothing is avoided. The computer programs for all the figures in this
�section are written in Oberon and make use of Voyager Sawitzki, Diller and

Ž .�Friedrich 1994 .
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FIG. 1. Modified empirical C-C-plots under H Ž2. based on 25 observations from a standard0
Ž . Ž . Ž .normal distribution. a d � 1, b d � 3, c d � 10.

Properties and interpretations of C-C-plots. In order to get some feeling
Ž �1 .about the interpretation of C-C-plots, some properties of the functions FG CC

Ž �1 . Žand GF are discussed now. Plots of these two functions together withCC

.the diagonal are called theoretical C-C-plots. The essential property of a
theoretical C-C-plot is the following: provided F and G both have densities
without flat parts and level sets in CC, then:

Both graphs in the theoretical C-C-plot are straight lines through the origin
with slope one if and only if F � G.

ŽOf course, if we consider modified theoretical C-C-plots using level sets of
.densities instead of MV-sets then the class CC plays no role here.

Deviations from the diagonal near zero, near one, or in the middle, indicate
Ž .deviations of F and G near the mode s , in the tails, or in the main body of

the distribution, respectively.
For the rest of this section, we only consider modified C-C-plots using level

sets of densities in Rd with � � Leb. In the modified theoretical C-C-plots
Ž �1 . Ž .shown in this section for different F and G, the graph of FG � �CC

Ž Ž Ž ... Ž �1 . Ž .F � � � is plotted as a solid line, and the graph of GF � �g g CC

Ž Ž Ž ...G � � � as a dashed line. The probability measures F and G are givenf f
for each figure.

There is some close connection between C-C-plots and P-P-plots in the
following special situation. Suppose that both F and G are distributions on
the real line with densities f and g symmetric around the same location
parameter, zero, say. Suppose in addition that f and g are unimodal in the
sense that all their level sets are intervals with midpoints zero. Then we have
Ž Ž Ž ... Ž �1ŽŽ . .. Ž �1 . Ž �1 .F � � � � 2 F G 1 
 � �2 � 1. It follows that FG and GFg g CC CC

are inverse functions. The corresponding theoretical P-P-plot is given by the
Ž �1Ž ..graph of � � F G � . Under the present assumptions, P-P-plots are

Ž .symmetric around the diagonal with respect to the point 1�2, 1�2 ; that is,
Ž �1ŽŽ . .. Ž �1ŽŽ . ..we have F G 1 
 � �2 � 1 � F G 1 � � �2 . Hence, in this situa-

Ž . Žtion theoretical C-C-plots and P-P-plots contain the same information e.g.,
.Figure 2a, c .
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Ž . Ž . Ž . Ž .FIG. 2. a d � 1, F � NN 0, 1 , G � logistic; b d � 1, F � NN 1, 1 , G � logistic;
Ž . Ž .c d � 1, F � NN 0, 1 , G � Cauchy.

The properties of C-C-plots listed below can be verified by straightforward
calculations.

1. Suppose that the Leb-densities of F and G both belong to the same family
of unimodal and spherically symmetric densities in Rd with same mode
and with scatter matrices � 2 � I and � 2 � I, respectively. Then1 2

Ž �1 . Ž .FG is convex if � 	 � and concave if � � � cf. Figure 3a .CC 1 2 1 2

FIG. 3. Modified empirical C-C-plots based on 50 observations corresponding to the theoretical
Ž . Ž . Ž . Ž . Ž . Ž .C-C-plots listed. a d � 3, F � NN 0, I , G � NN 0, 2 � I ; b d � 10, F � NN 0, I , G � NN 0, D ,

Ž . Ž . Ž . Ž .with D � diag 1, . . . , 1, 5, 5 ; c d � 10, F � NN 0, I , G � NN 
, D , where D is as in Figure 3b
Ž .and 
 � 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 .
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Ž �1 . Ž �1 .Convexity and concavity of FG and GF , respectively, of course alsoCC CC

hold in other situations as can be seen in Figure 2a.

2. Suppose that F and G have spherically symmetric Leb-densities in Rd not
necessarily unimodal. In this case we have the following property:

Ž . Ž . d Ž �1 . Ž �1 .If G � � F ��
 for some 
 � R then FG � GF .CC CC

Ž . Ž . dIf there exists a � � R such that G x � F � � x for all x � R then
Ž �1 . Ž �1 . Ž .FG and GF are inverse functions cf. Figure 2a, c; Figure 3a .CC CC

3. Let F be a probability measure on Rd. For a vector 
 � Rd and a real
� Ž . Ž �1 .nonsingular d � d-matrix � let F � � F � � �
 . Then we have the
, �

following transformation property:

Ž �1 . Ž �1 . �1�2 �1F F � F F where 
* � �� 
 and �* � � and I de-0, I 
 , � CC 
*, �* 0, I CC

notes the identity matrix.

4. If the Leb-densities f and g of F and G, respectively, are continuous at
their respective modes then we have:

Ž �1 . Ž �1 .f and g have different modes iff both FG and GF are smallerCC CC

than � for � near zero.

Ž . Ž .Note that 4 is a generalization of the case of a shift given in 2 . Here the
continuity assumption can be relaxed.

6. Discussion.

Other geometric structures. The presented approach has mainly discussed
the d-dimensional Euclidean space. However, the method is formulated in
general terms and can be applied to many other problems with different
geometric structures, too. For instance, it can be applied to directional data,
or to data coming from a simplex, as is the case in some economic applica-
tions. The key is to choose an appropriate class CC.

Composite hypothesis. If we consider a composite hypothesis consisting of
a parametric family, then of course estimating the underlying parameter is a
possibility. However, unfortunately, the analogous behavior of our test statis-
tics to classical one-dimensional test statistics carries over to this situation.
Hence, for composite hypothesis our test statistics with estimated parameters
will no longer be distribution free.

The two sample case. In this paper only the one-sample problem is consid-
ered. The generalization to the two-sample problem seems to be straightfor-

Ž .ward by replacing the known hypothetical distribution G of the previous
sections by the sample distribution of the second sample. Here the computa-
tional aspect is even more critical than in the one-sample case, because one
has to calculate estimates for MV-sets in both samples. Hence, the modified
test statistics discussed in Section 4 become even more important.



W. POLONIK1226

Other continuous functionals. Instead of the sup-statistics we could also
consider other continuous functionals of the underlying processes like L2-type
statistics. This would lead to test statistics of the Cramer�von Mises type.´
Analogous results to the one given in the present paper for the sup-statistics
can easily be obtained for L2-type statistics, too.

7. Proofs.

PROOF OF LEMMA 1.2. The key observation is the following geometric
Ž .‘‘extremal property’’ of the level sets which has already been used implicitly

Ž .in Polonik 1998 . Let

� �S F � � C , F C : C measurable � R � 0, 1 ,� 4Ž . Ž . Ž .Ž .
Žthen level sets of f correspond to the extremal points of the ‘‘upper half’’ of

˜. Ž .the convex hull of S F . More precisely, let F denote the smallest concave
� � Ž .function from R to 0, 1 lying above S F , that is, the least concave majorant

˜Ž . Ž .to S F . Let further �S F be the intersection of the extremal points of the
˜ ˜Ž . � Ž .convex hull of S F with the graph of F. The set �S F is the above

Ž .mentioned set of extremal points of the ‘‘upper half’’ of the convex hull of
˜Ž . � Ž Ž Ž .. Ž Ž ... Ž .S F . Now we have: � � � , F � � � �S F � � 	 0, and for every set Cf f

˜Ž Ž . Ž .. Ž .such that � C , F C � �S F there exists a level � 	 0 such that
˜Ž Ž ..d C, � � � 0, where the � equals the left-hand derivative of F in the point� f

Ž . Ž . Ž .l � � C . This follows from the fact see also the Introduction that � � �f
� Ž . � Ž . Ž .44argmax � C : C � argmin F C � �� C by using similar argumentsC � AA

Ž .as used in Groeneboom 1985 for an analogous representation of the Grenan-
Ž̃ .der density estimator. The lesson of all this is that the set �S F character-

Ž .izes the distribution F. Of course, the same holds, if instead of S F we
consider

� �S F � � C , F C : C � CC � R � 0, 1 ,� 4Ž . Ž . Ž .Ž .CC

˜ Ž .where we know a priori that LL � CC: the set �S F formed analogously tof CC

Ž̃ .�S F characterizes the distribution F. Now, choose CC � LL � LL . With thisf g
Ž . Ž . Ž .choice of CC it follows that if b holds, then S F � S G and henceCC CC

˜ ˜Ž . Ž .�S F � �S G which means F � G. �CC CC

Ž .PROOF OF LEMMA 2.1. a Suppose that P holds. By the definition of1
Ž Ž ..MV-sets we have G C � 	 � . Hence, the first equation in P gives usG, CC 1

Ž Ž .. Ž Ž ..F C � 	 � . It follows, again by definition of MV-sets that � C � 	G, CC G, CC

Ž Ž ..� C � . For symmetry reasons the converse inequality follows similarly.F , CC

Ž Ž .. Ž Ž ..Hence, � C � � � C � and the uniqueness assumption on the MV-F , CC G, CC

Ž Ž . Ž ..sets gives d C � , C � � 0.� F , CC G, CC

Ž . Ž Ž ..As for the proof of part b , note first that trivially P implies F C �2 G, CC

Ž Ž .. Ž Ž .. Ž Ž .. � �� F C � and G C � � G C � for all � � 0, 1 . Hence it re-F , CC F , CC G, CC

Ž Ž .. Ž Ž .. � �mains to show that P implies F C � � G C � for all � � 0, 1 .2 F , CC G , CC

� � Ž Ž .. Ž Ž ..We show that if there exists an � � 0, 1 with F C � � G C �0 F , CC 0 G, CC 0
� � Ž Ž . Ž ..then there exists an � � 0, 1 with d C � , C � � 0. Let � be such� G, CC F , CC 0
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Ž Ž .. Ž Ž .. Ž .that F C � � � � � � G C � 	 � . Then C � is a MV-setF , CC 0 F G G, CC 0 0 F , CC 0
� � Ž .for F at all levels � � � , � and C � is a MV-set for G at all levels0 F G, CC 0

� � Ž .� � � , � . However, C � is no longer a MV-set for G at levels0 G G, CC 0
Ž �� � � , � . From the uniqueness assumption it follows that eitherG F

Ž Ž . Ž .. Ž Ž . Ž ..d C � , C � � 0 or d C � , C � � 0 for some � �� F , CC 0 G , CC 0 � F , CC G, CC

Ž �� , � . For symmetry reasons the same would follow if � � � . �G F F G

PROOF OF LEMMA 2.3. Since LL � CC, the level sets of g are MV-sets.g
Ž . Ž Ž .. Ž Ž ..Hence it follows from F � CONC G that F � � � G � � for all � � 0.CC g g

Ž Ž .. Ž Ž ..Since LL � LL we then automatically also have G � � � F � � for allf g f f
� � 0. An application of Lemma 1.2 completes the proof. �

�Ž .Ž Ž .. ŽPROOF OF THEOREM 3.1. Write S � sup F � F C � 
 Fn, CC � ��0, 1� n G , CC

.Ž Ž .. � Ž .� G C � . The GC F -property of the class of MV-sets in CC for G givesG, CC

�Ž .Ž Ž .. � Ž .S � sup F � G C � 
 o 1 a.s., and the assertion follows fromn, CC � ��0, 1� G , CC

Ž .the definition of F � CONC G . �CC

Ž .PROOF OF THEOREM 3.2. a If F � G then trivially

10 T � sup F � F C � 
 F � F C � ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .n , CC n G , CC n n , CC

� ��� 0, 1

Ž .and the GC F -property of CC gives the assertion.
Ž . Ž .As for the proof of part b note that it follows from 6 that

G C � � G C � � o 1 a.s. as n � �,Ž . Ž . Ž .Ž . Ž .n , CC F , CC

Ž . Ž .and hence, by using the GC F -property of CC together with 5 it follows that
as n � �,

T 	 F � G C � 
 F � G C �Ž . Ž . Ž . Ž .Ž . Ž .n , CC n G , CC n n , CC

� F C � � G C �Ž . Ž .Ž . Ž .G , CC G , CC


 F C � � G C � 
 o 1 a.s.Ž . Ž . Ž .Ž . Ž .F , CC F , CC

Hence, if F � G there exists an � such that the nonstochastic term on theCC

Ž .right-hand side is positive, and the proof of part b is complete.
Ž .For the proof of part c , using the stronger assumptions, it follows simi-
Ž .larly to the proof of part b that as n � �,

T � sup F C � � G C �Ž . Ž .Ž . Ž .n , CC G , CC G , CC

� ��� 0, 1


 F C � � G C � 
 o 1 a.s.Ž . Ž . Ž .Ž . Ž .F , CC F , CC

and the proof is complete. �
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Ž . Ž . Ž .PROOF OF THEOREM 3.6. Starting from 10 and using i and ii it follows
that

1
11 T � 2 sup F � F C � 
 o .Ž . Ž . Ž .Ž .n , CC n F , CC P ž /'n� ��� 0, 1

The assertion now follows from Theorem 3.5. �

ˆPROOF OF PROPOSITION 4.1. Let F denote the distribution correspondingn
ˆ Ž .to f . Let M � sup f x . We have the following key inequality which holdsn x

for every � � 0:

ˆd � � , � �Ž . Ž .ž /F f n

� F x : f x � � 	 �� 4Ž .12Ž .
�1 ˆ ˆ ˆ
 � M F � F � � � F � F � � .Ž . Ž .Ž .Ž . Ž . Ž .n n n f

Ž . Ž .This inequality is essentially the same as inequality 3.2a in Polonik 1995 .
ˆThere one just has to replace F by F and the so-called empirical general-n n

ˆŽ . Ž .ized �-clusters � � by � � .n, CC n
It remains to show that the assumptions assure that for each � � 0 the

Ž .right-hand side in 12 converges to zero stochastically uniformly in �. The
uniform convergence to zero of the first term on the right-hand side follows
from the fact that f has no flat parts. As for the stochastic term, one uses the
fact that pointwise stochastic convergence of density estimators imply their
L -convergence, and hence one has convergence in total variation, so that the1
nondeterministic term converges to zero stochastically, uniformly in �. �
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