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MANIFEST CHARACTERIZATION AND TESTING FOR
CERTAIN LATENT PROPERTIES!

BY A. YUAN AND B. CLARKE

Howard University and University of British Columbia

Work due to Junker and more recently due to Junker and Ellis char-
acterized desired latent properties of an educational testing procedure in
terms of a collection of other manifest properties. This is important because
one can only propose tests for manifest quantities, not latent ones. Here,
we complete the conversion of a pair of latent properties to equivalent con-
ditions in terms of four manifest quantities and identify a general method
for producing tests for manifest properties.

1. Introduction. Item response theory, IRT, is the statistical theory of
standardized tests which are commonly used in educational testing applica-
tions. The goal is to combine the data generated by many examinees answering
a collection of test items so as to estimate the value of a parameter, or trait,
say O, for each of the examinees. The parameter is intended to quantify a
latent trait such as “mathematics ability.” The traits are latent in the sense
that they cannot be measured directly.

More specifically, desired properties of such testing procedures are called
“latent” when their statement depends explicitly on the the latent trait being
estimated. Most efforts at modeling involve the introduction of latent param-
eters: one specifies parameters to reflect aspects of the physical problem, such
as the individual achievement of each examinee, the difficulty of each test
item, specialized knowledge that certain examinees might possess, etc. This
is in contrast to the manifest properties of a testing procedure which can be
phrased in a way that does not explicitly depend on the latent trait 0.

The limitation of a latent model is that it contains parameters for the latent
trait: the experimenter wants to estimate each examinee’s parameter value
and so cannot perform hypothesis tests on a conjectured model in the usual
way. The solution to this problem is to convert latent models, or latent state-
ments about them, to physically meaningful manifest properties which are
provably mathematically equivalent to the latent properties actually wanted.
Manifest statements are amenable to conventional hypothesis testing and the
problem then becomes the identification of optimal hypothesis tests for the
manifest quantities. In this way one can test hypotheses that are independent
of the latent structure, at least in principle.

The goal of characterizing latent properties in terms of manifest properties
to be tested begins with Stout (1987). Stout considers the requirement that
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the smallest dimension of ® for which the manifest model is a mixture of
models conditional on 6 is one; this is denoted d; = 1. Clearly, this is a latent
property. Stout defines a manifest analog called “essential unidimensionality,”
denoted di = 1 and gives a hypothesis test for it.

Junker (1993) (hereafter J93) established a variety of results giving cases in
which collections of latent properties were implied, or were implied by, collec-
tions of manifest properties. Our first result here is a version of Theorem 5.2b
in J93 which gives d; = 1 and another latent property—local asymptotic
discrimination or LAD—as a consequence of four manifest properties, one of
which is dy = 1. We weaken one of the other three manifest properties to
an asymptotic form, re-prove Junker’s result and then establish the converse.
We then propose hypothesis tests for the three manifest properties which cur-
rently do not have associated tests. Taken together this is the major contribu-
tion of our paper: the results here complete the manifest characterization of
unidimensionality of ® and LAD and provide a way to test for whether both
of them are satisfied.

A more recent contribution due to Junker and Ellis (1997) characterizes
monotone unidimensional models in IRT contexts in more generality; see also
Ellis and Junker (1997). The main result in this work characterizes monotone
unidimensional models in terms of two properties: conditional association and
vanishing conditional dependence. The first of these appears in our theorem
mentioned above. So, it remains to deal with the second. We identify a hypoth-
esis test for it in Section 5. However, as with the other tests here, extensive
development will be necessary before it can actually be used.

The structure of the paper is as follows. In Section 2, we provide the key def-
initions, notation and background to make the main characterization theorem
intelligible. We state and prove this theorem in Section 3. In Section 4, we give
tests for the manifest conditions identified in the theorem. In Section 5, we
give one further test to indicate how the characterization result in Junker and
Ellis (1997) can be used. In Section 6, we discuss briefly how testing might be
done in practice.

2. Notation and preliminaries. The setting in which our results apply
is the following. Let x; = (x4, %9, ..., x7) be an outcome of X; = (X4, ..., X ),
a binary response variable in which each of the X;’s takes values zero (wrong)
or one (right). One can impose restrictions on the marginal distribution for the
test items of an examinee P(X; = x;) by making assumptions on the condi-
tional distribution P(X; = x;|® = ) for the vector of examinee responses X;
given the latent trait ®. This follows from writing

(2.1) P(XJ:XJ)sz(XJ=XJ|®:0)dF(0)
in which the sampling distribution of the latent variable ® = (04,...,0,)

is F(0). Often one requires conditional independence given O, that is, that
PX,; = x50 = 0) = HJJZI P(X; = x;|0 = 6). The marginal distribution
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P(X; =x;), in which O does not appear explictly, defines the manifest struc-
ture. By contrast, the latent variable appears explicitly in the marginal dis-
tribution F(0) and conditional distributions P(X; = x;|® = 0) which define
the latent structure of the sequence of response variables; see Cressie and
Holland (1983).

In this context, there are three latent assumptions which are typically made
in IRT; see Birnbaum (1968), Holland and Rosenbaum (1986), Rosenbaum
(1987), Holland (1990) and Junker (1993). The first is called local indepen-
dence (LI): The conditional probability for X; given © in the integral of (2.1)
factors as noted into a product of univariate probabilities. LI is just the usual
factoring of the densities definition of statistical independence; ‘local’ here just
means the property holds for a range of #’s. The second is called monotonicity
(M): For each j the probability P(X ; = 1|® = 0) is increasing in 0. This has
the interpretation that, roughly, the higher a value of the latent trait an exam-
inee has, the more likely the examinee is to get question j right. The third
latent assumption typically made is that the dimensionality d of ® is much
smaller than the test length J. In particular we want d = 1. See also Stout
(1990) and Junker (1991) for related work on unidimensionality and essential
independence.

To continue, many definitions are necessary. We group them into four classes.
The first class has four members and pertains to dimensionality. Often we
write d; = 1 to mean more than d = 1. Following Stout (1990) we use the
following.

DEFINITION 2.1. The statement d; = 1 means that one is the least dimen-
sion for which (2.1) holds and P, satisfies LI and M.

This concept of dimensionality will be translated into essential unidimen-
sionality below. Essential unidimensionality requires the properties local asy-
mptotic discrimination, LAD, and essential independence, EI. To define LAD,
let A; = A;j(X;)for j=1,...,J be a sequence of random variables satisfy-
ing sup; |A;(-)] < M < oo for some positive M. The functions A ; are called
uniformly bounded item scores. They are ordered if A ;(0) < A ;(1). Moreover,
ordered uniformly bounded item scores are said to be asymptotically discrim-
inating if (1/J) Z‘}ZI(AJ»(I) — A (0)) is positive and bounded away from 0, as
J — oo. Denote the mean of the item scores by A ; = (1/J) ZJJ:I A (X ), and,
with a slight abuse of notation, write A ;(8) = E(A;|6). When d; =1, EJ(O)
may be inverted to produce estimates of 6 directly. In particular, we use A}l(-)
to denote the inverse function for A ;(6).

Now, from J93, LAD is formally defined as follows.

DEFINITION 2.2. We say that X; is locally asymptotically discriminating,
LAD, if for every set of asymptotically discriminating item scores, to every 6
there corresponds an interval N, containing 6 and an &, > 0 such that for
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any t € N, with ¢ # 6 we have

hminfw > g.
J—o00 t—0

Next, consider the following analog to LI, taken from J93, modified from
Stout (1990):

DEFINITION 2.3. We say that X; is essentially independent (EI) with
respect to O if

lim Var(A; |0 =60)=0

for every set of uniformly bounded item scores {A ;(-): j =1,2,...}.
Using Definitions 2.2 and 2.3, J93 has the following.

DEFINITION 2.4. We say that X is essentially unidimensional and write
dg = 1if there exists ® such that X; is EI and LAD with respect to 0.

This is not identical to the usage in Stout (1987) or Stout (1990), but is close
and more appropriate here. Observe that dy = 1 is not, strictly, a manifest
condition: LAD is latent and dz = 1 depends on LAD. However, Stout (1987)
has given a hypothesis test for dy = 1 and since our goal is to test d; = 1 and
LAD, the latent nature of d; = 1 remaining in dz = 1 after replacing LI by
EI is not important in practice. Henceforth, we implicitly assume unidimen-
sionality although our statements hold, possibly with minor modifications, for
the multidimensional case too.

The second class of definitions has five members and pertains to the condi-
tional covariance between items. The first was introduced by J93.

DEFINITION 2.5. We say that the covariances given the sum are nonposi-
tive, CSN, if and only if for any i < j < J the covariance between items { and
J given the mean is negative, that is,

COV(XL', XJ|XJ) < 0.

We weaken Junker’s definition to an asymptotic criterion on Cov(X;,
X ;|X ), so it remains manifest.

DEFINITION 2.6. The sequence X; satisfies asymptotic CSN, ACSN, if and
only if, for all 1 <i < j < J, and all 6, we have that

PH(COV(XZ', lefl]) > 8) — 0,

for any ¢ > 0, as J — oc.

It would be equivalent to require Cov(X;, X j|)? ) to be asymptotically non-
positive in the marginal probability P from (2.1).

The latent version of Definition 2.5 or 2.6 used in J93 is the following.
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DEFINITION 2.7. The sequence X satisfies the property that, locally, the
covariances given the sum are nonpositive, LCSN, if and only if,

COV(XL,XJ|XJ, 0)50 Vl#‘]

The third class of definitions is also based on covariances, but they are
between functions of subvectors of X ;. There are three members in this class.
The first is from J93.

DEFINITION 2.8. We say that X; is locally associated, LA, if and only if for
all 6, and all coordinatewise nondecreasing functions f and g, and all finite
response vectors Y taken from X; we have that

Cov(f(Y), g(Y)|® = 6) = 0.

Definitions 2.7 and 2.8 are only used in the proof of Theorem 3.1.
The second is from Holland and Rosenbaum (1986). It is the following.

DEFINITION 2.9. We say that X is conditionally associated, CA, if and only
if for every pair of disjoint, finite response vectors Y and Z in X, and for every
pair of coordinatewise nondecreasing functions f(Y) and g(Y), and for every
function ~(Z), and for every c € range(h) we have that

Cov(f(Y), g(Y)|(Z) = ¢) = 0,

for any c in the range of A.
The third is from Junker and Ellis (1997). It is a hybrid of CA and ACSN.

DEFINITION 2.10. We say that X; has vanishing conditional dependence,
VCD, if and only if, for any partition (Y, Z) of the response vector X ;, and
any measurable functions f and g we have that

Jim Cov(£(Y). £(2)|X .. X 1) =0

almost sure.

Note that in this definition, the asymptotics are in test length rather than
number of examinees.

The fourth class of definitions pertains to monotonicity, M. It has one mem-
ber: the manifest analog of monotonicity, from J93.

DEFINITION 2.11. Let X ;) = X; — X ;/J. We say manifest monotonicity,
MM, holds if

E(X;|X ;) is nondecreasing as a function of X ;)

for all j << and all J.
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With these definitions in hand, we can informally state our main theorem.
Taken together, the two latent conditions d; = 1 and LAD are equivalent to
the four conditions dz = 1, ACSN, MM and CA taken together. Three of these
four conditions are manifest and we can identify hypothesis tests for them.
The first condition, essential unidimensionality, already has a hypothesis test;
see Stout (1987). We remark also that Junker and Ellis (1997) used CA and
VCD to characterize monotone unidimensional representations of models, that
is, LI, M and d; = 1.

The fourth class of definitions includes the regularity conditions we require
for our formal results. The first of these comes from J93. We assume that Xj
has been embedded in a sequence of binary response variables X and that for
any finite response vector Y in Xy,

(2.1) E(f(Y)|® = 0) is continuous in 6

for any function f(Y). We require the differentiability of conditional expecta-
tions, namely, that for each  and each j < J,

(2.2) sup

J _
s @E(XAXJ =u)

<M < oo.

To make use of LCSN, we require an analogue to (2.2). For each J and j < J
we have that

(2.3) sup
g du

Kl —
EE(leXJZu’QZO) <M, < oco.

We also require the regularity conditions that permit application of the
corollary to Theorem 4.1 in Clarke and Ghosh (1995). First, we assume the
characteristic functions f ;(¢, 0) of the response variables X ;, conditional on 6,
are jointly continuous in (¢, 6) uniformly in j and we denote the conditional
density of X ; by p(x;|0) = py(x;), with respect to counting measure, for
instance, when we need it. Next, we define w;(0) = E,X where X is the
sample mean of the first J X ’sand for j =1,...,J we set X ;(0) = Var,(X ;)

with mean 3 ;(6). Given this, we make a general definition.

DEFINITION 2.12. A sequence of functions (f,(0))|7; is locally invertible at
f if and only if there is a neighborhood N, of 6, so that, for all j, f ;]| Ny Ny,
> f;(Ny,) is invertible, for 6 € N we have that f;(0) € f;(Ny, )° and we
have that the set N7, fj(N,,) contains an open set around lim; ., f ;(6),
assumed to exist.

Now, we require that ﬁj(ﬂ),f}l(e) and Vi (0)=7(0)Via,(0) have first
order Taylor expansions in 6, at any 6, with error terms uniformly small over
J on some fixed open set containing 6.
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3. The main result. To see the necessity of weakening CSN to ACSN we
restate a result of J93.

THEOREM. Suppose X is a sequence of binary responses and 0 is unidimen-
sional. If (2.1), (2.2) and (2.3) hold, then:

(a) CA,dy =1, LCSN, MM < d; =1, LAD.
(b) CA,dy =1, CSN, MM = d; = 1, LAD.

PrOOF. See Theorem 5.2 in J93.

It is seen that LCSN is latent and permits the biconditional in (a), whereas
CSN which is manifest is so strong that a converse is unobtainable for (b).
Relaxing CSN to ACSN will permit us to retain (b) and obtain the converse.

THEOREM 3.1 (Forward direction). Assume (2.1) and (2.2). Then
(3.1) CA,dp =1, ACSN and MM,
taken together, imply the two latent conditions

(3.2) d; =1and LAD.

(Backward direction). Assume the logarithm of any density p,(x) is concave
in x and that the regularity conditions at the end of Section 2 are satisfied.
Then, the conditions in (3.2) taken together imply the conditions in (3.1), taken
together.

REMARK. The forward proof is, mostly, a modification of techniques used
in J93. The assumption of logconcavity is used for the backward direction so
that the corollary to Theorem 4.1 in Clarke and Ghosh (1995) can be applied.
The proof of that result uses Theorem 2.8 in Joag-Dev and Proschan (1983).

PROOF. We start with the forward direction because, although harder, it
is more important in practice.

By definition, dy = 1 implies that both LAD and EI are satisfied. So, it is
enough to get d; = 1. By definition, d; = 1 is equivalent to LI and M taken
together. We get M from Proposition 4.1 in J93. It states that EI, LAD and
MM taken together imply M.

To obtain LI, we use Proposition 3.2 from J93 which shows that LI is
equivalent to LA and LCSN taken together. The first of these, LA, follows
by use of Proposition 3.1 in J93 which gives that CA, dz = 1 and (2.1) taken
together imply LA. We show how the second of these, LCSN, follows from the
assumptions.

We begin by observing that

(33) COV(Xi, X]|9) = }lm COV(XL', XJ|C¥J(0) < XJ < BJ(G))’
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where a;(6) and B;(6) are two functions satisfying B;(0) — a;(6) \y O as
J — oo. This follows from Lemma 3.1 in J93. Now, we can use ACSN to get
LCSN. It is enough, by (3.3), to show that

(3.4) lim Cov(X;, X jlay < X;<Bs) =<0,

for all B; —ay; N\, 0. To obtain (3.4), we follow J93. Note the standard identity
Cov(X;, X jla; < X; < By)
(3.5) = E(Cov(X;, Xj|XJ)|aJ <X, <By)
+Cov(E(X;| X 5), E(X ;| X j)|lay < X; < By)

It is enough to show that both terms on the right-hand side of (3.5) go to zero.

First, recall X is a sequence of binary responses so that Cov(X;, X J-|X J) =<1
and write x(A) to denote the indicator function for a set A. Now, given ¢ > 0
the first term to control is

E(Cov(X;, X ;| X ey < X ;< By)

(3.6) _ _
<e+ E(x(Cov(X;, X;|X ;) = &)lay < X; < By).

Since 0 < x(Cov(X;, Xj|XJ) > ¢) <1, we have
3.7 0 < limsup E(x(Cov(X;, Xj|}?J) > e)ay; < X, <By) <Ll

J—o00

So, the expectation of the middle quantity in (3.7) equals
lim sup E(E(x(Cov(X;, ij?J) > &)lay < X; < By))

J—>00

(3.8) = limsup E(x(Cov(X;, X ;| X ;) = ¢)

J—o00
- /}im Py(Cov(X;, X ;|X ;) = &) dF(0).

Now, by ACSN, the limit in (3.8) is zero, so the first term on the right in (3.5)
is zero.

The second term on the right in (3.5) goes to zero by use of (2.2) and the
same argument as is used to prove Lemma 5.1 in J93. Thus, LCSN follows.

Backward direction: By Theorem 5.2(a) of J93 we see that d; = 1 and LAD
imply CA, dyp = 1, and MM, three of the four conditions we must establish.
Thus, we have to prove only ACSN. Since d; = 1 implies LI, we can use the
log concavity and the regularity conditions at the end of Section 2 to restate
the corollary to Theorem 4.1 in Clarke and Ghosh (1995) as LI implies ACSN.
This completes the proof. O

In principle, the foregoing can be extended beyond settings in which the X,’s
assume finitely many values. See Clarke and Yuan (2000) for a brief
discussion.
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4. Testing for CSN, MM and CA. In the three subsections here we give
hypothesis tests for the three manifest conditions in Theorem 3.1. We recall
that it is not necessary to give a test for dz = 1 because Stout (1987) has
already done so.

The tests we identify follow a common pattern. Identify a statistic which is
a function of UMVU estimators, show that this function is consistent for the
quantity of interest, establish an appropriate form of asymptotic normality for
the statistics, use existing results for the normal case to obtain the hypothesis
testing optimality of the limiting procedure.

Suppose that each of m examinees writes a J-item dichotomous test. Usu-
ally, there are more examinees than test items, that is, m > J, so our asymp-
totics will be as m — oo for fixed J. Let the scores of the ith examinee be
denoted by X; = (X; 1,..., X; ), fori =1,..., m. This means that x; ; is the
ith examinee’s score on the jth item.

Without knowing the value of 6 for a given examinee, all we can do is assign
the mixture density P from (2.1) to a given vector X;. This means that if we
do not have access to a quantity such as # on which to condition, then we
are assuming that the X;’s are iid with respect to P. Within a given X, the
X, ;s are not independent (unless we condition on ), but between different
X,’s they would be independent. We comment that in this and later sections,
omitted details of proofs can be found in Yuan and Clarke (2000).

4.1. Testing for CSN. Let x; = %Z‘jle x; ; denote the average over item
scores for the ith examinee and let x.; = % iz1x; ; be the average over
the examinee’s scores on the jth item. To construct a test of CSN, we denote
the generic score of an examinee on items p and g by X, and X, and write
X = (1/J) ZJJ'=1 X ; for the generic test score of this examinee. (X, and X,
are summands in X.) If CSN holds then we expect that

(4.1) rpq(%)=Cov(X,, X,|X =) <0,

for p,g=1,...,dJ, with p # q, and x = 0,1/J,...,(J — 1)/J, 1 since the
item scores are binary.

Expression (4.1) means that there are J + 1 values of ¥ that we have to
consider. So, for a given collection of m examinees, partition the space of all

data vectors from the </ items into disjoint sets based on the value of x. We
define

Writing /, = [A,] for the cardinality of A;, a natural estimator for r, q(§)
from (4.1) is given by

. k 1 _ [k _ [k
(4.3) rp,q(j) = E ~ <xi,p - xp(j)) (xi,q - xq(j))a
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where aﬁ‘p(g) = i Yica, Xi, p- Note that functions of the sets A, such as [, and
%. ,(-) are dependent random variables. Indeed, there is a negative correlation
between [;, and [;,. (In a multinomial, the correlation between cell counts goes
to a negative constant as the sum over all the cells increases.) Also, note there
are J + 1 values of &, and there are J(J — 1)/2 pairs of items p, ¢ which give
potentially distinct values of 7, q(g). Our first result in this section gives the

asymptotic behavior of 7, q(§) for each fixed value of p, g, k. Let

12 k - Fk
=—Y(X, X, ==) X, X ==
Y m21< ”’X( l J)’ ”q’(( ’ J)’

- k - R\ 12 .
Xi,pXi,qX<Xi—j)7X<Xi—j>> '_EZV””’

and note that the V,, ;’s are iid random vectors. The estimated variance matrix
Cov(Vy) =%, , rofthe V,, /’sis

~ 1 m
2p,q,k = E Z(Vm,i _Vm)(Vm,i _Vm)T'
i=1
Let g(a,b,c,d) = c¢/d — ab/d?,(Vg)(a,b,c,d) = (=b/d?, —a/d?, 1/d, (2ab —
dc)/d?) and m, , ;, = E(V;). Then we can write
0'5’ q, k = Vg(”p, q,k)Ep, q,k(Vg(”"p, q,k))T
and

A127s q.k = Vg(vm)ipv q, k(vg(vm))T

Let —? and —2*% denote convergence in distribution, and convergence almost
sure, respectively. Holding the testlength J fixed, we have the following
asymptotics in m.

PROPOSITION 4.1. Assume m — oo. Then we have:

R kY as. k
Poal 7 )= Tral )

(i) Asymptotic normality:

\/ﬁ<fp,q<§> - rp,q(g»/&p, ok = N(O,1).

PROOF. (i) Write out 7, ,(%/<J) as a collection of sums of m indicator func-
tions weighted by the possible outcomes. Then apply the strong law of large
numbers to each summation.

(1) Consistency:



886 A. YUAN AND B. CLARKE
(i1)) Theorem A in Serfling [(1980), page 122] gives

JI(E(V) = 8Ky o)) = N0, 0% ),

~9 . . 2
O
and ¢, ., is consistent for o7, , ;.

Proposition 4.1 gives the asymptotics for fixed p, ¢ and k. Thus, we can esti-
mate 3, ., and use the asymptotic normality to test the hypothesis r, q(§) <
0 for any triple, (p, g, k). However, the hypothesis H: CSN is that r, q(g) is
nonpositive for all J(J —1)(J +1)/2 triples (p, q, k). Thus, by Proposition 4.1
we could test H using J(J — 1)(J 4+ 1)/2 normal tests. However, we want to
avoid performing so many tests.

Consider the condition CSN(p, q) which is that the covariance between X,
and X, given the mean X is nonpositive for all values of x. The first part
of the following theorem gives an asymptotically UMP level « test for any
null hypothesis of the form H, , = H: CSN(p, q) for given p and g with

p # q. This test is based on the statistic fp,q = maxk(fnq(%)), permit-
ing us to examine the covariance between test items. Clearly, it is equiva-
lent to write H: CSN as H: CSN(p, q) for all distinct pairs p, g. The second
part of our theorem below extends the test of H: CSN(p, q) to H: CSN by
taking the maximum over all pairs (p, ¢). Thus, H: CSN is equivalent to
H: max, , ;7 q(§) < 0 and we can base an asymptotically UMP level «a test

on the asymptotics of T = max,, . k(fp’q(g)). Our definition of asymptotic
UMP level « is the following.

DEFINITION 4.1. A testing procedure ¢,, based on a sequence of test statis-
tics {T',,} is asymptotic uniformly most powerful (AUMP) level a for H: Qg
versus K: Qg if and only if (i),

sup lim Ey¢,, < «a
Qg ™

and (ii) for all 0 € Q,
limE,¢,, = arg[r{%az}( lim E9¢;ni|,

where the maximum is taken over all sequences {¢/, } of asymptotically level «
tests based on the same sequence {7,,} for H versus K.

Note that clause (ii) permits there to be another sequence of statistics,
say S,, for which there might be another, different, AUMP level « test for H
versus K. In the present context T',, = fp,q is asymptotically normal. Even
if S,, also has a limiting normal distribution we have not ruled out the possi-
bility that a test based on S,, is AUMP level a and better than the test based
on fp,q. Development of a testing procedure that would be asymptotically
UMP level « over large classes of sequences of statistics is difficult, especially

if the limiting distribution of S,, differs from the limiting distribution of T pq



MANIFEST CHARACTERIZATION 887

To state our theorem, we require definitions suitable for fixed values p, g,
and then analogous definitions when we take suprema over p and q. In the
following, we let r;,’q(g) = rp,q(@)/a' q, & be the rescaled version of r,, (5 ky,

f;’q(g) = fp,q(g)/&p,q,k, T,,=max,r,, ( ) and T = maxk rp q( ).
Since the o, , ;’s are positive, H, , can be reformulated as H,, T,,<0.
Likewise for H, let T' = max,, krp q( ) and T = max, krp q( )so that H
is H: T <0.For H,, , with fixed p and g, let the range of ( Ybe {r{ <ry <

-<rgtwithl < d < J, and denote the inverse of ', (3 ) at rp,forl<k<d
by Aw(p, q) = 14 (1) ObVlously, Ay(p,g9)NA (p, q) = for k# j. It is

seen that for [ € Ad(p, q), rp’q( ) = max;,, r/p’q(g). Denote the multiplicity of
Ay(p, q) by |Ag(p, q)|.- Now, r, , is one-to-one if and only if |A,(p, q)| =1
for all £ = 1,...,.d and d = J. Let Z(Ay(p, q)) = (f;hq(%): k e Ad(l.”‘”)'
Note Z(A;(p, q)) is a vector of length |A;(p, q)|, and we may denote it by
(Z4,..., ZlAd(M)\)' Also note that Z, and Z,, are independent when % # %'

Consider the one-dimensional distributions F 4 (, ,)(x) = ®(x)4«(P- DI, the
distribution of the maximum of the | A;( p, q)| entries in the vector Z(A;(p, q)).
That is, F 4 (p, (%) is the distribution function of max{Y,..., Y o, p.q}
where (Yq,..., Y|4, 4)) are itd N(0, 1) because, for any x, P(max(Yy,...,
Yis, ) < %) = HlAd(p q)lP(Yi < x). Denote the (1 — a)th percentile of
Fap.0(*) bY F1ip 5 (1= a).

For testing H: CSN, we use definitions similar to those used for H, ,
Analogously, we record the following definitions: for fixed J, the maximum
value of r/p’q(g) over p,q and k is r;, and A; = r'"1(r)), is the collection
of triples (p, g, k) at which r/ () achieves the same maximal value r;. Let

z(Ay) = (f'p’q(g). (p, q, k) € Ay) be the vector of conditional covariances with
entries in A;. Write F» (x) = ®(x)l4dl, denote its 1 — a percentile by F;‘}i(l -
a). We have the following.

THEOREM 4.1. (i) An asymptotic level a test of H , , is given by the rejection
rule

m -1
«/ETp’q > FAd(p’ q)(l —a).

(i) When |Ay| = 1, an AUMP level « test of H,, , is given by the rejection
rule

JmT, .= ®1(1-a).
(iii) An asymptotic level «a test for CSN is given by the rejection rule
vmT = F' (1 - a).

(iv) When |A;4| = 1, an AUMP level « test for CSN is given by the rejection
rule

JmT > 11 - a).
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PROOF. We only consider (i) and (ii); the proofs for (iii) and (iv) are similar.

(i) For & > 0, let By(s) = {|/, ,(£) =7, ,(4)| < £} and let B(¢) = N, By,(e).
We suppose ¢ is so small that the intervals [r, — e, r, +¢]for k=1,...,d are
disjoint. Now, consider the expression

m N k ’ k
G G ) RN C))

+XBc(8)ﬂ<m]?X rp’q<3) — max rp’q(j>>.

The first term on the right-hand side of (4.4) is

k
(45) XB(S) max «/—<A/p q<J> — rd).

(4.4)

keAq(p, q)

Using Proposition 4.1(ii) and (i) we can use (4.5) to show that the first term
on the right-hand side of (4.4) converges to ¥, ). The second term on the
right-hand side of (4.4) goes to zero because yp. goes to 0.

(i) One can see that Hy: CSN(p, q) is asymptotically equivalent to Hy:

T, , < 0. Moreover, in the limit ¢y = T', , can be treated as a parameter, so

it is as if we are testing H,: ¢y < 0 versus H 4: ¢ > 0. Since pl,,(fp q)> the

density for T », ¢ has a monotone likelihood ratio in its normal limit, Theorem 2
in Lehmann [(1986) page 78] implies that the critical function given in (i) is
UMP level a. A technical argument verifies that Definition 4.1 is satisfied. O

Note that we have not actually identified the values at which the maxima
occur and that |Ag, 4| or |[A4| are unknown. Thus, to use Theorem 4.1 in

practice, we might construct the 95% confidence intervals for the r/, q(k)’s

from the 7', q( )'s. If the interval from the largest 7/, q( ) does not overlap
with the other 1ntervals it suggests that [A;(,, ,)| = 1 so that (ii) or (iv) may be
used for the testlng On the other hand, if several such intervals corresponding
to the largest 7/, q( )’s overlap, it suggests |[A4, o)| > 1 and the number of
overlapping 1ntervals might be |Ay(,, 4|, similarly for A,.

One can develop a parallel to Junker and Ellis (1997) for certain continuous
cases also. Suppose the X; ,’s have compact supports covered by a common
compact set S. Let A = {t: r,, ,(¢) =sup,7, ,(s)}. When A has finitely many
elements, we get results similar to those in the discrete case. When A has
countably infinitely many elements, a more technical approach gives results
similar in spirit to the discrete case. However, the details and the reasoning
are quite different. See Yuan and Clarke (2000).

4.2. Testing for MM. 1t will be seen that the central ideas for testing MM
are similar to those for testing CSN, and the results are parallel.

Consider the average score of the ith examinee over the J items, but sub-
tract the term for the jth item. Denote this by x; ;) = },Z;’:l Xjp —

Xij
4
As a generic random variable this is X, = 27, X, — X;/J, in which
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J indexes the item. Now, the quantity we test to see if MM is satisfied will
be obtained from Ak,(]) = E(le}?(‘” = k—}l) - E(X]|X(]) = 5), where k =
0,...,J—1and j=1,...,J. Indeed, MM can now be expressed as Ay )= 0,
for all j and k. So, Hy: MM is equivalent to Hy: ming_p_y_1 1<j=g A (j) =

To develop a natural estimator of A, ) = 0 and so a test statistic for
H: MM, we partition the collection of examinees’ binary response vectors
based on the values of x; (;): Let By, (j) = {x;: %; (j) = J} where £ =0,1, ...,
J—1land j=1,...dJ. Write the cardlnahty of By, (jy as Iy, j = |By ;| and
drop the subscrlpt J. Now, a natural estimate of A;, ;) is

(4.6) Ay ()= — > X i Z Xi, j-

k+1 i€Byiq k i€eB,,
Let
E+1

12 2 _
V :E§:< z]X<Xl (J)_J>’Xi’jX<Xi,(j)=T),

— k - kE+1
X<Xi,(j) = 3>’X<Xi,m = T)) = E Z v
with mean

s = 5000~ (5(a(5,-3)) ({5, - 557)
p(x,-4) p(x, - 22

and write its covariance as %, ; = Cov(V;). This time let g(a, b, ¢, d) = (a/c)—
(b/d) with (Vg)(a,b,c,d) = (1/c,—1/d, —a/c2 b/d?). It is easy to see that
g(Vm) - Ak (J)’ and g(l"’k ]) - Ak )" Let a-k j = Vg(”’k J)Ek J(Vg(”’p q, k))
and let 67 ; = Vg(Vm)Ek,J(Vg(Vm))T, where

~ 1™
2k,j = E Z(Vm,i _Vm)(Vm,i _Vm)T'
Parallel to Proposition 4.1 we have the following.
PROPOSITION 4.2. Assume m — oo, then we have in the mixture distribu-

tion P from (2.1):
(i) Consistency:

- a.s.
Ar, () = Ak, ()

(i1) Asymptotic normality:

~ D
Vm(dy 5y = Ar 7))/ ; = N(O, 1).
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PROOF. This parallels the proof of Proposition 4.1. For (i) write /A\k, (j) as a
collection of sums of m indicator functions weighted by the possible outcomes
and apply the strong law of large numbers to each summation. For (ii) use
Theorem A in Serfling [(1980), page 122]. O

To use Proposition 4.2 to test MM, let A = max, ;A, ;) and A= max,, ;

Kk, (j)- Then testing MM is equivalent to testing Hy;: A < 0 versus K;: A > 0.
In the same spirit as Theorem 4.1, let the range of A;, ;) be {8; <8y <--- <
84} with the maximum of A, ;) over pairs (i, j) being §;. (We assume —oo <
inf), A, () <supy ;A (j) < o) Set A; = A1(8,) to be the indices {(%, j)}
where A, ; is maximal. Now we write z(A;) = (/A\k,j: (k, j) € Ay), with

asymptotic variance matrix %(A,), consistently estimated by /E\(Ad). Finally,
let ®5(xq,...,x;) be the distribution function of the k-dimensional normal
distribution with mean zero (vector) and covariance matrix 3. let F 4 (x) =

Dy, (x,...,x), ﬁAd(x) = (Di(Ad)(x’ ..., x), with 1 — & percentile ﬁ;‘i(l — ).
Parallel to Theorem 4.1 we get AUMP level « tests for MM.

THEOREM 4.2. (i) An asymptotic level « test of H y; is given by the rejection
rule

VmA > Fil(1-a).
(ii) When |A4| = 1, an AUMP level « test of H y; is given by the rejection rule

N -1

PROOF. Let By, ;(¢) = {|{A,. ; — Ay ;| < &}, and B(s) = N, ;B ;(¢) where
& > 0 is so small that the intervals (§; + ¢) are disjoint fori = 1,...,d. Asin
Theorem 4.1 it is enough to consider

Vm(A —A) = XB(S)«/E(I%?J.X Ap. iy~ max Ap, (j))

4.7) ~
+ XBe(e)Vm (rgix A, (j) ~ max Ay, 0)- 0

4.3. Testing for CA. Here we develop an AUMP level « test for CA. The
ideas are similar to those for CSN and MM. To see this, however, we must
consider different orderings on response vectors so as to give a condition
equivalent to CA but more amenable to testing. We begin by developing the
mechanics to represent the functions that appear in the definition
of CA.

First note that in the definition of CA, we can assume without loss of gen-
erality that the coordinatewise nondecreasing functions are nonnegative. This
follows because all indices are finite and the covariance will be unchanged if
we subtract the infimum from each function.
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Let S; be the set of all vectors of length / with all entries 0 or 1. That is, S ;
is the set of vectors s; = (0,...,0),s5 = (1,0,...,0),s3 = (0,1,0...,0),...,
sg41 = (0,...,0,1),5;,0 =(1,1,0...,0),...,8¢ = (1,1,...,1), where K =
27. These s;’s represent the outcomes of the data vector (X,..., X ;). Next,
define the partial ordering <, on the set S;: for s; and s, in S; we write s; <
sy, if and only if each coordinate of s; is less than or equal to the corresponding
coordinate of s;. In the above sequence of vectors defining S ; we have s; < sg,
and s; <g S3,..., but there is no order specified between s, and s3, s, and
84.... In particular, no order is specified within a collection of s;’s having the
same number of nonzero entries in different locations.

Nevertheless, we can extend the partial order <, by specifying some of the
remaining size relationships. There are many ways to do this. We say that
< is a refinement of <, if < retains all the orderings of <, while adding, in
a consistent fashion, at least one new order between a pair of members that
were not ordered under <,. Let A be the collection of all maximal refinements
< of <g; the refinements are maximal in the sense that there is no nontrivial
refinement of them. Heuristically, < extends <, if and only if there is a coor-
dinatewise nondecreasing function f on S; so that the ordering < on S; is
the same as that induced by ordering on the values f assumes. Thus, <=<,
for some f. Now, A is the collection of orders that reduce to <, and can be
derived from f’s that are strictly monotonic.

Next, we represent selections from the coordinates of the vector of length
J by S;. That is, let S; be the set of all ordered subvectors of length j from
(1,2,3,...,dJ). For instance, since the ordering is retained, we have that for
J=10 and j =5,(2,3,6,8,9) € S; but (2,6,3,8,9) ¢ S;. Let Q = be the
disjoint union of all S;’s for j < J. Now, any element » of () can be written
as w = w; for some w; € S;.

Now let <€ A be an ordering on S; and let w € Q be an ordered subvector
of (1,2,...,J) of length j, so o = w; € S;. Next, define S(w) = S(w;) to be
the set of all vectors of length j with entries zero or one, where the entries
in the vectors are indexed by the j (ordered) entries of w(j). For instance, if
J =10, j = 3 and w3 = (2,5, 8), then S(w(3)) = {(xg, x5, xg): x; =0,1; ] =
2,5,8.}. Clearly, the cardinality of S(w ;) is |S(w ;)| = 2/. Observe next that
o defines a restriction of any ordering <€ A on S to <p, On S(w); we write
this as <.

For each fixed selection of coordinates w of length j, let A(w) be the set of
all complete orderings on the set of possible outcomes for those coordiantes
S(w). For each fixed <’ (o) € A(w), (each of them is a refinement of some <,,)
all the elements of S(w) can be listed by the ordering <’ (w) as sy, Sg, ..., S/,
with s; <’ (w)s, when i < k. For this fixed <’ (w), let A; be the ordered
complement of the first i j-vectors sy,...,s; in S(w). That is, A; = {s;: k£ > i}
for i = 1,...,27. Let R(<'(w)) = {A4,..., Ay} be the sequence of sets of
ordered vectors. Clearly, A; D A;,;. For different <’ (w)’s, there are differ-
ent classes R(<'(w))’s of A,’s. However, these classes will often have some
common A;’s, since there are some common natural ordering relationships for
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different <’ (w)’s. Let .(<,,) be the collection of all the different A,’s, that is,
(4.8) S(<0)= U R (e))

<'(w)eA(w)

Next, we use these sets to define the set ordering relation and the set
we actually want. For fixed j and (), let X(w(j)) be the subvector of X
from the index vector w(j). Now, define .7 (w(j)) to be the collection of all
the nonnegative, coordinatewise nondecreasing functions of Y ; = X(w(j)).
With the above definitions we have the following characterization of .7 (w(j))
because all members of .7 (w) are restrictions of functions on all of X.

PROPOSITION 4.3. A nonnegative coordinatewise nondecreasing function [
satisfies [ € F(w(J)) if and only if there exists an ordering < in A(w(J)), a
collection of real numbers a; > 0 and a sequence of sets A; in /(<,;)),1 =
1,...,27, so that

9J
(4.9) fC)=2 a;xa,()

i=1

ProoOF. First, we show that f can be written as a telescoping sum for
an increasing sequence of sets. That is, we show f can be represented using
constants a; on sets A; where i < i’ implies that A; C A, . Thus, reorder the
vectors in S(w(j)) as (1), S(2), - - - » S(27y such that

f(sy) < f(s) <+ = f(s2i)-

Letting a; = f(sqy)), and a; = f(s;y)— f(si_1)) for i =2, ..., 2/ gives the “only
if” part.

For the “if” part, we must show that for s;, s, € S(w(j)), with s, coordi-
natewise greater than s;, we have f(s;) < f(s;). In fact, we have s; < s;;
thus [ < k. Thus, f(s) is f(s;) plus at least one more nonnegative term to
represent outcomes s;,¢,...,5;. O

We use Proposition 4.3 to get a condition equivalent to CA. For this we
need another subvector Z; of X ; with length j'. We assume that Z; has
no intersection with Y ; and denote its domain by S;. Write Y ; and Z ; as
X(w(j)) and X(w'(j')), respectively, where w(j) and (') are nonoverlap-
ping subvectors of (1,2, ..., J) with length j and j’, respectively. Now we
have the following.

PROPOSITION 4.4. The criterion CA is equivalent to
. X .
min | Covl(xa(X(a(1).

(4.10) Udie << AB,
xp(X(@()IX(o'(j) € D) 2 0,
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where the operation ming; ;. ., .. < <, A, B, p) denotes

min ' ~ min_ ' min ' min .
JHJ'=d; w()), o' (J)EQ, o(j)Nw'(j)=¢; <eA(w()))<'eA(w'(J)); A, Be/(<,), DC/ (<))

PrOOF. First write CA as a minimum over partitions of X ;. Then using
Proposition 4.3, write each of the three functions in the definition of CA as a
sum of the form (4.9). Taking the minimum over such functions identifies the
other three minimizations. O

Now that CA has been converted into a condition which is an explicit
minimum it is amenable to the same sort of procedure as we used for CSN
and MM. Indeed, Proposition 4.4 identified (4.10) as the central quantity for
testing CA.

To fix notation, write ¢ = (J, j/, w, ', <, <', A, B, D). The parameter
varies over ¥ = {y:1 < j, j57+ J < J;0()), @' (J) € Qyo(j)No'(j) =
¢; <€ Alw(j)), <'e Mw'(j)); A, Be A(<,), Z C ./ (<)} The set ¥ is finite,
though usually of enormous cardinality. Now, for y € ¥ we let

(4.11) ry = =Cov(xa(X(w()))), xp(X(«()H)NIX(«'(j) € D).

So, CA is equivalent to max,cy r, < 0.

We develop an estimator for r,, as follows. Suppose we have m examinees
with scores denoted x; = (x; 1,...,%; ), for i = 1,..., m. We will be condi-
tioning on D € ./(</, ;) so such D’s will define the subset of examinees over

which we will average. For fixed D, let G = Gp = {i: x;(«’(j')) € D}, and set
[ = |G|. Now, for A, B € .”(<,,;)) the averages of examinees’ scores over G

gl"e Xa(D) = (1/1) Xice xa(Xi(w(7))) and xp(D) = (1/1) ¥icq xp(Xi(@())))-
o,

(4.12) 7, = —% Y- (xaxi(0()))) = xa(D)(xp(xi(«()))) — x5(D))
ieG
is an estimator for Ty in (4.11).
Let y; = x,(«(J)) and z; = x;(@'(J"));
V., = %Z(XA(yi)XD(zi)7XB(yi)XD(zi)7XAﬁB(Yi)XD(zi)aXD(zi))T
i=1

= i % VFI;L,i

i=1

m
and

ny = EVy), Cov(Vy) =2,.
It is seen that

p, = (P(y;€A,z;€D),P(y;€B,z;e D), P(y;€ ANB,z;e D), P(z;)e D))" .



894 A. YUAN AND B. CLARKE

Denote its covariance by %, ; = Cov(V;). This time, let g(a,b,c,d) =
ab/d? — c¢/d with (Vg)(a, b, c,d) = (b/d?,a/d?, —1/d,(dc — 2ab)/d?). Tt is
easy to see that g(V,,) =7,, and g(u¢) =ry. Let Udzj = Vg(u¢)Ew(Vg(ud,))T
and denote its moment estimate by 6'3, =Vg(V, )§¢(Vg(Vm))T, where

~ 1 m
Elﬂ = Z(Vm,i _Vm)(Vm,i _Vm)T'
mi
Now, analogously to Propositions 4.1 and 4.2, we have the following.

PROPOSITION 4.5. Fix j and j with j+ j < J and w(j) and «'(j') € Q
nonoverlapping, that is, w(j) N «'(j') = ¢. Next, choose ordering relations
<€ Mw())) and <'e AM(w'(j')). Let A, B € ./(<,(;)) and let D € /(<;J/(j,)).
Then, as m — oo, we have the following limits:

(i) Consistency: expression (4.12) converges a.s. to expression (4.11). That
is,
A a.s.

r¢—>r¢.

(ii) Asymptotic normality: for &, as above,
R . D
vm(#, —r,)/6, — N(0,1).

Finally, as a parallel to Theorems 4.1 and 4.2, we state a result giving an
AUMP level « test for CA. Let R = max,.y r,, R = max,y 7,. Now, testing
CA is equivalent to testing Hqy: R < 0 versus KCA: R > 0.

As before, let the domain of r, be {r; < ry < -+ < rg}, Ay = (r)"(ry)
be the collection of indices ¢ at which r, achieves the same maximum value
rq. Let 2(Ay) = (7y: ¢ € Ay) with asymptotic variance 2(A,), and consistent
estimator 2(A,). Set F 4 (x) = ®y(4,)(x, ..., x), with 1 -« percentile denoted
F;}d(l — ). These are approximated by ﬁAd(x) =& .,x), and 1/7'\2‘11

(1-a).

E(Ad)(x’ ..

THEOREM 4.3. (i) An asymptotic level « test of H o, is given by the rejection
rule

Vm R > Fil(1-a).

(i) When |A;| = 1, an AUMP level «a test of Hqy is given by the rejection
rule

JmR > o1

E(Ad)(l —a).

The proof of this result is similar to the proof of Theorems 4.1 and 4.2.
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5. Testing VCD. Recall that Junker and Ellis (1997) characterized mono-
tone unidimensional models in terms of VCD and CA. Since Section 4 gave a
test for CA, it remains to give a test for VCD. Note that the asymptotics in
VCD are in test length m rather than number of examinees. Here, we iden-
tify an AUMP test of VCD for fixed m. This test is similar to that for CA but
the construction is simpler because the functions f(-) and g(-) in the covari-
ance are arbitrary. However, this suggests that a larger sample size will be
necessary for the asymptotics to be effective.

Let X; ,, = (Xj41,...5 X yim), and let ./ ,,, be the domain of X ; ,,. Let
/s,  and () be as in Section 4.3. Also write & (w(j)) for the collection of all
measureable functions of X (w(j)). Parallel to Proposition 4.3 we have that
forany j=1,...,J, and any f(-) € F(w(j)) there is a sequence a; € R for
i=1,...,2/ so that

9J
f(X(@0() = 3 aixs (X (o()))),
i=1
where the s;’s are elements of .”(w(j)). Letting w°(j) be the complement of
w(j), we have the following parallel to Proposition 4.4.

PROPOSITION 5.1. VCD is equivalent to the condition that for each m there
is an & = e(m), with e(m) going to zero, so that

GU  max [Cov(xa(X(o()). xa(X (@ ()X, € D)l <.

in which the operation max; ;) a, p, p denotes the maximum over

l1<j<d;o(j)e LB Ac A(w(j);Be /(0(j)and D e ./ ,,.

Proor. If VCD holds, take Y = X(w(j)), Z = X(0°())), f(Y) = xa(Y)
and g(Z) = xg(Z). Then, (5.1) follows from

Jim Cov(x (X («(/)), xp(X(« (/DX g m € D) = 0.

If (5.1) holds then, for 1 < j < J, w(j), 0°(j) € Q, f(-) € F(w(j)) and g(-) €
Fue(j)» We have

[Cov(f(X(w())), g(X(0* ()X g m € D)|

2/ 9f

<2 2 la,bCov(xa (X(0())), x5, X (0 ()X n € D)
r=1¢=1

< 27abe — 0,

as m — oo, where j' = J — j, @ = max{|a;|,..., |ag|} and b = max{|d,], ...,
by [}. O
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Now, let ¢ = (j, w(j),A,B,D) and ® = {¢:1 < j < J;w(j) € LA €
o(j);Be w(j);D e/ ,,} For ¢ € ®, consider
(5.2) 94 = Cov(xa(X(@()), xp(X (0 ()X, € D).

For fixed m and ¢, denote x; = (x; 1,...,%; g, X; gi1>---> X gim) Where i =
1,....,n. Let G = Gp = {i:x; ,, = D}, and set [ = |G|. The averages of
examinees’ scores over G are y4(D) = (1/1) > ;ca xa(X;(w(j))) and yg(D) =
(1/1) Yice xB(X;(0°()))- So,

N 1 . _ cr _
53) 4y =7 2 axi(@())) = Xa(DN(xpxi(0°())) — X5(D))

ieG

is an estimator of q,. Let G, be the asymptotic variance of g, constructed as
in Section 4.3. Parallel to Proposition 4.5 we have the following.

PROPOSITION 5.2. For fixed ¢ € ®, we have, as n — oo
(i) Consistency: expression (5.3) converges to expression (5.2). That is,

A~ a.s.

9y = dg-
(i1) Asymptotic normality: for &, as above,

. . D
x/ﬁ(q(p - Q¢>)/0'¢> — N(0, 1),
where oy is the asymptotic variance matrix of q, specified as that for 7, in

Section 4.3.

Let Hycpim) be the hypothesis that VCD is true for fixed m. Let Q =

max g q¢,Q = Ming.y q,, @ = Max,p g4 and Qmind,eb 44- Now, HVCD(m)
is equivalent to —e(m) < @ and @ < s(m). Let A, be as in Theorem 4.3, but
with r, replaced by ¢, in the definition and let z(A,), 2(A,), $y(a,) and Fy,
be as in Theorem 4.3. Let B; be the counterpart of A; with max replaced by
min. Similar to Theorem 4.3, we have the following.

THEOREM 5.1. (i) An asymptotic level a test of Hycp(y,) is given by the rejec-
tion rule

V(@ + e(m)) < ~F)(1-a/2)
or
V(Q — e(m)) = F3l(1 - a/2).
(ii) When |A4| = |Bg| = 1, an AUMP level a test of H is given by the rejection
rule
V(@ + &(m)) =~ (1-a/2)
— (Ba)

or

V(@ = e(m)) = ®1 (1-a/2).

3(Aq)
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The test identified in Theorem 5.1 is different from the approach in
Bartolucci and Forcina (2000). They defined a desirable property MTP, of
X; [see Definition 1 in Bartolucci and Fortina (2000)] and observed that
Rosenbaum (1987) showed CA implies MTP,. Thus, if their test of MTP,
rejects, a fortiori one can reject CA. Their test is based on an ML approach
(likelihood ratio) and converges asymptotically to a mixture of chi-squared dis-
tributions. By contrast, ours is based on the asymptotic normality of unbiased
estimators.

6. Discussion. The main contribution of this paper is the conversion of
two latent properties into a set of equivalent manifest properties and the pro-
vision of a way to get routine hypothesis tests for manifest properties. We
gave hypothesis tests for three of the four conditions in our characterization
Theorem 3.1: ACSN, MM and CA. We also gave a test for VCD, a manifest con-
dition that arises in a different characterization result due to Junker and Ellis
(1997). These tests demonstrate the general feasibility of testing manifest con-
ditions by use of best unbiased estimators. Moreover, we have demonstrated
a weak optimality for this procedure.

The major limitation of the approach here is that we only have theoretical
feasibility for one sequence of tests. In particular, there remains the question
of how large a sample size is necessary for the normal approximation to be
effective. Rough calculations suggest the sample sizes necessary for the weak
optimality shown here to hold approximately are essentially never available
in practice. As is suggested in Yuan and Clarke (2000), the enormous sample
sizes seem to arise because one is asking for many disjoint occurrences of
asymptotic normality. Obviously, asking only for asymptotic normality on the
midrange of the test statistic on which one is conditioning will reduce the
sample sizes somewhat.

To see the necessity for getting smaller sample size, consider the simple
minded approach of using Bonferroni and normality for each member in the set
over which minimization is done in, for instance, CSN. Studies [see, e.g., Port
(1994), page 685] indicate that, in the one-dimensional case, for “reasonable”
distributions (such as the binomial for instance) the normal approximation of

the standardized sum (\/ﬁ#) is quite accurate for m > my = 25. The
minimal sample size m, and the accuracy 6 of the normal approximation are
related by m, o 1/82. For the same level of accuracy in the d-dimensional
case, Bonferroni’s inequality gives accuracy 6/d for each marginal dimension.
This means the minimal sample size m, is m, « d?/8? in the d-dimensional
case, which gets large, fast.

One alternative for seeing if reasonable sample sizes exist is to use a Berry—
Esseen bound in place of the asymptotic normality. It is unclear whether this
will be better because the Berry—Esseen theorem uses a stronger mode of
convergence. A second issue is that there might be better statistics on which
to base hypothesis tests than the ones we used. One of these is a modification
of Fisher’s exact test. Both of these are discussed in Yuan and Clarke (2000).
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