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In this work we study additive dynamic regression models for longitu-
dinal data. These models provide a flexible and nonparametric method for
investigating the time-dynamics of longitudinal data. The methodology is
aimed at data where measurements are recorded at random time points.
We model the conditional mean of responses given the full internal history
and possibly time-varying covariates. We derive the asymptotic distribution
for a new nonparametric least squares estimator of the cumulative time-
varying regression functions. Based on the asymptotic results, confidence
bands may be computed and inference about time-varying coefficients may
be drawn. We propose two estimators of the cumulative regression function.
One estimator that involves smoothing and one that does not. The latter,
however, has twice the variance as the smoothing based estimator. Good-
ness of fit of the model is considered using martingale residuals. Finally,
we also discuss how partly-conditional mean models in which the mean
of the response is regressed onto selected time-varying covariates may be
analysed in the same framework. We apply the methods to longitudinal
data on height development for cystic fibrosis patients.

1. Introduction. In bio-medical research one often deals with responses
and covariates obtained over time for independent subjects. This type of lon-
gitudinal data is encountered in many studies, for example when interest is
on a treatment effect on health status. There has been important progress for
parametric problems with the GEE approach of Liang and Zeger (1986). Mur-
phy and Li (1995) considered estimating equations and Scheike (1994) dealt
with conditional least squares for longitudinal data in the general framework
for longitudinal data presented here.

Nonparametric methods provide a more flexible tool for longitudinal data
analysis. Scheike and Zhang (1998) considered smooth nonparametric regres-
sion models to study effects of covariates on the longitudinal response. Their
approach may, however, require very large sample sizes and is not suited for a
situation with more than a few covariates. The results from such an analysis
may further be difficult to interpret. In this work we present a new nonpara-
metric method for studying the effects of several covariates on the longitudinal
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Fig. 1. The growth of 5 randomly chosen patients with cystic fibrosis.

response. We impose further structure through an underlying additive time-
varying coefficients regression model.

We present a motivating example where the growth of cystic fibrosis pa-
tients is monitored over a long period of time; see Laursen et al. (1999) for
details. Figure 1 shows the growth of 5 randomly chosen patients as a function
of age.

The objective is to see whether the growth has changed over calendar time.
The data consist of approximately 250 patients that have had their height
measured longitudinally. For these data, responses for different subjects were
recorded at random times rather than being observed at fixed times, this is
often the case for longitudinal data collected in bio-medical research. Interest
now centers on whether the growth of the patients has improved over calendar
time due to changes in treatment and in particular whether the magnitude
of any improvement in growth over calendar time depends on the age of the
patients. To answer this question it is natural to consider conditional models
for the current response given what has been previously observed and to allow
the regression coefficients to depend on age.

The general and flexible class of regression models investigated in this pa-
per are such time varying coefficients models in which the mean response
of the quantity of interest is given as a linear combination of possible time-
varying covariates and time-varying coefficients:

E�Zt �Covariates at time t� = β0�t� +X1�t�β1�t� + · · · +Xq�t�βq�t�
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where Zt is the response measured at time t, β1�t�� � � � � βq�t� are the time-
varying coefficients and X1�t�� � � � �Xq�t� the covariates. The covariates may
represent two types of information collected over time. The internal informa-
tion about the history of the longitudinal data such as previous responses and
the time at which these responses were obtained; and the external information
about the development of external covariates that contain information about
the response in question.

This type of model has been studied extensively in survival analysis over the
years and is known as Aalen’s additive hazard model; see Aalen (1980, 1989),
McKeague (1988), Huffer and McKeague (1991) and Andersen, Borgan, Gill
and Keiding (1993) for an overview. In the case of cross-sectional data, the
time varying regression model has been described by a number of authors in
the regression setting. Hastie and Tibshirani (1993) proposed various ways
of fitting these models and derived conditions under which their back-fitting
algorithm will converge. The theoretical properties of the estimation procedure
is however not well known. Recently, Fan and Zhang (1999) and Hoover, Rice,
Wu and Yang (1998) considered local regression techniques.

Existing nonparametric methods for longitudinal data are typically based
on smoothing techniques focusing on estimation of the regression functions di-
rectly. We take a completely different approach by estimating the cumulative
regression functions

∫ t
0 βj�s�ds. It turns out that these quantities are much

easier to estimate than is the case for the regression functions. It is further
possible to give a satisfactory description of the large sample properties of
the estimators of the cumulative regression functions. We extend the methods
used in survival analysis to longitudinal data exploiting the fact that longi-
tudinal data with random measurement times may be viewed as a marked
point process. This allows us to draw on martingale calculus, which in turn
enables us to provide a detailed large sample theory for the suggested new
least squares estimators of the cumulative regression functions. We may then
compute confidence bands and draw inference about the regression functions
based on the asymptotic results. When the distribution of the measurement
times is known, the estimator of the cumulative regression function needs no
smoothing. Typically, however, the distribution of the measurement times is
unknown and then a smoothing parameter is needed to estimate this quantity.
The estimator is similar to Aalen’s least squares estimator for Aalen’s additive
intensity model in survival analysis. Even for an unknown distribution of the
measurement times, we suggest an alternative nonparametric least squares
estimators that does not involve any smoothing, but this estimator has twice
the variance of the smoothing based estimator. The estimator where smooth-
ing is avoided may, however, be useful as an initial estimator since the choice
of the smoothing parameter is then not needed.

When specifying the above model in a longitudinal data setting the covari-
ates in the above mean value may represent knowledge collected over time.
Pepe and Couper (1997) draw attention to the distinction between a fully con-
ditional model where the above conditional mean is equal to the conditional
mean given the entire history of the process as well as external covariates
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and partly conditional mean models where the mean is regressed onto only
selected covariates. These selected covariates are a subset of the covariates
necessary to describe the full conditional mean. Aalen’s additive model is an
example of a fully conditional model since the intensity is given the entire his-
tory. Pepe and Couper study the partly conditional models fitting the parame-
ters of the model by GEE [Liang and Zeger (1986)] and derive the asymptotic
distribution under regularity conditions. We consider also these issues for the
nonparametric time-varying additive regression model.

The paper is structured as follows: Section 2 contains a description of the
model in a stochastic process framework (marked point process). Section 3
presents the nonparametric least squares estimators of the cumulative re-
gression functions and in Section 4 we describe their asymptotic properties
which may be used for inference. Section 5 deals with evaluation of “goodness
of fit” for the dynamic regression model. Section 6 considers partly specified
conditional models. Section 7 contains the application to height development
for cystic fibrosis patients, and finally, Section 8 contains a discussion.

2. A nonparametric additive model for longitudinal data. In this
section, we present a dynamic conditional model for the development of re-
sponses observed longitudinally. The model takes its basis around modeling of
the conditional mean of the current response and is as such a moment based
approach. We have the situation in mind where the responses are recorded at
measurement times that are not too regular and can be described by a count-
ing process. Therefore it makes sense to look for continuous time description
of the development of the conditional mean of the response variable.

To fix ideas, let data for the ith subject, i = 1� � � � � n, consist of

�Tk
i �Z

k
i �Xi�t��(2.1)

where Tk
i is the time-point for the kth measurement Zk

i of the longitudinal
variable and Xi�t� is a time-dependent piecewise constant or deterministic
(given past information) covariate (q× 1) associated with the ith subject. The
covariates can reflect internal information such as the time since the previous
measurement and the previous level of response as well as external informa-
tion in terms of other covariate information such as gender and treatment.
Extensions to non-predictable covariates are possible along the lines of Mur-
phy and Li (1995) and Murphy (1995). In the application, Tk

i is the age for the
ith subject at its kth measurement; Zk

i is the height velocity on log-scale (see
Section 7); and Xi�t� is a covariate vector containing information about the
previous height measurement, the time since the previous height measure-
ment and calendar time.

We assume that we have n subjects from a generic model which we de-
scribe in the following. The description is based on the notion of marked point
processes, see Brémaud [(1981), Chapter 8] for a more detailed exposition of
this theory. The �Tk

i �Z
k
i � constitutes a marked point process, Tk

i being the
kth jump time and Zk

i the associated mark. The marks for the ith process
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�Zk
i � take their values in the measurable space �E�� � referred to as the mark

space. To each Ai ∈ � , we associate a point process

Ni�t��Ai� =
∑
k≥1

1�Zk
i ∈Ai�1�Tk

i≤t��

and let Ni�t� = Ni�t��E�, i = 1� � � � � n, denote the basic point processes.
The marked point processes can also be identified by their respective induced
counting measure pi�ds× dzi� defined by

pi��0� t� ×Ai� =Ni�t��Ai�� Ai ∈ � �

We consider a history �t = � 1
t ∨ · · · ∨ � n

t such that

� i
t ⊃ �

pi

t � t ≥ 0�

where �
pi

t is the history generated by the ith marked point process and fur-
ther assume that the processes Xi�t�, i = 1� � � � � n, are �t-predictable, locally
bounded and piecewise constant or deterministic given past information, that
is,

Xi�t� =
{
fk�t�X0

i �T
1
i �X

1
i �Z

1
i � � � � �T

k
i �X

k
i �Z

k
i �� for Tk

i < t < Tk+1
i �

gk�t�X0
i �T

1
i �X

1
i �Z

1
i � � � � �T

k
i �X

k
i �� for t = Tk

i �

where X0
i � � � � �X

k
i reflect external information, and fk and gk are determin-

istic functions. The pi�ds×dzi� admits the �P��t�-intensity kernel λit�dzi� =
λit�

i
t�dzi�, i = 1� � � � � n, that is, λit�

i
t�Ai� is the intensity of the point process

Ni�t��Ai�, Ai ∈ � .
Denote the history

σ�Tl
i�Z

l
i�1 ≤ l ≤ k− 1�Tk

i � �Xi�t� � t ≤ Tk
i ��

of all observations up to and including Tk
i by � i

Tk
i−

. We then have

�i
Tk
i

�Ai� = P
(
Zk
i ∈ Ai

∣∣∣� i
Tk
i−

)
�

that is, �i
t is the conditional mark distribution given the past up to and in-

cluding the time-point where the mark is obtained. The additive mean-model
is now given by assuming that

mi�t� =
∫
E
zi�

i
t�dzi� = β0�t� + β1�t�Xi1�t� + · · · + βq�t�Xiq�t�

where β0�t�� � � � � βq�t� are unspecified locally integrable time-dependent re-
gression functions. The variance function

∫
E�zi −mi�t��2�i

t�dzi� is assumed
to be independent of i and denoted by σ2�t�.

An alternative specification of the mean-model is

Zk
i = β0�Tk

i � + β1�Tk
i �Xi1�Tk

i � + · · · + βq�Tk
i �Xiq�Tk

i � + εki(2.2)

with E�εki �� i
Tk
i−
� = 0 and V�εki �� i

Tk
i−
� = σ2�Tk

i �.
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The intensity λit for the ith subject, that is the intensity of Ni�t�, is assumed
to have a multiplicative structure [Aalen (1975, 1978)] as follows:

λit = Yi�t�α�t�
where α�t� is an unknown deterministic function and Yi�t� is a stochastic
process that only depends on the past of the observations (predictable). In
this paper, we assume that Yi�t� is a simple indicator variable, indicating
whether the ith individual is under observation just before time t. We are
then able to deal with delayed entry and right censoring in a similar way as
is done in survival analysis, see Andersen et al. (1993).

We end this section with some notation which we will use in the coming
sections. Given marked point processes pi�dt×dz� and a function Hi�t� z� of
time and the responses that may depend on observations prior to t, we use
the notation∫ t

0

∫
E
Hi�s� zi�pi�ds× dzi� =

∞∑
k=1

Hi�Tk
i �Zi�Tk

i ��I�Tk
i ≤ t�

referring to the former as a marked point process integral. Collecting the n
marked point processes p�dt × dz� = �p1�dt × dz1�� � � � � pn�dt × dzn��T and
considering n× r matrices H�t� z� = �Hij�t� z�� and K�t� z� = �Kij�t� z�� with
z = �z1� � � � � zn�, we define the jth entry in the r× 1 matrix∫ t

0

∫
E
H�s� z�Tp�ds× dz�

by
n∑
i=1

∞∑
k=1

Hij�Tk
i �Zi�Tk

i ��TI�Tk
i ≤ t�

and the �j� l� element of the r× r matrix∫ t

0

∫
E
H�s� z�Tdiag�p�ds× dz��K�s� z�

by
n∑
i=1

∞∑
k=1

Hij�Tk
i �Zi�Tk

i ��Kil�Tk
i �Zi�Tk

i ��I�Tk
i ≤ t��

3. Estimation. Trying to estimate the regression functions directly is
rather complicated, see Hastie and Tibshirani (1993). We focus instead on
estimating the cumulative regression functions Bj�t� = ∫ t

0 βj�s�ds by least
squares estimation. Estimates of the regression functions may then be ob-
tained by smoothing techniques. In applications, inferential issues about the
regression functions may often be formulated in terms of the cumulative re-
gression functions and then our approach will provide the possibility for formal
tests.
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Consider the processes Hi�t� zi� = zi and let B�t� = �B0�t�� � � � �Bq�t��T.
Then the sum of the responses occurring before time t can be written as a
marked point process integral where we integrate Hi�t� zi� with respect to
pi�ds × dzi�. The sum of the responses thus gives the following martingale
decomposition (see Proposition 1 in the Appendix):∫ t

0

∫
E
zi pi�ds× dzi� =

∫ t

0
α�s�Yi�s�mi�s�ds+Mi�zi��t��

for i = 1� � � � � n, where Mi�zi��t� is a marked point process martingale.
Collecting these n equations in one vector equation, we obtain∫ t

0

∫
E
D�z�p�ds× dz� =

∫ t

0
α�s�Y�s�dB�s� +M�z��t�(3.3)

where z = �z1� � � � � zn�,D�z� = diag�z�, p�dt×dz� = �p1�dt×dz1�� � � � � pn�dt×
dzn��T, M�z��t� = �M1�z1��t�� � � � �Mn�zn��t��T and Y�t� = �Yij�t�� is the
n× �q+ 1�-matrix with ith row, i = 1� � � � � n, given by

Yi�t��1�Xi1�t�� � � � �Xiq�t���
Writing (3.3) in differential form∫

E
D�z�p�dt× dz� = α�t�Y�t�dB�t� + dM�z��t��

where E�dM�z��t� �Past observations� = 0, motivates least squares estima-
tors for B�t� of the form

B̂�t� =
∫ t

0

∫
E

J�s�
α̂�s�Y

−�s�D�z�p�ds× dz�(3.4)

where α̂�t� is an estimate of α�t�, Y−�t� is a predictable generalized inverse
of Y�t�, that is, a �q+ 1� × n-matrix satisfying

Y−�t�Y�t� = I�q+1��

the �q + 1� × �q + 1� identity matrix and J�t� = I�Y�t� has full rank and
α̂�t� > 0�. One choice of generalized inverse is

�Y�t�TY�t��−1Y�t�T

which is based on an unweighted least squares principle. This choice is in-
efficient, but simple to compute and will be used throughout this paper. An
asymptotically efficient estimator is available using a weighted least squares
inverse as suggested by McKeague (1988) and Huffer and McKeague (1991)
for the Aalen additive hazard model.

Using (3.4) we need to specify an estimate of α�t�. For simplicity we suggest
to use a kernel smoothing estimate, that is, we let

α̂�t� = 1
bn

∫
K

(
t− s

bn

)
dÂ�s�
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where Â�t� = ∫ t
0

1
Y·�s� dN·�s�, Y·�t� = ∑

i Yi�t�, N·�t� = ∑
i Ni�t�, K is a

bounded kernel function having integral 1 and support �−1�1� and bn is the
bandwidth parameter. This is the Ramlau-Hansen (1983) kernel estimator.
Note that the intensity estimator will be biased and that this bias will cause
bias for the estimator (3.4). We suggest to undersmooth the intensity to avoid
serious bias and return to this issue in the next section.

The estimator just presented is based on adjusting for the intensity of ob-
servations through a smoothing based estimator of the hazard α�t�. We now
present an alternative estimator that does not involve any smoothing. De-
note the jump times of N·�t� by τk = inf�t ≥ 0�N·�t� = k�. The alternative
estimator of B�t� is

B̃�t� =
∫ t

0

∫
E
J�s��s− τN�s−��Y·�s�Y−�s�D�z�p�ds× dz��

the idea being that

�τk − τk−1� ≈ �Y·�t�α�t��−1

for t ∈ �τk−1� τk��
It may be shown that Theorem 1 is valid for this estimator also, except that

the variance of the estimator is twice the variance of B̂�t�, see an unpublished
University of Copenhagen technical report by Martinussen and Scheike (1998)
for a proof. The increase in variance is due to the fact that the distance to
the nearest jump time is a much more variable estimator of the reciprocal
of the intensity than a smoothing based estimate. In Scheike (2000) a similar
approach for estimation of the cumulative regression function for the standard
one-sample cross-sectional nonparametric regression set-up is considered.

Based on the cumulative regression functions which we estimated rather
easily, estimates of the regression functions may be found by smoothing. A
consistent estimator of βj�t�, say, is given by

β̂j�t� =
∫
K

(
t− s

wj

)
dB̂j�s�

where wj is an appropriate bandwidth for smoothing B̂j. A more detailed
study of this estimator is beyond the scope of this paper.

4. Large sample results. In this section we show that the least squares
estimator described in the previous section is asymptotically Gaussian with a
variance which we may estimate consistently. The result derived is based on
Proposition 1 (see the Appendix) for marked point processes and martingale
convergence results and is somewhat similar to the asymptotic analysis for
Aalen’s additive regression model provided by McKeague (1988) and Huffer
and McKeague (1991).

We start by defining various functions depending on the design which are
important for the asymptotic analysis. We suppose that the study interval is
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�0� S� where S <∞. Define for j� k� l�m = 0� � � � � q� t ∈ �0� S�,

R
�1�
j �t� =

n∑
i=1

Yij�t��

R
�2�
jk �t� =

n∑
i=1

Yij�t�Yik�t��

R
�3�
jkl�t� =

n∑
i=1

Yij�t�Yik�t�Yil�t��

R
�4�
jklm�t� =

n∑
i=1

Yij�t�Yik�t�Yil�t�Yim�t��

Let t ∈ �0� S� and assume that for j� k� l�m = 0� � � � � q there exists contin-
uous functions r�1�j , r�2�jk , r�3�jkl and r

�4�
jklm such that as n→ ∞�

�A�

sup
t∈�0�S�

∣∣∣∣ 1nR�1�
j �t� − r

�1�
j �t�

∣∣∣∣ p→0�

sup
t∈�0�S�

∣∣∣∣ 1nR�2�
jk �t� − r

�2�
jk �t�

∣∣∣∣ p→0�

sup
t∈�0�S�

∣∣∣∣ 1nR�3�
jkl�t� − r

�3�
jkl�t�

∣∣∣∣ p→0�

sup
t∈�0�S�

∣∣∣∣ 1nR�4�
jklm�t� − r

�4�
jklm�t�

∣∣∣∣ p→0�

Assume further that for h = 1�2, j = 0� � � � � q,

�B� G
�n�
h

def= 1√
n


 sup

t∈�0�S�
i=1�����n

�Yij�t��



h

p→0 as n→ ∞

and (C) that the matrix r�2��t� is nonsingular for all t ∈ �0� S�. We further
assume (D) that the fourth central moment of the mark distribution (response)
η�t� = ∫

E�zi−mi�t��4�i
t�dzi� is independent of i and that supt∈�0�S� η�t� <∞.

See Section 2 for a definition of the mark distribution �i
t�dzi�. Finally, we

assume that there exist a positive continuous function y�t� such that

�E� sup
t∈�0�S�

∣∣∣∣ 1nY·�t� − y�t�
∣∣∣∣ p→0 as n→ ∞�

Using the central limit theorem for martingales, we can prove the following
result.

Theorem 1. Assume that conditions (A), (B), (C), (D) and (E) hold, α�t�
is continuous differentiable and bounded away from zero, α̂�t� is uniformly
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consistent and bn → 0,
√
nb2

n → 0. Then

√
n�B̂−B� �−→U as n→ ∞

in D�0� S�p+1, where U is a mean-zero Gaussian martingale with

cov�Uj�t��Uk�t��

=
p∑

f�g�l�m=0

∫ t

0

βf�s�βg�s�
α�s� �r�2��s��−1

jl �r�2��s��−1
kmr

�4�
fglm�s�ds(4.5)

−
∫ t

0

βj�s�βk�s�
α�s�y�s� ds+

∫ t

0

σ2�s�
α�s� �r�2��s��−1

jk ds�

The proof of Theorem 1 is given in the Appendix.

Remarks. (i) The Ramlau-Hansen kernel estimator, α̂�t�, is uniformly con-
sistent when nb2

n → ∞; see Ramlau-Hansen (1983).
(ii) The covariance function (4.5) is consistently estimated by the estimated

optional variation process

4̂�t� = n
∫ t

0

∫
E

J�s�
α̂2�s�H�z� s�diag�p�ds× dz��H�z� s�T

where H�z� t� = Y−�t��D�z�− 1
Y·�t�Y�t�β̂�t�a� with a the 1×n-vector �1� � � � �1�.

(iii) Suppose that we have i.i.d replicates, that is, the ��pi�Yi�Xi�� i =
1� � � � � n� are assumed to be i.i.d. A sufficient condition for conditions (A) and
(B) to hold is then

E

(
sup
t∈�0�S�

�Y4
ij�t��

)
<∞

for j = 0� � � � � p. Furthermore, the �j� l�-element of the matrix r�2� is

r
�2�
jl �t� = E�Yij�t�Yil�t���

and it is thus seen that condition (C) corresponds to a linear independence
condition on the covariates. For a similar remark on Aalen’s additive hazard
model, see Andersen et al. [(1993), page 578].

(iv) In the one-sample situation, that is without any covariates, the two first
terms in (4.5) cancel out leaving us with the following asymptotic variance

∫ t

0

σ2�s�
α�s�y�s� ds�

see Scheike and Zhang (1998) for a similar result for the nonparametric re-
gression set-up.
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(v) The ideal bandwidth bn�opt (for a kernel smoother), the one that bal-
ances the effect of the “squared bias term” and the “variance term” of the mean
integrated squared error term in an optimal way, is of order n−1/5. To ensure
that

√
nb2

n → 0, we have to require that bn converges faster to zero than
bn�opt, that is we have to undersmooth compared to the optimal situation.

(vi) Note that the results may be applied to regression models where re-
sponses are transformed by a transformation that depends only on past ob-
servations.

(vii) The theorem may be extended to predictable variance functions (σ2�·�)
under further regularity conditions that ensure the convergence of the pre-
dictable variation process and the Lindeberg condition in the martingale con-
vergence theorem. The presented estimators of the cumulative regression
functions and their variance functions remain valid.

If one is unwilling to choose a smoothing parameter bn, the alternative
estimator B̃�t� may be used. An estimator of the variance for B̃�t� is given by
its optional variation process, that is equivalent to the expression in remark
(ii) with 1/α̂2�t� replaced by �t− τN·�t−��2Y2

· �t�
Apart from the simplicity of estimation, one further benefit of direct esti-

mation of the cumulative regression functions is that inference may be based
on the cumulative regression functions whose asymptotic distribution are de-
scribed by Theorem 1.

Considering one component of the cumulative regression functions, Bj�t�,
say, one may now wish to test if this component is equal to zero. This is done
easily through the above Theorem 1. Let 4̂jj�t� denote element �j� j� of 4̂�t�.
A test statistic is

√
n

B̂j�S�√
4̂jj�S�

which is asymptotically standard normal. This test-statistic has been dis-
cussed in the nonparametric regression setting by Scheike and Zhang (1998)
and Scheike (2000); see also McKeague and Zhang (1994) for a similar ap-
proach for time-series analysis.

Alternatively, when the studied regression functions are not consistently
positive or negative one may use a maximal deviation test statistic of the
process

ξj�t� = B̂j�t��4̂jj�S��1/2�4̂jj�t� + 4̂jj�S��−1

which converges towards a time-changed Brownian bridge. Therefore

sup
t∈�0�S�

�ξj�t��

converges towards the supremum of the limit distribution, see Huffer and
McKeague (1991) for details and Hall and Wellner (1980) for quantiles of the
limit distribution.
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5. Goodness of fit. We suggest to use martingale residual processes plots
to investigate the goodness of fit of the model given by (2.2). Aalen (1993) con-
sidered similar plots for the additive hazard regression model and we adapt
his suggestion to the current situation. In the marked point process set-up for
longitudinal data, however, the suggested martingale residuals can only reveal
whether the responses are well modelled by the conditional means given the
covariates. As this is the primary object of interest we focus only on this part
of the model validation. Note, as pointed out in Remark (vii) of Theorem 1,
that the description of the variance function is not crucial for the estimates of
the cumulative regression function and their variance functions to be correct.
The model for the counting process that describes the measurement times,
however, will influence how to estimate the conditional mean values. Scheike
(1997) gave an example where extreme observations of the response made
new visits at a clinic more likely, thus increased the intensity of the counting
process. We return to this issue in the discussion. Many techniques for inves-
tigating the goodness of fit for counting process models are available and we
refer to Andersen et al. (1993) for further details on such techniques.

The processes in this section are only considered on �0� S∗� where S∗ =
inf�t ≥ 0 � Y�t� loses full rank� is a stopping time (preserving martingale
properties). Let

Mres�t� =
∫ t

0

∫
E
�I−Y�s�Y−�s��D�z�p�ds× dz��(5.6)

We can rewrite Mres�t� as

Mres�t� =
∫ t

0
�I−Y�s�Y−�s��α�s�Y�s�dB�s�+

∫ t

0

∫
E
�I−Y�s�Y−�s��dM�z��s�

=
∫ t

0

∫
E
�I−Y�s�Y−�s��dM�z��s�

showing that Mres�t� is in fact a martingale. To investigate the linearity for
a given covariate one can group it into r groups and cumulate the martingale
residuals for each group. When linearity is fulfilled all r entries are martin-
gales. Formally, we transformMres�t� into a r×1 vector where r is the number
of groups for the given covariate. The jth entry in this vector is the sum of
Mres�i�t� for those i where the covariate at time t belongs to the jth group.
Let Kt be a r × n-matrix defining this transformation, that may depend on
time if the covariates are time-varying and let

MK
res�t� =

∫ t

0

∫
E
Ks�I−Y�s�Y−�s��dM�z��s��

A martingale residual plot is then obtained by plotting MK
res�t� against time

t. If the model provides a good description of the data at hand, this plot should
fluctuate around the zero line. The covariance matrix of MK

res�t� may be esti-
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mated by the optional variation process

4̂Kres�t� =
∫ t

0

∫
E
Ks�I−Y�s�Y−�s�� D �z�diag�p�ds× dz��

D �z��I−Y�s�Y−�s��TKT
s

and confidence bands may then be added to the plot.
A uniform Hall-Wellner confidence band over the period from �0� S∗� is given

by

MK
res�t� ±Cγ 4̂

K
res�S∗�1/2

(
1 + 4̂Kres�t�

4̂Kres�S∗�

)

where Cγ is the upper γ-quantile of sups∈�0�1/2� �WO�s�� with WO�s� the stan-
dard Brownian bridge [Hall and Wellner (1980)].

6. Partly conditional mean models. In the previous sections we have
dealt with models for the conditional mean for a response given the history at
the time of the measurement, that is,

E�Zk
i �Past history� = β0�Tk

i � + β1�Tk
i �Xi1�Tk

i � + · · · + βq�Tk
i �Xiq�Tk

i �
= XFi�Tk

i �β�Tk
i �

where β�t� = �β0�t�� � � � � βq�t��T and XFi�t� = �1�Xi1�t�� � � � �Xiq�t��; see (2.1)
for definitions. Note that the fully conditional model is assumed to have a
fixed dimension. Letting the full design be partioned into a partly conditional
model given by covariates XPi�t� = �1�Xi1�t�� � � � �Xim�t�� where m < q and
additional covariates XAi�t� = �Xi�m+1��t�� � � � �Xiq�t��, we may write the full
conditional design as XFi�t� = �XPi�t��XAi�t��. Below, we let subscripts F
and P refer to the design for the fully and partly conditional mean models.

Suppose that the regression model is misspecified, either purposely or by
accident, such that the data-analyst instead of the fully conditional mean
considers the partly conditional model [see Pepe and Couper (1997)],

mi�t� =XPi�t�γ�t�
where γ�t� = �γ0�t�� � � � � γm�t��T. Then with =i�t� = ∫ t

0 γi�s�ds and =�t� =
�=0�t�� � � � � =m�t��T, an estimator of =�t� is given by

=̂�t� =
∫ t

0

∫
E

JP�s�
α̂�s� Y−

P�s�D�z�p�ds× dz��

This estimator has the same mean value as (its compensator)∫ t

0

JP�s�
α̂�s� Y−

P�s�α�s�YF�s�β�s�ds =
∫ t

0

JP�s�
α̂�s� α�s�Y−

P�s��YP�s��YA�s��β�s�ds

=
∫ t

0

JP�s�
α̂�s� α�s��Im�Y−

P�s�YA�s��β�s�ds
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and with the unweighted least squares generalized inverse we see that

Y−
P�s�YA�s� = �YP�t�TYP�t��−1YP�t�TYA�s�

p→ S�t� = var�Yi�t�XPi�t�� cov�Yi�t�XPi�t��Yi�t�XAi�t��

It therefore can be shown (given some conditions) that the estimator converges
to

=̂�t� p→
∫ t

0
�Im�S�s��β�s�ds

as n→ ∞. The coefficients �Im�S�s��β�s� provide the best linear (L2) predic-
tion of Zk

i (or XFi�Tk
i �β�Tk

i �) by XPi�t�. In general, that is, without assuming
that the fully conditional mean is linear, the partly conditional model will
provide estimates of the best linear (L2) prediction for these covariates.

Therefore, as Aalen (1989) points out for the additive hazard regression
model, when omitted covariates are independent of the ones included in the
model the effects of covariates included in the model may be estimated from
the partly conditional model.

7. Application to growth history analysis. Longitudinal data on
growth are commonly encountered in pediatric clinics and used as a tool to
monitor the growth of children. In this section we consider growth data on 258
patients with cystic fibrosis made available to us by the Department of Growth
and Reproduction at the University Hospital in Copenhagen; see Laursen et
al. (1999) for further details on the study. The growth of these patients were
followed over a long period of time (1960-1990) with about 9000 visits at the
clinic. The number of visits ranged between 2 to 50 with a median at 30. The
patients were monitored at rather regular intervals, approximately 4 times per
year. The aim of the analysis is to investigate whether the growth patterns
have been changing over calendar time, thus, indicating that improvement in
medical procedure have had a beneficiary effect on height development. It is
expected that the treatment effects will vary with the age of the patients.

We model the current height conditional on the previous measurement of
height, the time since the previous measurement and calendar time. The
height increase will in general be positive and we therefore model the increase
on a logarithmic scale as described below. A negative increase can occur due
to measurement error and biological variation such as variation during the
day, see Figure 1.

To be specific and with the notation from the previous sections, the model
we considered for the two sexes were

Zk
i = β0�Tk

i � +β1�Tk
i �Hk−1

i +β2�Tk
i ��Tk

i −Tk−1
i � +β3�Tk

i �Ci +β4�Tk
i �C2

i + εki

where Hk−1
i is the height at the previous measurement, Tk−1

i is the age the
previous measurement, Ci is the year of birth for the ith individual and Zk

i
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is the observed height velocity (on log-scale)

Zk
i = log�Hk

i � − log�Hk−1
i �

Tk
i −Tk−1

i

�

The covariate C2
i is included as an empirical device to allow some curvature

in the model. The model thus explains how a relative change depends on
covariates

Hk
i = Hk−1

i

(
β0�Tk

i � + β1�Tk
i �Hk−1

i + β2�Tk
i ��Tk

i −Tk−1
i �

+ β3�Tk
i �Ci + β4�Tk

i �C2
i + εki

)�Tk
i−Tk−1

i �
�

The three regression functions β0�·�� β1�·� and β2�·� are considered nuisance
parameters.

We start by considering the martingale residual goodness of fit plots de-
scribed in Section 5. The three continuous variables previous height, time since
previous measurement and year of birth were each grouped into 5 equally large
groups. We show only the martingale residuals for year of birth as this is the
variable of primary interest and further is the one revealing some lack of fit
for children born before 1970. This is done in Figure 2 where the martingale
residual processes with their uniform 95% confidence bands are depicted.

Figure 2 does not reveal any dramatic fluctuations away from 0, and we
therefore conclude that the model provides a reasonable fit of data, with some
minor problems up to 4 years of age.

Estimates of the cumulative regression functions may be obtained by the
estimator (3.4). We chose the bandwidth to 0.5 years. The estimator that does
not involve the choice of a smoothing parameter gave essentially the same
estimates. We also tried additional bandwidths and obtained similar results.
In principle more objective bandwidth selection procedures may be developed
based on optimality criterions. One notable difference from the usual smooth-
ing techniques, however, is that we estimate the cumulatives at root-n such
that the bias becomes asymptotically negligible. Therefore a more detailed
asymptotic study of higher order terms are necessary to learn about for ex-
ample mean squared error optimality.

We show only the results for boys, the behavior of estimates for girls were
quite similar quantitatively, but with some significant differences between the
regression coefficients as Figure 5 reveals.

Figure 3 shows the cumulative regression functions and their (pointwise)
confidence limits, revealing that most effects are varying with age. The re-
gression coefficient β2�·� may, however, be equal to zero. A maximal deviation
test would not be able to rule this out. In Figure 4 we show the estimates of
the regression coefficients obtained by smoothing of the cumulative regression
functions. Further, a comparison of the growth of boys and girls may be carried
out by simply comparing the corresponding cumulative regression functions
and this is done in Figure 5 which reveals that the development over time for
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Fig. 2. Goodness of fit plot for year of birth. Martingale residual processes for 5 equally large
groupings based on year of birth with 95% simultaneous confidence limits.
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Fig. 3. Cumulative regression coefficients for boys with 95% pointwise confidence limits.
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Fig. 4. Time-varying regression coefficients for boys.
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Fig. 5. Difference between cumulative regression functions for boys and girls with 95 % pointwise
confidence limits.
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Fig. 6. Effect of year of birth C on the conditional height velocities for different ages: β̂3�a�C +
β̂4�a�C2� a = 2�6�10�14 years.

boys and girls differs for the cystic fibrosis patients. The gender differences
for β1�·� and β2�·� are however not dramatic.

In Figure 6 we have shown the effects of calendar time on the conditional
height velocities for different ages (2, 6, 10 and 14), that is, we have plotted
the following functions of year of birth C: β̂3�a�C+ β̂4�a�C2, a = 2�6�10�14.
The height velocities increases with calendar time, and in particular for young
children.

In conclusion, the figures indicate that their is some evidence that the treat-
ment has improved the growth of cystic fibrosis patients.

The conclusions that may be drawn are conditional on the cystic fibrosis
patients being under observation, and this is a selected group of patients,
where selection further may have changed over calendar time. The observed
calendar time covers both changing selection effects and changing treatment
effects and must therefore be interpreted cautiously. The proposed model may
be thought of as a partly conditional model, where the mean is explained by
the suggested covariates rather than being the fully conditional model.

8. Discussion. In this paper, we have studied a nonparametric additive
regression model for longitudinal data. The influence of each covariate is al-
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lowed to vary separately over time. We impose no parametric assumptions on
the mean structure letting the influence of the covariates on the longitudinal
variable vary freely. The model may be viewed as a varying coefficient model
as defined by Hastie and Tibshirani (1993). Hastie and Tibshirani provide
an estimation procedure for this more general class of models. However, the
theoretical properties of their estimation procedure have not been well stud-
ied. Since our model may be considered as a marked point process model, we
may draw on general results for marked point processes such as the central
limit theorem for martingales. We showed that the limiting distribution of the
estimated cumulative regression functions is a Gaussian martingale process
with a variance function that may be estimated consistently which in turn
makes inference about the regression functions possible. Simulation studies
reported in an unpublished paper indicate that the small sample properties
of the suggested estimators are satisfactory.

The suggested model is a very flexible tool in that the effect of the covari-
ates on the longitudinal variable is specified nonparametrically. However, if
there are several covariates to be considered, data may be to sparse to ob-
tain reliable estimates. Therefore it is relevant to study whether some of the
regression functions may be described by parametric expressions (e.g., the re-
gression function is constant over time); see McKeague and Sasieni (1994),
Lin and Ying (1994) and Martinussen and Sørensen (1998) in the context of
Aalen’s additive hazard model for event time data. Martinussen and Scheike
(1999) considered estimation and test-procedures for such a semi-parametric
regression model for longitudinal data.

Due to the additive structure of the proposed model it should be possible
to handle the situation where there may be missing covariate values. This is
currently being investigated and will be communicated in a separate report.

A different area where further research is needed is the modeling of the
measurement times. It is seen from the suggested estimator that the design
vectors are weighted according to the intensity of observations of the corre-
sponding subjects. Such that, for example, an over-representation of extreme
measurements does not bias the estimator. In this work we considered Aalen’s
multiplicative model where the predictable part of the intensity takes into ac-
count how the intensity depends on past observations. In applications it might
be unclear how the intensity depends on the development of the process and
in this case one may look to extend the model to estimate how the measure-
ment process depends on past observations. A two step procedure, where the
intensity is modeled in an initial step and then estimated and plugged into
the estimation equations used for the regression functions for the conditional
mean, may lead to satisfactory results. One may think of the modeling of the
measurement time process as the price we are paying for the simple estima-
tor of the cumulative regression functions. The usual approaches are based on
conditioning with the measurement times and then estimating the regression
functions directly by smoothing techniques. The smoothing based approach
completely avoids the problem of specifying a correct model for the intensities.
If, however, the intensity does interact with the measurements, the conditional
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distribution given the measurement times should reflect this fact, just like the
dynamic regression model should reflect it. For non-fixed designs the analy-
sis should therefore always contain a detailed study of the the measurements
times as well as the responses.

APPENDIX

We will apply marked point process theory to derive the large sample results
presented in the paper.

The following result for marked point processes is used for handling the
marked point process integrals in the model and is used throughout the rest
of the Appendix. This basic result was also applied in Scheike (1994).

Proposition 1. Let pi, i = 1� � � � � n, be marked point processes as defined
in Section 2, and let Hi1�t� zi�, Hi2�t� zi� be �t-predictable processes such that

∫ t

0

∫
E
H2

ij�s� zi�λis�i
s�dzi�ds <∞ a.s�

for j = 1�2. Further, define qi�ds× dzi� = pi�ds× dzi� − λit�
i
t�dzi�ds and

Mi�Hij��t� =
∫ t

0

∫
E
Hij�s� zi�qi�ds× dzi��

Then Mi�Hij��t�, i = 1� � � � � n, are orthogonal local square-integrable martin-
gales with respect to �t . The predictable variation processes are given by

�Mi�Hi1��Mi�Hi2���t� =
∫ t

0

∫
E
Hi1�s� zi�Hi2�s� zi�λis�i

s�dzi�ds

i = 1� � � � � n.

Proof of Theorem 1. Let B∗�t� = ∫ t
0 J�s�β�s�ds. Using (A), (C) and (E)

it is seen that
√
n�B̂−B� and

√
n�B̂−B∗� have the same limiting distribution.

Now,

√
n�B̂−B∗��t�

= √
n
∫ t

0

J�s�
α̂�s�Y

−�s�dM�z��s� − √
n
∫ t

0

J�s�
α̂�s�β�s�d�Â�s� −A�s��(A.1)

+√
n
∫ t

0

J�s�
α̂�s�β�s�d�Â�s� − Ã�s���
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where Â�t� = ∫ t
0

1
Y·�s� dN·�s� and Ã�t� = ∫ t

0 α̂�s�ds. Interchanging integration

order in
∫ t
0 α̂�s�ds and using a Taylor expansion, it can be seen that

sup
t∈�0�S�

�Â�t� − Ã�t�� = Op�b2
n��

Hence, using the continuous mapping theorem, the last term on the right-
hand side of (A.1) converges uniformly to zero in probability. Let X�t� denote
the sum of the two first terms on the right-hand side of (A.1). We may write
X�t� as

X�t� = √
n
∫ t

0

∫
E

J�s�
α̂�s�Y

−�s��D�z� − 1
Y·�s�

Y�s�β�s�a�q�ds× dz�

where q�ds × dz� = �q1�ds × dz1�� � � � � qn�ds × dzn��T and a is the 1 × n-
vector �1� � � � �1�. We may replace α̂�t� by α�t� in X�t� and still obtain the
same limiting distribution by use of the continuous mapping theorem. The
jth component of X�t� may then be written as

Xj�t� =
n∑
i=1

∫ t

0

∫
E

1√
n

J�s�
α�s� �Vji�s�zi −

βj�s�
1
n
Y·�s�

�qi�ds× dzi�

=
n∑
i=1

Mi�Hij��t�

where

Hij�t� zi� =
1√
n

J�s�
α�s� �Vji�s�zi −

βj�s�
1
n
Y·�s�

�

with Vji�t� =
∑p

l=0� 1
n
R�2��t��−1

jl Yil�t�. To identify the asymptotic variance, we
have to compute the predictable variation process of X�t�. Using Proposition
1, it is found to be (suppressing the dependency of time on the integrands)

�Xj�Xk��t� =
p∑

l�m=0

∫ t

0

J

α

(
1
n
R�2�

)−1

jl

×
(

1
n
R�2�

)−1

km

(
1
n

n∑
i=1

YilYim

(
p∑

f�g=0

YifYigβfβg + σ2

))
ds

−
∫ t

0

Jβjβk

α 1
n
Y·

ds�

From the above expressions and using (A), (C) and (E) it is seen that
�Xj�Xk��t� converges in probability to the expression for cov�Uj�t��Uk�t��
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stated in Theorem 1. We will now turn to the Lindeberg condition in the mar-
tingale central limit theorem. The process containing all the jumps of Xj�t�
larger in absolute value than ε is given by

Xjε�t� =
n∑
i=1

∫ t

0

∫
E

1√
n

1
α�s�

(
Vji�s�zi −

βj�s�
1
n
Y·�s�

)

×I
(

1√
n

1
α�s�

∣∣∣∣∣Vji�s�zi −
βj�s�
1
n
Y·�s�

∣∣∣∣∣ > ε

)
qi�ds× dzi�

The predictable variation process for Xjε�t� is

�Xjε��t� =
n∑
i=1

∫ t

0

∫
E

1
n

Yi�s�
α�s�

(
Vji�s�zi −

βj�s�
1
n
Y·�s�

)2

×I
(

1√
n

1
α�s�

∣∣∣∣∣Vji�s�zi −
βj�s�
1
n
Y·�s�

∣∣∣∣∣ > ε

)
�i
s�dzi�ds

and we have to show that �Xjε��t�
p→0 as n→ ∞. By applying the elementary

inequality

�a− b�2I��a− b� > ε� ≤ 4a2I��a� > ε/2� + 4b2I��b� > ε/2�
twice, it may be seen that

�Xjε��t� ≤ �c1G
�n�
1 �216

∫ t

0

1
α�s�

(
1
n

n∑
i=1

V2
ji�s�

)
16
ε2
η�s�ds

+16
∫ t

0

1
α�s�

(
1
n

n∑
i=1

V2
ji�s�m2

i �s�
)
I�c2G

�n�
2 > ε/4�ds

+4
∫ t

0

β2
j�s�

α�s� 1
n
Y·�s�

I

(
1√
n

1
α�s�

∣∣∣∣∣ βj�s�1
n
Y·�s�

∣∣∣∣∣ > ε/2

)
ds

where c1 and c2 are (finite) constants. Using the assumptions (A), (B), (C), (D)

and (E) it follows that �Xjε��t�
p→0 as n → ∞, and this completes the proof.
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