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POPULATION STATISTICS AND ITS APPLICATIONS

TO DISTRIBUTIONAL ASYMPTOTICS
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Bielefeld Universität

We study orthogonal decomposition of symmetric statistics based on
samples drawn without replacement from finite populations. Several appli-
cations to finite population statistics are given: we establish one-term Edge-
worth expansions for general asymptotically normal symmetric statistics,
prove an Efron–Stein inequality and the consistency of the jackknife esti-
mator of variance. Our expansions provide second order a.s. approxima-
tions to Wu’s jackknife histogram.

1. Introduction. Orthogonal decomposition of statistics were introduced
by Hoeffding (1948) in his proof of the asymptotic normality of U-statistics.
Since then the orthogonal decomposition (called also ANOVA decomposition
or Hoeffding’s decomposition) has become an indispensable tool of analysis
of distributional properties of statistics based on independent observations.
In particular, it plays a crucial role in the analysis of variance components
[Efron and Stein (1981), Karlin and Rinott (1982), Vitale (1992)] and pro-
vides a natural framework for first- and second-order asymptotics of statistics
[Hajek (1968), Rubin and Vitale (1980), van Zwet (1984), Bentkus, Götze and
van Zwet (1997)].

We study orthogonal decomposition of statistics based on samples drawn
without replacement from finite populations. For simplicity we consider the
case of simple random samples. We start with an overview of the orthogonal
decomposition of general symmetric statistics based on simple random sam-
ples; see Section 2 below. Here we also provide bounds for the remainders of
the approximation of statistics by a fixed number, say two or three, of terms of
the Hoeffding decomposition. Orthogonal decompositions of finite population
U-statistics of fixed degree k were used first in Zhao and Chen (1990) without
providing uniform estimates for the remainders as k increases together with
the number of observations.

In Section 3 some brief applications are given. Here we prove the consis-
tency of the jackknife variance estimator for symmetric statistics based on
samples drawn without replacement and the finite population Efron–Stein
inequality. We discuss second-order approximations to the distribution of
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jackknife histograms [Shao (1989), Wu (1990), Booth and Hall (1993)] and
subsampling [Politis and Romano (1994), Bickel, Götze and van Zwet (1997),
Bertail (1997)]. In Section 4 the Hoeffding decomposition is used to establish
asymptotic expansions for distribution functions of general symmetric finite
population statistics.

2. Hoeffding’s decomposition. Let T = t�X1� � � � �Xn� denote a statis-
tic based on simple random sample X1� � � � �Xn drawn without replacement
from a finite population � = �x1� � � � � xN� consisting of N units. Clearly,
n < N. We shall assume that the function t is invariant under permutations
of its arguments. Therefore, T is a symmetric statistic.

The Hoeffding decomposition,

T = ET+ ∑
1≤i≤n

g1�Xi� +
∑

1≤i<j≤n
g2�Xi�Xj� + · · ·(2.1)

represents T by the sum of n mutually uncorrelated U-statistics of increasing
order. Here gk, k = 1�2� � � � � n, denote symmetric kernels, which satisfy

E�gk�Xi1
� � � � �Xik

�	Xj1
� � � � �Xjr

� = 0�(2.2)

for every 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jr ≤ n such that r < k. It is
easy to verify that such a decomposition is unique.

The functions gk� k = 1� � � � � n, are linear combinations of conditional expec-
tations

hj�xi1
� � � � � xij

� = E�T−ET	X1 = xi1
� � � � �Xj = xij

��

We show in the Appendix that

gk�x1� � � � � xk� = dn�k

k∑
j=1

Mk�j

∑
1≤i1<···<ij≤k

hj�xi1
� � � � � xij

��(2.3)

Here, for k = 2�3� � � � � n�

dk�j =
k−1∏
r=j

N− r

N− r− j
� 1 ≤ j ≤ min�k− 1�N− k��(2.4)

In the case where 2k > N+ 1 we put dk�j = 0 for N− k < j ≤ k− 1. Finally,
we write dn�n = 1 for 2n ≤N+ 1 and dn�n = 0 for 2n > N+ 1. Furthermore,
the coefficients Mk�j, for k satisfying the inequality 2k ≤N+ 1, are given by
the recursive relation,

Mk�j = −
k−1∑
i=j

dk� iMi�j

(
k− j

i− j

)
� 1 ≤ j ≤ k− 1�

and we put Mk�k = 1. For 2k > N+ 1 we write Mk�j = 0.
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A simple calculation gives

g1�X1� =
N− 1
N− n

h1�X1��

g2�X1�Y2� =
N− 2
N− n

N− 3
N− n− 1

(
h2�X1�Y2� −

N− 1
N− 2

�h1�X1� + h1�Y2��
)
�

Let Uj, 1 ≤ j ≤ n denote the jth sum in (2.1),

Uj = Uj�T� =
∑

1≤i1<···<ij≤n
gj�Xi1

� � � � �Xij
��

Clearly, (2.2) implies EUkUr = 0, for k �= r. That is, the U-statistics of the
decomposition (2.1) are mutually uncorrelated. Note that, contrary to the i.i.d.
case, the random variables gj�Xi1

� � � � �Xij
� and gj�Xk1

� � � � �Xkj
� are not

uncorrelated. Indeed, for m denoting the number of elements of the inter-
section �i1� � � � � ij� ∩ �k1� � � � � kj� we have

sj�m = Egj�Xi1
� � � � �Xij

�gj�Xk1
� � � � �Xkj

� = �−1�j−m(
N−j
j−m

) σ2
j�(2.5)

Here we donote σ2
j = Eg2

j�Xi1
� � � � �Xij

�. Invoking a simple combinatorial
argument we evaluate the variances

Var Uj =
(
n
j

)(
N−n
j

)
(
N−j
j

) σ2
j and Var T =

n∑
j=1

(
n
j

)(
N−n
j

)
(
N−j
j

) σ2
j�(2.6)

The formulas (2.5) and (2.6) have been used in Zhao and Chen (1990) for
U-statistics of fixed degree k. For convenience, we include the proof of (2.5)
and (2.6); see Lemmas 1 and 2 in the Appendix.

Here we shall develop several consequences of (2.3) and (2.6) which are
new and have important applications. It follows from (2.3) and (2.6) that for
j > N− n we have Uj ≡ 0. That is, the decomposition (2.1) reduces to

T = ET+U1 + · · · +Un∗� n∗ = min�n�N− n��(2.7)

Moreover, (2.2) entails the duality property, formulated in Proposition 1 below.
Let �X1� � � � �XN� denote a random permutation of the ordered set

�x1� � � � � xN� which is uniformly distributed over the class of permutations.
Then the first n observations X1� � � � �Xn represent a simple random sample
from � . For j = 1� � � � �N− n denote X′

j =Xn+j.

Proposition 1. For j ≤ n∗ we have

Uj ≡ U′
j where U′

j = �−1�j ∑
1≤i1<···<ij≤N−n

gj�X′
i1
� � � � �X′

ij
��(2.8)

Therefore, T ≡ T′, where T′ = ET+U′
1 + · · · +U′

n∗ .
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The proposition says that, in a sense, T is a function of n∗ random variables.
In particular, if n > N/2, one may replace the statistic by a U-statistic based
on n∗ < N/2 observations.

Proof. For the linear statistic U1 the identity (2.8) is a consequence of
EU1 = 0. For j = 2� � � � � n∗, this identity follows from (2.2). ✷

One may view the decomposition (2.1) as a stochastic expansion of the
statistic T. Indeed, for a number of statistics the first few terms of the decom-
position provide sufficiently precise approximations. To bound the errors of
such approximations we introduce appropriate smoothness conditions.

Denote

DjT = t�X1� � � � �Xn�
− t�X1� � � � �Xj−1�Xj+1� � � � �Xn�X

′
j�� X′

j =Xn+j�

Higher order difference operations are defined recursively,

Dj1� j2T = Dj2�Dj1T�� Dj1� j2� j3T = Dj3�Dj2�Dj1T��� � � � �
They are symmetric; that is, Dj1� j2T = Dj2� j1T, etc. Given k < n∗, write

δj = δj�T� = E
(
n
�j−1�
∗ �jT

)2
� �jT = D1�2�����jT� 1 ≤ j ≤ k�

In Examples 1 and 2 below we estimate the moments δj for U-statistics and
smooth functions of sample means.

Theorem 1. For 1 ≤ k ≤ n∗, we have

T = ET+U1 + · · · +Uk +Rk with ER2
k ≤ n

−�k−1�
∗ δk+1�(2.9)

The proof of Theorem 1 is given in the Appendix.

3. Applications.

Jackknife estimator of variance. The Quenouille–Tukey jackknife estima-
tor of variance is a symmetric statistic of observations X1� � � � �Xn+1,

σ2
j = σ2

J�T� =
n+1∑
j=1

�T�j� − �T�2� �T = 1
n+ 1

n+1∑
j=1

T�j��

where we write T�j� = t�X1� � � � �Xj−1�Xj+1� � � � �Xn�Xn+1�.
In the case of independent and identically distributed observations the

jackknife estimator of variance is asymptotically consistent if the underlying
statistic is sufficiently smooth; see, for example, Miller (1974), Parr (1985) and
Shao and Wu (1989), where in the later paper several smoothness conditions
are discussed.

Here we consider statistics based on samples drawn without replacement.
Let X1� � � � �Xn be a simple random sample drawn without replacement from
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the population � = �x1� � � � � xN�. The jackknife variance estimator for the
statistic T = t�X1� � � � �Xn� is defined by

σ2
FJ = σ2

FJ�T� = qσ2
J�T� where q = �N− n�/N�

Note that σ2
FJ�T� is a symmetric statistic of the sample X1� � � � �Xn+1 drawn

without replacement from the population � . For a linear statistic T = ET+∑n
i=1 g1�Xi� it is easy to show that Eσ2

FJ�T� = Var T.
Our first application of the orthogonal decomposition (2.1) is the finite pop-

ulation Efron–Stein inequality: for an arbitrary symmetric finite population
statistic T = t�X1� � � � �Xn� we have

Eσ2
FJ�T� ≥ Var T�(3.1)

That is, the jackknife variance estimator tends to be biased upward. In the
i.i.d. case the Efron–Stein inequality was proved by Efron and Stein (1981).
The proof of (3.1) is given in the Appendix.

Another application of (2.1) is a general consistency result for the estimator
σ2
FJ. Assuming that n and N→∞ we prove the consistency of σ2

FJ for asymp-
totically linear symmetric finite population statistics. In order to formulate the
consistency result we consider a sequence of statistics Tn = tn�X1� � � � �Xn�.
That is, we show that for every ε > 0,

P�	σ2
FJ�Tn� −Var Tn	 > ε� = o�1� as n� N→∞�(3.2)

Let Ti�n denote the summand g1�Xi� of the linear part of decomposition
(2.1) for the statistic Tn.

Proposition 2. Assume that N and n∗ = min�n�N − n� → ∞. Assume
that:

(i) For some 0 < c1 < c2 <∞, we have c1 ≤ Var Tn ≤ c2 and δ2�Tn� = o�1�.
(ii) For every ε > 0,

n∗ET
2
1� n�T2

1� n>ε
= o�1��(3.3)

Then �3�2� holds.

The proof of Proposition 2 is given in the Appendix.
Recall that δ2�Tn� = n2

∗E��2Tn�2, where
�2Tn = tn�X1� � � � �Xn� − tn�X2� � � � �Xn�Xn+1�

− tn�X1�X3� � � � �Xn�Xn+2� + tn�X3� � � � �Xn+2��
Note that condition (i) implies that Tn is asymptotically linear as n∗ → ∞.

That is,

Tn = ETn +
n∑

i=1
Ti�n + op�1� with Var

( n∑
i=1

Ti�n

)
≥ c1 − o�1��(3.4)

Here ETn+
∑n

i=1Ti�n denotes the linear part of the decomposition (2.1) of Tn.
Indeed, by (2.1), we have Tn = ETn +

∑n
i=1Ti�n + rn, where the remainder
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rn and the linear part are uncorrelated. The condition δ2�Tn� = o�1� implies
the bound Er2n = o�1�; see Theorem 1. Therefore, (3.4) follows. Note that the
uniform integrability condition (3.3) can be replaced by a more restrictive
moment condition lim supn E�T2

1� nn∗�1+δ <∞, for some δ > 0.

Subsampling. Let Y1� � � � �Yn be independent observations from a proba-
bility distribution P. Let θn = θn�Y1� � � � �Yn� be an estimator of a real-valued
parameter θ = θ�P�. In order to make inferences about θ one estimates the
distribution of θn−θ. Assuming that the distributionKn of τn�θn−θ� converges
weakly to a limit law, Politis and Romano (1994) showed that the conditional
distribution function,

K̂m�x� = P�τm�θm�X1� � � � �Xm� − θn� ≤ x	Y1� � � � �Yn�
estimates the true distribution function Kn�x� = P�τn�θn − θ� ≤ x� consis-
tently as n�m → ∞ so that m/n → 0 and τm/τn → 0. Here τn denotes
a nonrandom sequence of normalizing constants and X1� � � � �Xm denotes a
random sample drawn without replacement from �Y1� � � � �Yn�. Assuming in
addition that Kn�x� admits an Edgeworth expansion, Bertail (1997) showed
that K̂m�x� admits a corresponding stochastic expansion. The proofs of Politis
and Romano (1994) and Bertail (1997) exploit the U-statistic structure of the
conditional distribution function K̂m�x� and rely on the law of large numbers
for U-statistics.

Another way to construct higher order approximations to K̂m�x� is based on
conditional asymptotic expansions given �Y1� � � � �Yn�. Let vm = vm�Y1� � � � �
Yn� [respectively, em = em�Y1� � � � �Yn�] denote the conditional variance
(respectively, the mean value) of τm�θm�X1� � � � �Xm� − θn�, given Y1� � � � �Yn.
Theorem 2 below provides the conditional asymptotic expansion,

K̂m�xvm + em� = )�x� − q̂m�x�)�3��x��m�1−m/n��1/2 +O�m−1
∗ �(3.5)

almost surely as m∗ = min�m�n−m� → ∞ and n→∞. An explicit formula
for the first term of the expansion q̂m�x� is provided in Section 4 below.

Wu (1990) used a one-term asymptotic expansion of finite population Stu-
dentized mean due to Babu and Singh (1985) to construct a second-order
approximation like (3.5) to the jackknife histogram of a Studentized mean
Clearly, (3.5) provides such approximations with remainder O�m−1

∗ � for a
broad class of asymptotically linear statistics; see also Bickel, Götze and
van Zwet (1997) for other possible applications of (3.5).

Let us mention that for some classes of statistics the order of the approxi-
mation of K̂m�x� can be further improved by using Richardson extrapolation;
see Bickel and Yahav (1988), Booth and Hall (1993), Bertail (1997).

Finally, we discuss applications to resampling of finite population statis-
tics. Using orthogonal decomposition of Section 2 and Edgeworth expansions
of Section 4, one can extend i.i.d. results of Putter and van Zwet (1998) on
empirical Edgeworth expansions to samples drawn without replacement. This
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question is addressed in Bloznelis (2000). Furthermore, the orthogonal decom-
position of Section 2 and the expansions of Section 4 below could be extended
to stratified sampling without replacement models and applied to resam-
pling schemes like finite the population bootstrap [Gross (1980), Bickel and
Freedman (1984), Chao and Lo (1985), Babu and Singh (1985), Chen and Sit-
ter (1993), Booth, Butler and Hall (1994), Helmers and Wegkamp (1998)] and
its modifications.

4. Stochastic and asymptotic expansions. We shall apply (2.9) to
study the asymptotics of the distribution of T.

When speaking about the finite population asymptotics we assume that
we have a sequence of populations �r = �xr�1� � � � � xr�Nr

�, with Nr → ∞
as r → ∞, and a sequence of symmetric statistics Tr = tr�Xr�1� � � � �Xr�nr

�,
based on samples Xr�1� � � � �Xr�nr

drawn without replacement from �r. We
shall assume that the variances σ̃2

r = Var Tr remain bounded away from zero
as r → ∞. In order to keep the notation simple we drop the subscript r in
what follows.

In typical situations (U-statistics, smooth functions of sample means, Stu-
dent’s t and many others) we have Uj = OP�n�1−j�/2∗ �, for j = 1� � � � � k, and

δk+1 = O�n−1∗ � as n∗�N→∞(4.1)

for some k. Clearly, (4.1) is a smoothness condition. It implies the validity
of the stochastic expansion (2.9) with the remainder Rk = OP�n−k/2∗ �. The
condition (4.1) is easy to handle. Below, we verify this condition for two classes
of statistics: smooth functions of multivariate sample means and U-statistics.

In the remaining part of this section we study first- and second-order
approximations of asymptotically linear statistics. We shall assume that the
linear part U1 is nondegenerate; that is, s2 = Var U1 > 0. Note that, by (2.6),

s2 = τ2σ2
1N/�N− 1� where τ2 =Npq� p = n/N� q = 1− p�

Clearly, n∗/2 ≤ τ2 ≤ n∗. In Proposition 3 below we formulate sufficient condi-
tions for asymptotic normality.

Proposition 3. Assume that σ̃ remains bounded away from zero and δ2 =
o�1� as n∗�N→∞. Then σ̃ − s = o�1�. Suppose, in addition, that �3�3� holds.
Then σ̃−1�T−ET�, s−1�T−ET� and �T−ET�/σFJ are asymptotically standard
normal.

Proof. In view of Theorem 1, the condition δ2 = o�1� implies the valid-
ity of the short stochastic expansion T = ET + U1 + oP�1�. We also have
σ̃2−s2 = o�1� and, by Proposition 2, σ2

FJ/σ̃
2 = σ2

FJ�T/σ̃� = 1+oP�1�. Therefore,
the linear part dominates the statisticT and it suffices to prove the asymptotic
normality of s−1U1. The asymptotic normality is ensured by (3.3) which (under
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the conditions of the proposition) implies a Lindeberg-type Erdős–Rényi con-
dition,

Eg2
1�X1�σ−21 �	g1�X1�	>ετσ1 = o�1� as n∗�N→∞

for every ε > 0; see Erdős and Rényi (1959). Note that (3.3) is equivalent to
the Erdős–Rényi condition if, in addition, σ̃ is bounded as n∗�N→∞. ✷

Assuming that (4.1) holds, for k = 2, we obtain from Theorem 1 the stochas-
tic expansion T = ET+U1+U2+OP�n−1∗ �. It suggests that Edgeworth expan-
sions of T−ET andU1+U2 should coincide up toO�n−1∗ �. Note thatU1+U2 is
aU-statistic of degree two. Bloznelis and Götze (2000) showed that a one-term
asymptotic expansion,

G�x� = )�x� − �q− p�α+ 3κ
6τ

)�3��x��

approximates the distribution function P�U1 + U2 ≤ xs� with the remain-
der O�n−1∗ �. Here )�3��x� denotes the third derivative of the standard normal
distribution function )�x�,

α = σ−31 Eg3
1�x1�� κ = σ−31 τ2Eg2�X1�X2�g1�X1�g1�X2��

Using Theorem 1, one may extend this result to arbitrary symmetric statistics.
In particular, in order to construct a one-term Edgeworth expansion of T we
do not need to evaluate all the summands of (2.1), but (moments of) the first
few terms only. A general result formulated in Theorem 2 below provides the
bounds o�n−1/2∗ � and O�n−1∗ � for the error of the expansion,

. = sup
x
	F�x� −G�x�	 where F�x� = P�T ≤ ET+ xσ̃��

Similar bounds hold for

.1 = sup
x
	F1�x� −G�x�	 where F1�x� = P�T ≤ ET+ xσ1τ��

In order to establish the validity of an Edgeworth expansion we need to
impose an appropriate smoothness condition. It is the nonlattice condition in
the case of the remainder o�n−1/2∗ � and it is a Cramér type condition in the
case of the remainder O�n−1∗ �. Either of these conditions will be imposed on
the linear part of the statistic.

Given g � → � write �g��a� b� = supa<	t	<b 	g�t�	. We shall say that the
linear part is asymptotically nonlattice, if for every ε > 0 and every B > 0,
the characteristic function ϕ�t� = E exp�itσ−11 g1�X1�� of the random variable
σ−11 g1�X1� satisfies

lim inf
n∗�N→∞

�ϕ��ε�B� < 1�(4.2)

A more stringent smoothness condition is a Cramér-type condition,

lim inf
n∗�N→∞

�ϕ��ε� τ� < 1�(4.3)
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Note that τ →∞ as n∗�N→∞. Write

βs=E	n1/2
∗ g1�X1�	s� γs=E	n3/2

∗ g2�X1�X2�	s� ζs=E	n5/2
∗ g3�X1�X2�X3�	s�

Theorem 2. Assume that σ̃ remains bounded away from zero as N→∞.

(i) Assume that �4�2� holds, δ3 = o�n−1/2∗ � and, for some δ > 0, the moments
β3+δ and γ2+δ are bounded as n∗�N→∞. Then

. = o�n−1/2∗ � and .1 = o�n−1/2∗ � as n∗�N→∞�

(ii) Assume that �4�3� holds, δ4 = O�n−1∗ � and, the moments β4� γ4� ζ2 are
bounded as n∗�N→∞. Then

. = O�n−1∗ � and .1 = O�n−1∗ � as n∗�N→∞�

Proof. Note that either of the conditions (i) and (ii) implies

σ̃2 = s2 +O�n−1∗ � = τ2σ2
1 +O�n−1∗ ��(4.4)

Therefore, it suffices to construct bounds for .1.
Let us prove .1 = o�n−1/2∗ �. In the case of U-statistics of degree two [the

remainder in (2.9)R2 ≡ 0], this bound is proved in Bloznelis and Götze (1999a).
A passage to the general case can be made by using a Slutzky-type argu-
ment. Indeed, by (2.9), under condition (i), we have P�	R2	 > εn

−1/2
∗ � ≤

ε−2δ3 = o�n−1/2∗ �, for every ε > 0. Note that supx 	G�1��x�	 remains bounded as
n∗�N→∞.

The proof of the bound .1 = O�n−1∗ � is rather complex and laborious. It is
given in a more technical paper [Bloznelis and Götze (1999b)]. ✷

Note that if σ̃ remains bounded away from zero as n∗�N → ∞, then (4.4)
implies τσ1/σ̃ = 1+O�n−1∗ �. Therefore, we can replace G by G0, where

G0�x� = )�x� − τ2

σ̃2

�q− p�α0 + 3τ2κ0
6σ̃

)�3��x��

α0 = Eg3
1�X1�� κ0 = Eg2�X1�X2�g1�X1�g1�X2��

Corollary. Theorem 2 remains valid if we replace G by G0 in the defini-
tion of . and .1.

If n�N→∞ and n2 = o�N�, the simple random sample model approaches
the i.i.d. situation. In this case Theorem 2 and the Corollary agree with the
corresponding results of Bentkus, Götze and van Zwet (1997), who constructed
second-order approximations to symmetric statistics of i.i.d. observations.

In order to construct a one-term Edgeworth expansion G (respectively, G0),
one needs to evaluate the parameters σ1� α� κ (respectively, σ̃� α0� κ0). For some
classes of statistics it reduces to routine calculations; see examples below.
Another possible way is to substitute consistent estimators of these param-
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eters. The consistency of the corresponding jackknife estimators is established
in Bloznelis (2000).

Earlier results on Edgeworth expansions for nonlinear asymptotically nor-
mal finite population statistics by Babu and Singh (1985), Babu and Bai (1996)
apply to statistics which can be approximated by smooth functions of multi-
variate sample means. Their approach combines linearization and expansions
for multivariate sample means. This approach, though conceptually simpler,
focuses on a particular class of statistics (smooth functions of multivariate
sample means). Furthermore, it often requires a somewhat restrictive Cramér-
type smoothness condition imposed on the underlying multivariate sample
mean rather than on the linear part of the statistic itself. Another approach
was used by Kokic and Weber (1990) to prove the validity of one-term Edge-
worth expansions for finite population U-statistics. However, they did not use
a finite population orthogonal decomposition. In contrast to Theorem 2 all of
the above-mentioned results establish the validity of the expansions under
some additional conditions on the sample fraction p = n/N.

In what follows we consider two examples: U-statistics and smooth func-
tions of sample means.

Example 1 (U-statistics). Given an integer m let ϕ denote a real symmet-
ric function defined on m-subsets of the population � = �x1� � � � � xN�. Define
a U-statistic

U = ∑
1≤i1<···<im≤n

ϕ�Xi1
� � � � �Xim

�(4.5)

based on the simple random sample X1� � � � �Xn �n > m� drawn without
replacement from � . We shall assume that EU = 0 and construct a one-
term Edgeworth expansion G�x�. To this end we evaluate the parameters
σ1� α and κ.

Write Hoeffding’s decomposition for a symmetric statistic ϕ�X1� � � � �Xm�,

ϕ�X1� � � � �Xm� =
∑

1≤k≤m

∑
1≤i1<···<ik≤m

g̃k�Xi1
� � � � �Xik

��

where symmetric kernels g̃k are defined by (2.3). Clearly, every summand
ϕ�Xi1

� � � � �Xim
� of (4.5) can be written in such form. Substitution of these

expressions in (4.5) yields Hoeffding’s decomposition of U,

U = ∑
1≤k≤m

∑
1≤i1<···<ik≤n

gk�Xi1
� � � � �Xik

� where gk =
(
n− k

m− k

)
g̃k�

Denoting σ2
0 = Eg̃1

2�X1� we have σ2
1 =

(
n−1
m−1

)2
σ2
0 ,

α = σ−30 Eg̃3
1�X1�� κ = �m− 1�n

n− 1
q

σ3
0

Eg̃·2�X1�X2�g̃1�X1�g̃1�X2��
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In order to estimate the moments (of differences) δk, we invoke variance for-
mulas (2.6) and (A.21); see below. A straightforward calculation gives

δk ≤ c�m�nk−2
∗ �Var U2

k + · · · +Var U2
m��(4.6)

where c�m� denotes a constant which depends only on m. Note that (4.6)
implies n

−�k−1�
∗ δk+1 ≤ c�m�ER2

k, where Rk denotes the remainder of (2.9).
That is, for U-statistics of degree m, the inequality (2.9) is precise [up to the
constant c�m�].

Example 2 (Smooth functions of multivariate samplemeans). Assume that
� ⊂ �k and consider the statistic T = √

n/q�h� �X� − h�a��, where h �k →
�. Here �X = n−1�X1 + · · · +Xn� and a = EX1. Assuming that h is three
times differentiable and derivatives are bounded, we construct a one-term
Edgeworth expansion and bound δ3. In order to bound δ4 we need one more
derivative.

We may assume without loss of generality that EX1 = 0.
Denote Yi = h�1��0�Xi and Yi�j = h�2��0�XiXj and write

σ2
h = EY2

1� αh = σ−3h EY3
1� κh = σ−3h EY1Y2Y1�2�

Here h�s��y� denotes the sth derivative of h at the point y ∈ �k. We write
h�s��y�z1 · · · zs to denote the value of the s-linear form h�s��y� with arguments
z1� � � � � zs ∈ �k.

Straightforward, but tedious, calculations show that αh and qκh provide
sufficiently precise approximations to α and κ. Therefore, by Theorem 2,

)�x� − �q− p�αh + 3qκh
6τ

)�3��x�
can be used as a one-term asymptotic expansion of the distribution function
P�T−ET ≤ xσh�. The verification of the conditions of Theorem 2 reduces to
routine, but cumbersome calculations. We skip most of technical details and
focus on the smoothness condition (4.1) only.

Let �h�s��y�� denote the smallest c > 0 such that 	h�s��y�z1 · · · zs	 ≤
c	z1	 · · · 	zs	. Here 	zi	2 = z2i�1 + · · · + z2i� k denotes the Euclidean norm of a
vector zi = �zi�1� � � � � zi� k� ∈ �k. We say that the sth derivative is bounded if
�h�s��∞ = supy �h�s��y�� is finite.

Assuming that �h�j��∞ and E	X1	2 remain bounded as n∗�N → ∞ we
prove that δj�T� = O�n−1∗ �. More precisely, we show that, for every fixed
j = 1�2� � � � � n∗,

δj�T� ≤ 2j
Nj

�N�j
�h�j��2∞�E	X1	2�j

n
2j−2
∗

qn2j−1 �(4.7)

where �N�j = N�N − 1� · · · �N − j + 1�. Let 81� 82� � � � be a sequence of inde-
pendent random variables uniformly distributed in [0,1]. We assume that the
sequence and the random permutation �X1� � � � �XN� are independent. Given
a differentiable function f we use the mean value formula f�x+ y� − f�x� =
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E81
f�1��x+ 81y�y. Here E81

denotes the conditional expectation given all the
random variables but 81. Write ui = n−1�Xi−X′

i�. By the mean value formula,

�jh� �X� = E81
· · ·E8j

h�j�� �X− �81u1 + · · · + 8juj��u1 · · ·uj�(4.8)

Furthermore, invoking the simple bound E	Xi1
	2 · · · 	Xij

	2 ≤ Nj/�N�j ×
�E	X1	2�j, for i1 < · · · < ij, we obtainE	u1 · · ·uj	2 ≤ 2jNj/�N�jn−2j�E	X1	2�j.
The last inequality in combination with (4.8) implies (4.7).

The smoothness condition on h can be relaxed. By the law of large numbers,
�X concentrates around a = EX1 with high probability. Therefore, it suffices
to impose smoothness conditions on h in a neighbourhood of a only.

APPENDIX

We may assume without loss of generality that ET = 0. Recall that
�X1� � � � �XN� denotes random permutation of the ordered set �x1� � � � � xN�.

Denote ;k = �1� � � � � k�, for k = 1�2� � � � � and ; = ;N. Given a statistic
V = V�X1� � � � �XN�, write

E�V	A� = E�V	Xi� i ∈ A�� A ⊂ ;�

and denote E�V	�� = EV.

Proof of (2.3). Introduce random variablesQA, for A ⊂ ;n, with 	A	 ≥ 1.
For 	A	 = 1, we put QA = E�T	A�. Let n0 be the largest integer such that
2n0 − 1 ≤N.

For 	A	 = 2�3� � � � �min�n0� n�, we define QA recursively as follows. Given
A ⊂ ;n, with 	A	 = k, write

QA = E�T	A� − dk�k−1
∑

B⊂A� 	B	=k−1
QB − · · · − dk�1

∑
B⊂A� 	B	=1

QB�(A.1)

where the numbers dk�j are chosen so that for each B ⊂ A,

E�QA	B� = 0� 	B	 < 	A	�(A.2)

A straightforward calculation gives (2.4). In Lemma 1 we extend the identity
(A.2) to arbitrary B ⊂ ;N satisfying 	B	 < 	A	. Now (A.2) implies that the
sums

∑
	B	=i QB and

∑
	B	=j QB in (A.1) are uncorrelated for 1 ≤ i < j ≤ k.

Therefore, (A.1) provides an orthogonal decomposition for the statistic E�T	A�,

E�T	A� =
k∑

j=1
dk�j

∑
B⊂A� 	B	=j

QB�(A.3)

where we put dk�k = 1.
For n ≤ n0 this identity yields the decomposition for T,

T = E�T	;n� =
∑

B⊂;n� 	B	≥1
TB� TB = dn� 	B	QB�(A.4)
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where for every B ⊂ ;n and C ⊂ ;N we have almost surely,

E�TB	C� = 0 for 	C	 < 	B	�(A.5)

Denoting

gk�x1� � � � � xk� = E�T;k
	X1 = x1� � � � �Xk = xk�� k = 1�2� � � � � n�

we obtain (2.1) from (A.4) and (2.2) from (A.5).
Now assume that n > n0. For k = n0 + 1� � � � n we show that (A.3) remains

valid if we choose dk�j = 0, for j = N − k + 1� � � � � k. Let QA with �	A	 = k�
be defined by (A.1). A calculation shows that if, for j = 1� � � � �N − k the
numbers dk�j are given by (2.4) and dk�j = 0 for j > N − k then (A.2) holds
for every B ⊂ A with 	B	 ≤ N − k. Proceeding as in the proof of (A.8) below,
one can show that (A.2) extends to arbitrary B ⊂ ;N such that 	B	 ≤ N − k.
In particular, for A = ;k and B = ;N\;k we have E�QA	B� = 0 almost
surely. Since E�QA	B� = QA, we obtain QA = 0 almost surely, thus proving
(A.3). In the case where A = ;n, the identity (A.3) provides the orthogonal
decomposition for T,

T = E�T	;n� =
N−n∑
j=1

∑
B⊂;n� 	B	=j

TB� TB = dn� 	B	QB�(A.6)

where QB is given by (A.1) and satisfies (A.2) and (A.5). Finally, invoking a
simple combinatoric calculation we derive (2.3) from (A.1) and (A.4), (A.6).

Before formulating Lemmas 1 and 2 we introduce some notation. Define
the random variable TA for arbitrary A = �i1� � � � � ir� ⊂ ;, with cardinality
r ≤ n, by putting TA = gr�Xi1

� � � � �Xir
�. Let us write also T� = 0. Note

that TA is a centered symmetric statistic of observations Xi� i ∈ A. Two
random variables TA and TB are identically distributed if 	A	 = 	B	. The
difference operation Di can be applied to TA provided that i′ = n + i /∈ A.
We write DiTA = TA − TA��i�� if i ∈ A and put DiTA = 0 otherwise. Here
A��i�� = �A\�i�� ∪ �i′�. Higher order differences �i = Di · · ·D1 are defined
recursively: �2TA = D2TA −D2TA��1��, etc. We shall apply these differences
to TA, with A ∈ ;n. Note that �iTA = 0, whenever ;i �⊆ A. If ;i ⊆ A, we
can write A = ;i ∪B, for some B ⊂ ;n\;i. In this case we have

�iT;i∪B =
∑

C⊂;i

�−1�	C	T;i�C�∪B�(A.7)

;i�C� = �;i\C� ∪C′� C′ = �l′ l ∈ C�� l′ = l+ n�

Here we write also ;i��� = ;i.
Given A�B ∈ ;, with 	A ∩B	 = k and 	A	 = 	B	 = j� j ≤ n, denote

σ2
j = ET2

A� sj�k = ETATB�

If, in addition, A�B ⊂ ;n\;i, we write

σ2
i� j+i = E��iT;i∪A�2� si� j� k = E�iT;i∪A�iT;i∪B�

Put σ2
0� j = σ2

j and s0� j� k = sj�k�
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Lemma 1. The following identities hold:

E�TG	H� = 0 for every G�H ⊂ ; with 	H	 < 	G	�(A.8)

sj�k =
�−1�j−k(

N−j
j−k

) σ2
j� 0 ≤ k ≤ j ≤ n0�(A.9)

si� j� k =
�−1�j−k(
N−j−2i
j−k

)σ2
i� i+j� 0 ≤ k ≤ j ≤ n0 − i�(A.10)

σ2
i� j =

N− j+ 1
N− j− i+ 1

2iσ2
j� i ≤ j ≤ n0�(A.11)

Proof. We start with an auxiliary identity (A.12). Fix C�D ⊂ ; such that
1 ≤ 	C	 ≤ 	D	 and 	C\D	 = 1. Denote C1 = C ∩D. We have

E�TC	D� =
1

N− 	D	
∑

i∈;\D
T�i�∪C1

= −1
N− 	D	

∑
i∈D\C

T�i�∪C1
�(A.12)

since �;\D� ∪ �D\C� = ;\C1 and, by (A.5),∑
i∈;\C1

T�i�∪C1
= �N− 	C1	�E�TC	C1� = 0�

Let us prove (A.8). For H ⊂ G ⊂ ;n, (A.8) follows from (A.5). By symmetry,
it still holds for H ⊂ G ⊂ ;. For 	H\G	 = k, we prove (A.8) by induction.
Assume that (A.8) holds for every k ≤ r. Given G�H ⊂ ;, with 	H\G	 = r+1,
fix a ∈ G\H and denote Ga = G\�a�. Write E�TG	H� = E�Va	H�, where
Va = E�TG	Ga ∪H�. An application of (A.12) to Va gives E�Va	H� = 0, by
induction hypothesis, with k = r. Hence, E�TG	H� = 0 and we obtain (A.8),
with k = r+ 1.

Let us prove (A.9). Given A�B ⊂ ;, with 	A	 = 	B	 = j ≥ 1 and 	A ∩B	 =
k < j, fix ia ∈ A\B and denote A1 = A\�ia�. An application of (A.12) gives

sj�k = ETBE�TA	A1 ∪B� = −1
N− �2j− k− 1�

∑
i∈B\A

ETBT�i�∪A1

= �−1��j− k�
N− �2j− k− 1�sj�k+1�

(A.13)

where the last identity follows by symmetry. Applying (A.13) several times,
for increasing k, we obtain (A.9).

Let us prove (A.10). Let A�B be as above and assume in addition that
A�B ⊂ ;n\;i. Fix ia ∈ A\B and ib ∈ B\A. Denote B1 = B\�ib� and B2 =
B1 ∪ �ia�. It follows from (A.7) that

si� j� k =
∑

C⊂;i

�−1�	C	E�iT;i∪AhC� hC = T;i�C�∪B�(A.14)
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Write H = A ∪;i ∪;′
i ∪B1, where ;′

i = �1′� � � � � i′�. By (A.12),

E�hC	H� = −1
N− 	H	M� M = ∑

r∈H\�;i�C�∪B1�
T;i�C�∪B1∪�r��

Split M =KC +LC,

KC =
∑

r∈A\B
T;i�C�∪B1∪�r�� LC =

∑
r∈�;i∪;′

i�\;i�C�
T;i�C�∪B1∪�r�

and substitute the expression E�hC	H� = −�N − 	H	�−1�KC + LC�, in (A.14)
to get

si� j� k=
∑

C⊂;i

�−1�	C	E�iT;i∪AE�hC	H� = −1
N− 	H	 �SK +SL��

SK=
∑

C⊂;i

�−1�	C	E�iT;i∪AKC� SL =
∑

C⊂;i

�−1�	C	E�iT;i∪ALC�
(A.15)

We shall show below that SL = 0. Now consider SK. By symmetry,

E�iT;i∪AKC = 	A\B	E�iT;i∪AT;i�C�∪B2
�

Therefore, SK = �j− k�S, where, by (A.7),

S = E�iT;i∪A
∑

C⊂;i

�−1�	C	T;i�C�∪B2
= E�iT;i∪A�iT;i∪B2

�

We obtain SK = �j− k�si� j� k+1. Finally, by (A.15) and the identity SL = 0,

si� j� k =
�−1�

N− 	H	SK = �−1��j− k�
N− �2j+ 2i− k− 1�si� j� k+1�(A.16)

Applying this identity several times, for increasing k, we obtain (A.10).
It remains to prove SL = 0. To this end we shall show that, almost surely,∑

C⊂;i

�−1�	C	LC =
∑

C⊂;i

�−1�	C	 ∑
r∈;∗

i �C�
T;i�C�∪B1∪�r� = 0�(A.17)

Here ;∗
i �C� = �;i ∪;′

i�\;i�C�. Note that for any fixed C ⊂ ;i and j1 ∈ ;∗
i �C�

there exists a unique pair D�j2, with D �= C, where D ⊂ ;i and j2 ∈ ;∗
i �D�

such that

;i�C� ∪ �j1� = ;i�D� ∪ �j2��(A.18)

Namely, if j1 ∈ ;′
i then j1 = j′ for some j ∈ ;i and in this case D = C ∪ �j�.

If j1 ∈ ;i then necessarily j1 ∈ C and in this case D = C\�j1�. In both
cases we have 		C	 − 	D		 = 1 and therefore, �−1�	C	 + �−1�	D	 = 0. Hence, for
every random variable T;i�C�∪B1∪�j1� of the sum (A.17) there exists a unique
counterpartT;i�D�∪B1∪�j2� (in the same sum) satisfying (A.18). Clearly, we have

�−1�	C	T;i�C�∪B1∪�j1� + �−1�	D	T;i�D�∪B1∪�j2� = 0

and thus (A.17) follows.
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Let us prove (5.11). Fix A ⊂ ;n\;i with 	A	 = j− i. We have

σ2
i� j = E��iT;i∪A�2 = E��i−1T;i∪A −�i−1T;i��i��∪A�2

= E��i−1T;i∪A�2 +E��i−1T;i��i��∪A�2 − 2E�i−1T;i∪A�i−1T;i��i��∪A

= 2σ2
i−1� j − 2si−1� j−i+1� j−i = 2

(
1+ 1

N− �j+ i− 1�
)
σ2
i−1� j�

In the last step we used (A.16). Applying this identity several times, for
decreasing i, we obtain (A.11), thus completing the proof of the lemma. ✷

We shall consider statistics of the form V = ∑
B⊂� TB, where � denotes

some class of subsets B of ; with 	B	 ≤ n. DenoteUj�V� =
∑

B⊂� � 	B	=j TB and
write ej�V� = σ−2j Var Uj�V�, for σ2

j > 0. Otherwise put ej�V� = 0. By (A.8),
random variables Ur�V� and Uk�V� are uncorrelated for r �= k. Therefore,

Var V = Var U1�V� + · · · +Var Un�V�
= e1�V�σ2

1 + · · · + en�V�σ2
n�

(A.19)

In what follows we use the formula.
min�s�k�∑

v=0
�−1�v

(
s

v

)(
k

v

)(
u

v

)−1
=

(
u− s

k

)(
u

k

)−1
�(A.20)

where the integers s� t� u ≥ 0 [see, e.g., Zhao and Chen (1990)].
Write ri� j =

(
N−n−i
j−i

)(
N−i−j
j−i

)−1
.

Lemma 2. The formulas �2�6� hold true. For every 1 ≤ i ≤ j ≤ n∗, we have

Var Uj��iT� =
(
n− i

j− i

)
ri� jσ

2
i� j =

(
n− i

j− i

)
ri� j

N− j+ 1
N− i− j+ 1

2iσ2
j�(A.21)

Var Uj�T� ≤ �n∗/2�iVar Uj��iT��(A.22)

Proof. Let us prove the first part of (2.6). By symmetry,

Var Uj�T� =
(
n

j

)
ET;j

Uj�T� and ET;j
Uj�T� =

n−j∑
v=0

mvsj�j−v�(A.23)

where mv denotes the number of subsets B ⊂ ;n, with 	B	 = j, satisfying
	B ∩ �;n\;j�	 = v. Clearly, mv =

(
n−j
v

)(
j

j−v
)
. Therefore,

ET;j
Uj�T� =

v0∑
v=0

(
n− j

v

)(
j

v

)
sj� j−v� v0 = min�n− j� j��

Invoking (A.9) and then using (A.20) we obtain ET;j
Uj�T� = r0� jσ

2
j . This

identity in combination with (A.23) gives the first part of (2.6). The second
part is trivial [cf. (A.19)].
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Let us prove (A.21). We have

Uj��iT� =
∑

A⊂;n\;i� 	A	=j−i
�iT;i∪A� i ≤ j ≤ n�

By symmetry,

Var Uj��iT� =
(
n− i

j− i

)
E�iT;j

Uj��iT��

E�iT;j
Uj��iT� =

min�n−j�j−i�∑
u=0

(
n− j

u

)(
j− i

j− i− u

)
si� j−i� j−i−u�

Invoking (A.10) and then using (A.20) we obtain E�iT;j
Uj��iT� = ri� jσ

2
i� j,

thus proving the first identity of (A.21). The second one follows from (A.11).
The inequality (A.22) is a simple consequence of the identity

Var Uj��iT�
Var Uj�T�

= 2i
�j�i�N− j+ 1�i
�n�i�N− n�i

�

which follows from (2.6) and (A.21). ✷

Proof of Theorem 1. Combining (2.7) and (A.22) we obtain

ER2
k = Var Uk+1�T� + · · · +Var Un∗ �T�
≤ �n∗/2�k+1�Var Uk+1��k+1T� + · · · +Var Un∗ ��k+1T��
= n1−k

∗ 2−1−kδk+1� ✷

Proof of (3.1). Using the identity σ2
J =

∑n+1
i=1 T

2
i − �n+ 1��T2 it is easy to

show that (3.1) is equivalent to the inequality �n+1−q−1�ET2 ≥ �n+1�E�T2.
In order to prove this inequality, it suffices to show that for every j = 1� � � � � n∗,

�n+ 1− q−1�Var Uj�T� ≥ �n+ 1�−1 Var Uj�H��
H = �n+ 1��T�

(A.24)

Let us evaluate Var Uj�H�. An application of (2.1) to T�1�� � � � �T�n+1� gives

H =
n∗∑
j=1

�n+ 1− j�Wj� Wj =
∑

B⊂;n+1� 	B	=j
TB�

Proceeding as in the proof of (A.23), we obtain

EW2
j =

(
n+ 1
j

)(
N− n− 1

j

)(
N− j

j

)−1
σ2
j�

Therefore, we have an explicit formula for Var Uj�H� = �n + 1 − j�2EW2
j.

Invoking (2.6) we obtain an explicit formula for the left-hand side of (A.24) as
well. Now simple arithmetic proves (A.24). ✷
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Proof of Proposition 2. Under condition (i) we have s2 − σ̃2 = o�1� as
n∗�N→∞. In particular, s2 = O�1�. LetV2 = σ2

J�U1�T�� denote the jackknife
variance estimator of U1�T�, the linear part of T. In order to prove (3.2) it
suffices to show that as n∗�N→∞,

q�σ2
J −V2� = oP�1� and qV2 − s2 = oP�1��

The first relation is implied by the smoothness condition δ2 = o�1�. The second
relation follows by the (weak) law of large numbers [use (3.3) and the fact that
s2 = O�1�]. ✷
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