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LEAST SQUARES ESTIMATORS OF THE MODE OF
A UNIMODAL REGRESSION FUNCTION

By Jyh-Ming Shoung and Cun-Hui Zhang

Rutgers University

In this paper, we consider nonparametric least squares estimators of
the mode of an unknown unimodal regression function. We establish al-
most sure convergence of these estimators with nearly optimal convergence
rates, under the assumption of the exponential tail for the error distribu-
tions.

1. Introduction. Consider the regression model

Yi = f0�Xi� + εi� i = 1� ���� n�(1.1)

with independent mean-zero errors independent of the design points �Xi�,
where f0�x� is an unknown unimodal function with unknown mode m0. The
nonparametric least squares estimator (NPLSE) of the mode m0 is defined by

m̂n ≡Xĵ� ĵ ≡ argmin
1≤j≤n

[
min

f∈� �Xj�

n∑
i=1
�Yi − f�Xi��2

]
�(1.2)

where � �m� = �f � f is a unimodal function with mode m�. In this paper, we
establish almost sure convergence of (1.2) with optimal convergence rates up
to a logarithmic factor, under the assumption of the exponential tail for the
error distributions.
Suppose throughout the sequel that �Xi� are iid random variables from a

continuous distribution GX such that the density G′X exists in a neighborhood
of the unknown mode m0 and G

′
X is positive and continuous at m0. Consider

smoothness condition

f0�x� − f0�m0� = �B+ o�1��x−m0s as x→m0(1.3)

at the mode m0, with smoothness index s > 0 and certain constant B > 0.

Theorem 1.1. Let m̂n be given by �1�2� with the data from �1�1�. Suppose
f0�x� is a unimodal function satisfying �1�3� at its modem0. Suppose the errors
in �1�1� are independent with Eεi = 0 and that P�εi > t� ≤ � exp

( − ctα
)

for all t > 0 and all i, where α� � and c are positive numbers. Then, with
γ = max�1�1/2+ 1/α�

lim sup
n→∞

{
n/�log n�2γ}1/�2s+1�∣∣m̂n −m0

∣∣ <∞ a.s.(1.4)
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The convergence rate in (1.4) is optimal up to a logarithmic factor [cf.
Donoho and Liu (1991) and Hasminskii (1979)]. Let the smoothness index
s be a positive integer and f�k� be the kth derivative of f. Let �ε�M ≡ �f �
�f�s� − f

�s�
0 �∞ ≤ ε� �f�s−1� − f

�s−1�
0 �∞ ≤ Mn−1/�2s+1�� with sufficiently small

ε > 0 and large M <∞. If the regression function f0 is s-times continuously
differentiable, (1.3) implies f�s−1�0 �m0� = 0 > f

�s�
0 �m0�, so that f�s−1��m0� ≈

f
�s�
0 �m0��m0−mode�f�� for f ∈ �ε�M and ε << f

�s�
0 �m0�. Thus, for iid N�0�1�

errors, the minimax convergence rate for the estimation of the mode of f over
Cε�M is the same as the minimax convergence rate n−1/�2s+1� for the estimation
of f�s−1��m0� over �ε�M [cf. Stone (1980)]. Here, m0 ≡mode�f0� �≡mode�f� in
general. It seems that �n/ log n�−1/�2s+1� is a lower bound for the convergence
rates of the NPLSE (1.2) and all other estimators adaptive to different values
of the smoothness index s in (1.3), in view of Lepskii (1992), Gill and Levit
(1995) and Brown and Low (1996).
Nonparametric regression (1.1) with unimodal regression function is closely

related to nonparametric density problems based on iid observations from
an unknown unimodal probability density function. Both models have been
considered by many authors in the literature. We shall provide a brief review of
three types of relevant previous results: isotonic estimation with known mode,
rate specific estimation of the mode m0 under a given smoothness condition,
and rate adaptive estimation of m0.
When the mode m0 is known, the NPLSE of f0 is given by two isotonic re-

gression estimators, one on each side of m0. The NPLSE and related isotonic
methods for estimating a monotone regression or density function were pro-
posed by Ayer et al. (1955), Eeden (1956) and Grenander (1956). The asymp-
totic distributions of these estimates at a fixed x0 were established by Prakasa
Rao (1969) and Brunk (1970). Groeneboom (1985) obtained asymptotic distri-
bution of the L1 loss for the Grenander estimator. Comprehensive account of
the subject can be found in Barlow et al. (1972) and Robertson et al. (1988).
In the case of unknown mode m0 and for classes with known smooth-

ness index s, Venter (1967) used clustering methods to estimate the mode
of a density and proved the following convergence rates for his estimators:
o�1�n−1/�2s+1��log n�1/s for s ≥ 1/2, and o�1�n−1/2�log n�1/s for 0 < s < 1/2.
Under stronger smoothness conditions on f0 in a neighborhood of m0; Parzen
(1962), Chernoff (1964), Eddy (1980) and Müller (1989) provided certain kernel
estimators of mode with faster convergence rates.
For unspecified smoothness index, Wegman (1970) proved strong consis-

tency for an MLE of the mode of a unimodal density. Grund and Hall (1995)
proved theLp consistency of an estimate of the mode based on kernel methods.
Birgé (1997) provided L1 risk bounds for certain minimum distance estimators
of a density with unknown mode. Bickel and Fan (1996) proved that certain
modified MLE of the mode of a unimodal density function converges at the
rate of o�1�n−1/�4s+2��log n�2/�2s+1� with the smoothness index s ≥ 1 in (1.3).
In Section 2 we discuss in detail NPLSE and give an outline of the proof of

Theorem 1.1. The full proof is provided in Section 3.
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2. NPLSE of mode and an outline of proof. In this section, we provide
an outline of our proof of Theorem 1.1 bsaed on an alternative expression of
(1.2) and a deviation inequality due to Ledoux and Talagrand.
The NPLSE of an unknown unimodal function with known mode m is de-

fined by

f̂n�·�m� = argmin
f∈� �m�

n∑
i=1

{
Yi − f�Xi�

}2
�(2.1)

where � �m� is as in (1.2) and for definiteness f̂n�·�m� is taken to be the
version which is a left-continuous step function with jumps only at design
pointsXi. Thus, f̂n�·�m′� = f̂n�·�m′′� if �m′�m′′�∩�Xi� = ∅. The minimization
problem in (2.1) can be solved by separately minimizing the sum of squares for
�i �Xi ≤m� and �i �Xi > m� with standard isotonic regression methods. The
solution can be easily computed with the pool-adjacent-violators algorithm.
See Barlow et al (1972) or Robertson et al (1988). Here, a function f defined
on an interval �a� b�, −∞ ≤ a < b ≤ ∞, is unimodal if there exists m ∈ �a� b�
such that f is nondecreasing in �a�m� and nonincreasing in �m�b� and that
f�m� ≥ min�f�m−�� f�m+��. Thus, supx f�x� is reached either at m or m±.
In this case, m is called a mode of f.
Let t1 < t2 < · · · < tk be the location of jumps of f̂n�·�m� in (2.1). Within

each interval I# = �t#−1� t#�, t0 = −∞, the value of f̂n�·�m� is the average of
�Yi �Xi ∈ I#�, as it minimizes the sum

∑
Xi∈I#�Yi−c�2 over real c, # = 1� ���� k.

Thus,

n∑
i=1

{
Yi − f̂n�Xi�m�

}2 = k∑
#=1

∑
Xi∈I#

{
Y2

i − f̂ 2
n �t#�m�

}
=

n∑
i=1

Y2
i −

n∑
i=1

f̂ 2
n �Xi�m��

(2.2)

Since the first term on the right-hand side of (2.2) is fixed for the given data,
f̂n�·�m� is actually the maximizer of

∑n
i=1 f

2�Xi� for all f ∈ � �m� which are
piecewise averages of �Yi�. Furthermore, the NPLSE of the mode defined in
(1.2) is equivalent to

m̂n =Xĵ�
n∑
i=1

f̂ 2
n �Xi�Xĵ� = max

m

n∑
i=1

f̂ 2
n �Xi�m��(2.3)

The proof of Theorem 1.1, in Section 3, is based on our investigation of the
sum of squares in (2.3) and an application of the following deviation inequality
[Ledoux (1996)]

P
{
h̃�η̃1� � � � � η̃n� > median

(
h̃�η̃1� � � � � η̃n�

)
+ t

} ≤ 2 exp
(− t2/4

)
�(2.4)

for independent variables η̃i living in a unit cube and convex h̃with �h̃�Lip ≤ 1.
Here �h̃�Lip = sup �x�= �y �h̃� �x� − h̃� �y��/� �x− �y� is the Lipschitz norm.
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A crucial step in the proof is to control the contribution of the spike of
f̂n�·� m̂n� around m0 to the sum of squares in (2.3); that is, to control the con-
tribution of the positive part

{
f̂n�x� m̂n�−f0�m0�

}+. This is done, in subsection
3.2, by invoking (2.4) for

T′j =
√√√√ n∑

k=1
max
k≤#≤n

( #∑
i=1

ηi+jεi+j/#
)2

� j ≥ 0�(2.5)

conditionally on �εi�, where �ηi� is a Rademacher sequence independent of
�εi�. Here is the connection between (2.3) and (2.5). By the minimax formula
[cf., e.g., Barlow et al. (1972)]

f̂n�Xj�m� = max
s≤Xj

min
Xj≤t≤m

∑
s≤Xi≤t Yi

#�i � s ≤Xi ≤ t�

≤ f0�m0� +max
s≤Xj

∑
s≤Xi≤m εi

#�i � s ≤Xi ≤m� �
(2.6)

for Xj ≤m, with #�A� being the size of set A, and

f̂n�Xj�m� = min
m<s≤Xj

max
Xj≤t

∑
s≤Xi≤t Yi

#�i � s ≤Xi ≤ t�

≤ f0�m0� +max
Xj≤t

∑
m<Xi≤t εi

#�i �m < Xi ≤ t� �
(2.7)

for Xj > m. These minimax formulas imply

sup
m

n∑
j=1

[{
f̂n�Xj�m� − f0�m0�

}+]2

≤ max
1≤j∗≤n

j∗∑
j=1

max
1≤j1≤j

{(∑j∗
i=j1 ε

′
i

)+
j∗ − j1 + 1

}2
(2.8)

+ max
1≤j∗≤n

n∑
j=j∗+1

max
j≤j2≤n

{(∑j2
i=j∗+1 ε

′
i

)+
j2 − j∗

}2
�

where �ε′i� is the permutation of �εi� according to the ranks of �Xi�. This
inequality and standard symmetrization methods provide the connection be-
tween T′j in (2.5) and the contribution of the spike of f̂n�x� m̂n� to the sum of
squares in (2.3).
We conclude the section with two remarks about the conditions of

Theorem 1.1.

Remark 2.1. The conclusion of Theorem 1.1 remains valid without the
continuity assumption on GX on �, as long as G′X is positive and continuous
atm0. We impose this extra continuity condition in order to focus on the main
ideas in the proofs.
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Remark 2.2. The condition on the tail probability of the errors is used to
control the contribution of the spike of f̂n�·� m̂n� to the sum of squares in (2.3).
It is not clear if the condition can be weakened to supi Eεip <∞ for certain
2 ≤ p < ∞ for the NPLSE (1.2) or its modifications adaptive to smoothness
classes of different index s.

3. Proof of Theorem 1.1. We divide the proof into 3 subsections. We shall
discuss the continuity of the NPLSE of unimodal functions and the magnitude
of the spike of the NPLSE at the mode in the first two subsections to prepare
for the proof of Theorem 1.1 in the third subsection. Since our conditions and
conclusions are invariant under monotone transformation of the design points
�Xi�, we assume without loss of generality in this section that �Xi� are iid
uniform random variables in an interval �a� b� of unit length with a < m0 < b.

3.1. Continuity of NPLSE of unimodal functions. Let �a� b� be an interval
with b = a + 1. For a ≤ m ≤ b, right-continuous functions H and right-
continuous nondecreasing functions G on �a� b�, define Dm�HG� = ĥ�·�m�
by

Dm�HG��x�= ĥ�x�m�=


sup

G�s�<G�x�
inf

x≤t≤m
H�t�−H�s�
G�t�−G�s� � a≤x≤m�

inf
G�s�<G�x�

m<s

sup
x≤t

H�t�−H�s�
G�t�−G�s� � m<x≤b�

(3.1)

with the convention sup∅ = −∞ and inf ∅ = ∞. See (2.6) and (2.7).

Remark 3.1. By the minimax formula, ĥ
(
G−1�x��m)

is the left-derivative
of the convex minorant (concave majorant) of H

(
G−1�x�) on �a�m� (on �m�b�

respectively), where G−1 is the inverse function of G. Thus, (3.1) is a local
estimator; e.g. If ĥ�x�m� has a jump at a point x0 ∈ �a�m�, then ĥ�x�m′� for
x ≤ x0 < m′ ≤ m does not depend on the behavior of the functions H and G
in �x0� b�.

Consider a left-continuous unimodal function h0 on �a� b� with a mode
m0 ∈ �a� b� and supx h0�x� = 0. Let H0�x� =

∫ x
a h0�t�dt and G0 be the uni-

form distribution on �a� b�. In Lemma 3.1 below, we provide certain continuity
properties of the mapping Dm�HG� in (3.1), as �H�G� → �H0�G0�. These
results are used in the proof of Theorem 1.1.

Lemma 3.1. Let h0�·�m� = Dm�H0G0� with theDm in �3�1�. Let C1 = 4�1+
�h0�∞� and 0 < δ < δ0/4. Then, for x ∈ Am�δ0

= �a+δ0� b−δ0�\�m−δ0�m+δ0��∣∣̂h�x�m� − h0�x�m�
∣∣ ≤ C1δ/δ0 + max

t−x≤δ0

∣∣h0�t� − h0�x− δ0�
∣∣(3.2)
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for all �H�G� with �H −H0�∞ ∨ �G −G0�∞ ≤ δ. Moreover, for all ε > 0 and
a < m∗ < b there exist δ = δε�m∗�h0 > 0 such that∫ b

a

{
ĥ2�x�m� − ĥ2�x�m∗�

}
dG�x� −

∫ b

a

{
h20�x�m� − h20�x�m∗�

}
dG0�x�

≤ ε+
∫ b

a

{
ĥ+�x�m�

}2
dG�x��

(3.3)

uniformly for all real numbers a ≤ m ≤ b and functions H and distribution
functions G on �a� b� satisfying �G − G0�∞ ∨ �H −H0�∞ ≤ δ, where ĥ+ =
max�ĥ+�0�.

Remark 3.2. Since h0 is increasing in �a�m0� and decreasing in �m0� b�,
by (3.1),

h0�x�m� = h0�x�I�x�∈�m′�m′′ �� +
H0�m′′� −H0�m′�

m′′ −m′ I�x∈�m′�m′′ ���(3.4)

where m′ =m and m′′ = inf�x > m0 � �H0�x� −H0�m��/�x−m� ≥ h0�x�� for
m ≤ m0, and m′′ = m and m′ = sup�x < m0 � �H0�m� −H0�x��/�m − x� ≤
h0�x�� for m > m0, that is, H0�x�m� ≡

∫ x
a h0�t�m�dt is continuous, linear in�m′�m′′� and identical to H0 outside �m′�m′′�. It follows that h0�m0�m� is the

average of h0�·� over �m′�m′′� and∫ b

a

{
h20�x�m� − h20�x�m0�

}
dG0�x�

= −
∫ m′′

m′

{
h0�x� − h0�m0�m�

}2
dG0�x��

(3.5)

Remark 3.3. Let �a� b� = �−1/2�1/2� and h0�x� = −Bxs for some positive
numbers B and s. Thenm0 = 0,m′′ = λsm for −1/2 ≤m < 0 andm′ = −λsm
for 0 < m ≤ 1/2 in (3.4), where λs satisfies λss�sλs + s+ 1� = 1 and 0 < λs < 1.
Moreover, by (3.5),∫ 1/2

−1/2

{
h20�x�m�dx− h20�x�0�

}
dx = −.sB

2m2s+1 < 0(3.6)

for all 0 < m ≤ 1/2, where .s = �λss − 1�2/�2s+ 1� > 0.

Remark 3.4. Let �a� b� and h0 be as in Remark 3.3. If m ≤ β′ < β < 1/2
and �H − H0�∞ ≤ δβ′�β, for sufficiently small δβ′�β > 0, then ĥ�x�m� has
increments in both intervals �−β�−β′� and �β′� β�. This is due to (3.2) and
the fact that h0�x�m� is strictly monotone in both intervals ±�β′� β� for m ≤
β′ < β (as λs < 1).

Proof of Lemma 3.1. Assume a < m0 = 0 < b without loss of generality.
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Step 1. Proof of �3�2�. Suppose �H −H0�∞ ≤ δ and �G − G0�∞ ≤ δ with
0 < δ ≤ δ0/4. We shall first show

ĥ�x�m�



≤ h0�x+ δ0�m� +C1δ/δ0 if a ≤ x ≤m− δ0�

≥ h0�x− δ0�m� −C1δ/δ0 if a+ δ0 < x ≤m�

≤ h0�x− δ0�m� +C1δ/δ0 if m+ δ0 < x ≤ b�

≥ h0�x+ δ0�m� −C1δ/δ0 if m < x ≤ b− δ0�

(3.7)

For a ≤ s < x and x+ δ0 ≤ t ≤m, G�t� −G�s� ≥ �t− s� − 2δ ≥ δ0/2, so that∣∣∣∣H�t�−H�s�G�t�−G�s� −
H0�t�−H0�s�

t−s

∣∣∣∣ ≤ 2�H−H0�∞
G�t�−G�s� +

2�G−G0�∞
G�t�−G�s�

H0�t�−H0�s�
t−s

≤ 2δ
δ0/2

+ 2δ
δ0/2

�h0�∞≤C1δ/δ0�

which implies by (3.1) that

ĥ�x�m� ≤ sup
s<x

inf
x+δ0≤t≤m

H�t� −H�s�
G�t� −G�s�

≤ sup
s<x

inf
x+δ0≤t≤m

{
C1δ

δ0
+ H0�t� −H0�s�

t− s

}
≤ C1δ

δ0
+ h0�x+ δ0�m��

This gives (3.7) for the case of a ≤ x ≤ m− δ0. The proofs for the three other
cases are nearly identical and omitted.
It follows from (3.7) and the monotonicity of h0�·�m� in both intervals �a�m�

and �m�b� that ̂h�x�m� −h0�x�m� ≤ h0�x+ δ0�m� −h0�x− δ0�m� +C1δ/δ0
for x ∈ Am�δ0

= �a+ δ0� b− δ0� \ �m− δ0�m+ δ0�. Thus, (3.2) is a consequence
of

h0�x+ δ0�m� − h0�x− δ0�m� ≤ h′0�δ0�x� ∀ x ∈ Am�δ0
�(3.8)

where h′0�δ0�x� = maxt−x≤δ0 h0�t�−h0�x−δ0�. Let us verify (3.8) for a+δ0 <
x ≤ m − δ0. Let �m′�m′′� be as in (3.4). If x + δ0 ≤ m′, then h0�·�m� =
h0�·� on �a�m′� by (3.4) and (3.8) holds automatically. If m′ < x − δ0, then
h0�x− δ0�m� = h0�x+ δ0�m� by (3.4) and (3.8) holds automatically. Finally, if
x − δ0 ≤ m′ < x + δ0, then by (3.4) m′ < m = m′′, h0�x − δ0�m� = h0�x − δ0�
and h0�m′� ≤ h0�x + δ0�m� ≤ h0�m′+�, so that (3.8) holds. Therefore, (3.8)
holds in all the cases with a+ δ0 < x ≤m− δ0. By symmetry, (3.8) also holds
for m+ δ0 < x ≤ b− δ0. Thus, the proof of (3.2) is complete.
Step 2. Proof of �3�3�. Let 0 < δ < 1 and δ0 = max�√δ�4δ� be small con-

stants with a+ 4δ0 < m∗ < b− 4δ0. Suppose �H−H0�∞ ∨ �G−G0�∞ ≤ δ. It
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suffices to show ∫ b

a

{(
ĥ−�x�m�

)2
−
(
ĥ−�x�m∗�

)2}
dG�x�

−
∫ b

a

{
h20�x�m� − h20�x�m∗�}dG0�x� ≤ ε�

(3.9)

where ĥ−�x�m� = max�−ĥ�x�m��0�. This will be done by splitting the inte-
grations over two regions, Iδ0 = �a+ δ0� b− δ0� and �a� b� \ Iδ0 .
Let us first consider the integrations over Iδ0 . Set C2 = �h0�·��∞+C1δ/δ0 ≤

�h0�·��∞ + C1. By (3.1) −�h0�·��∞ ≤ h0�x�m� ≤ 0. If a + δ0 < x ≤ m, then
ĥ�x�m� ≥ h0�a�m� − C1δ/δ0 by (3.7). If m < x ≤ b − δ0, then ĥ�x�m� ≥
h0�b�m� − C1δ/δ0 by (3.7). Thus, ĥ�x�m� ≥ −C2 in Iδ0 . Furthermore, since

−�ĥ−�·�m��2 is unimodal, its total variation in Iδ0 is bounded by 2C2
2. It follows

from these facts that, via integrating by parts,∣∣∣∣ ∫
Iδ0

�ĥ−�x�m��2d�G−G0��x�
∣∣∣∣ ≤ �G−G0�∞

(
2C2

2 + 2C2
2

) ≤ 4δC2
2�

Also in Iδ0 , ĥ�x�m� ≥ −C2 and (3.2) imply
∣∣�ĥ−�x�m��2 − h20�x�m�

∣∣ ≤
2C2

{
h′0�δ0�x� + C1

√
δ
} + 2C2

2I�x − m ≤ δ0� for all m, where h′0�δ0 is as in
(3.8) and δ0 = max�√δ�4δ�. This implies∣∣∣∣∫

Iδ0

{�ĥ−�x�m��2−h20�x�m�}dG0�x�
∣∣∣∣≤2C2

∫
Iδ0

h′0�δ0dG0+2C1C2

√
δ+4C2

2δ0→0

as δ → 0 and δ0 = max�√δ�4δ� → 0, by G0��m − δ0�m + δ0�� = 2δ0 and
the dominated convergence theorem. Note that �h′0�δ0�∞ ≤ 2�h0�·��∞ and
h′0�δ0�x� → 0 almost everywhere as δ0 → 0. The above two inequalities with
the integrations over Iδ0 give

sup
a≤m≤b

∣∣∣∣ ∫
Iδ0

�ĥ−�x�m��2dG�x� −
∫
Iδ0

h20�x�m�dG0�x�
∣∣∣∣ ≤ ε/4(3.10)

for sufficiently small δ and δ0 = max�√δ�4δ�.
For integrations over �a� b�\Iδ0 = �a� a+δ0�∪�b−δ0� b�, we shall first prove{

ĥ−�x�m�}2 − {
ĥ−�x�m∗�}2 ≤ C2

3�

C3 =
2��H0� + δ�

min�b− 2δ0 −m∗�m∗ − a− 2δ0�
�

(3.11)

uniformly for a ≤m ≤ b and x ∈ �a� b� \ Iδ0 . Note that a+ 4δ0 < m∗ < b− 4δ0
implies C3 ≤ 4��H0� + δ�/min�b −m∗�m∗ − a� < ∞. By symmetry, we shall
only consider the case a ≤ m ≤ m∗. Let x be a fixed point in �a� b� \ Iδ0 .
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For a ≤ x ≤ m ≤ m∗, ĥ�x�m� ≥ ĥ�x�m∗� by (3.1), so that (3.11) holds. For
a ≤m < x ≤m∗, we have x < a+ δ0 and (3.1) implies

ĥ�x�m� ≥ inf
m<s<x

H�b� −H�s�
G�b� −G�s� ≥ −

2��H0� + δ�
b− a− δ0 − 2δ

≥ −C3�

Finally, for m ≤m∗ < x ≤ b, we have x ≥ b− δ0 and (3.1) implies

ĥ�x�m� = min
{
ĥ�x�m∗�� inf

m<s≤m∗ sup
x≤t≤b

H�t� −H�s�
G�t� −G�s�

}

≥ min
{
ĥ�x�m∗��− 2��H0� + δ�

b− δ0 −m∗ − 2δ

}
�

Thus, (3.11) holds in all the cases. Now, (3.11) implies∫
�a�b�\Iδ0

{(
ĥ−�x�m�

)2
− �ĥ−�x�m∗��2

}
dG�x�

≤ C2
3G��a� a+ δ0� ∪ �b− δ0� b�� ≤ C2

3

{
4δ+ 2δ0

} ≤ ε/4�

for sufficiently small δ with δ0 = max�√δ�4δ�. This and (3.10) imply (3.9). ✷

3.2. Upper bound for the magnitude of the spike. In this section we provide
upper bounds for the tail probability of (2.8) via (2.4).

Lemma 3.2. Suppose the errors εi are independent random variables with
Eεi = 0 and P�εi > t� ≤ � exp

( − ctα
)
for all t ≥ 0, where α� � and c

are positive numbers. Let γ = max�1�1/2+ 1/α�. Then, there exists a constant
ω <∞ such that for all ξ > 0,

P

{
sup
m

n∑
j=1

[{
f̂n�Xj�m� − f0�m0�

}+]2 ≥ �ω�1+ log n+ ξ��2γ
}

≤ exp
(− ξ

)
�

(3.12)

Let �ai� be a sequence of real numbers. For �xn = �x1� � � � � xn� and �#n =
�#1� � � � � #n� define

g�#n� �xn� = "g#1
� �xn�� � � � � g#n

� �xn�# ∈ �n

with g#� �xn� = g#�x1� � � � � xn� =
∑#

i=1 xiai/#. Furthermore, define

hn� �xn� =
max

{�g�#n� �xn�� � �#n ∈ 3n

}
√
2Sn

� Sn =
{ n∑
k=1

a2k/k

}1/2
�(3.13)

where � �xn� is the Euclidean distance and 3n = ��#1� � � � � #n� � k ≤ #k ≤ n�k =
1� � � � � n�. The following lemma is used in the proof of Lemma 3.2.
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Lemma 3.3. (i) Let �ηi� be a Rademacher sequence, iid variables with
P�ηi = ±1� = 1/2. Then, for all t ≥ 0 and �an

P
{
hn�η1� � � � � ηn� > 16/

√
3+ t

} ≤ 2 exp
(− t2/16

)
�(3.14)

(ii) Let T′j be as in �2�5�. Then, there exists M0 <∞ such that for all t ≥ 0,

P

{
T′j >

(
16/
√
3+ t

)√
2M0v

�2−α�+�t2/16+ 1+ log n�� max
1≤i≤n

εi+j ≤ v

}
≤ 3 exp

(− t2/16
)
�

(3.15)

Proof. (i) Let �an be fixed and η̃i = ηi/2. Since hn�η1� � � � � ηn� =
2hn�η̃1� � � � � η̃n�, (3.14) is an immediate consequence of

P
{
hn�η̃1� � � � � η̃n� >M+ t

} ≤ 2 exp
(− t2/4

)
(3.16)

with M = 8/
√
3. Since η̃i are iid variables living in a unit cube, (3.16) follows

from (2.4) under the following conditions:

(i) hn� �xn� is convex in �xn;
(ii) �hn�Lip ≤ 1; and
(iii) median�hn�η̃1� � � � � η̃n�� ≤M. We check these three conditions below.

First, since g�#n� �xn� is a linear mapping from �n to �n, �g�#n� �xn��/Sn is
convex. Since maximum of convex functions is convex, hn� �xn� is convex.
Second, we show �hn�Lip ≤ 1. For #k ≥ k, 1 ≤ k ≤ n,

n∑
k=1

#k∑
i=1

a2i
#2k
≤

n∑
i=1

n∑
k=1

a2i
i2 ∨ k2 ≤

n∑
i=1

{
a2i
i
+ a2i

n∑
k=i+1

1
k2

}
≤

n∑
i=1

2a2i
i
�(3.17)

Since g#� �xn�2 ≤ � �xn�2
∑#

i=1 a
2
i /#

2 and #k ≥ k in the vector �#n ∈ 3n, by (3.17),

�g�#n� �xn��2 =
n∑

k=1
g#k

� �xn�2 ≤ � �xn�2
n∑

k=1

#k∑
i=1

a2i
#2k
≤ � �xn�2

n∑
i=1

2a2i
i
�

Thus, the norm of the linear mapping g�#n� �xn�/�
√
2Sn� is bounded by one,

which implies that the Lipschitz norm of h∗�#n
� �xn� = �g�#n� �xn��/�

√
2Sn�

is bounded by one. Since hn is the maximum of h∗�#n
over 3n, �hn�Lip ≤

max �#n∈3n
�h∗�#n�Lip ≤ 1.

Third, we prove median�hn�η̃1� � � � � η̃n�� ≤M = 8/
√
3. Since hn�η̃1� � � � � η̃n�

≥ 0, we have P�hn�η̃1�����η̃n�≥2Ehn�η̃1�����η̃n��≤1/2. Since hn�η1�����ηn�
= 2hn�η̃1� � � � � η̃n�, it suffices to prove Ehn�η1� � � � � ηn� ≤M = 8/

√
3. By defi-

nition, Eh2n�η1� � � � � ηn� = Eη/�2S2
n�, where

Eη = E max
�#1�����#k�∈3n

n∑
k=1

( #k∑
i=1

ηiai
#k

)2

=
n∑

k=1
E max

k≤#≤n

( #∑
i=1

ηiai
#

)2

�
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By the Doob inequality we have

E max
k≤#≤n

( #∑
i=1

ηiai
#

)2

≤
∞∑

m=0
E max

2mk≤#≤�2m+1k�∧n

(∑#
i=1 ηiai
2mk

)2

≤ 4
∞∑

m=0

�2m+1k�∧n∑
i=1

a2i
�2mk�2

≤ 4
n∑
i=1

a2i

∞∑
m=0
�2mk�−2I�2m+1k≥i� ≤

64
3

n∑
i=1

a2i
�i ∨ 2k�2 �

which implies by (3.17) that

Eη ≤
n∑

k=1

64
3

n∑
i=1

a2i
�i ∨ k�2 ≤

64
3

n∑
i=1

2a2i
i
= 2M2S2

n�

Hence, median�hn�η̃1� � � � � η̃n�� ≤ 2
√
Eh2n�η̃1� � � � � η̃n� =

√
Eh2n�η1� � � � � ηn� =√

Eη/�2S2
n� ≤M, and the proof of (3.14) is complete.

(ii) We shall only prove (3.15) for j = 0. Set S2
n =

∑n
k=1 ε

2
k/k. By (2.5) and

(3.13) T′0 = hn�η1� � � � � ηn�
√
2Sn given �εn = �an. By (3.14),

P

{
T′0 > �16/

√
3+ t�

√
2M0v

�2−α�+�t2/16+ 1+ log n�� max
1≤i≤n

εi ≤ v

}
≤
∥∥∥P{hn�η1� � � � � ηn� > 16/

√
3+ t

∣∣∣ �εn = �an}∥∥∥∞
+P

{
2S2

n > 2M0v
�2−α�+�t2/16+ 1+ log n��max

1≤i≤n
εi ≤ v

}

≤ 2 exp
(− t2/16

)+P

{
n∑
i=1
εiα∧2/�M0i� > t2/16+ 1+ log n

}
�

(3.18)

Note that S2
n ≤ v�2−α�

+ ∑n
i=1 εiα∧2/i on the event �max1≤i≤n εi ≤ v�. Since

our condition on the tail probability of εi is uniform over all �εi�, there exists
a large M0 < ∞ such that supi E exp�εiα∧2/�M0k�� ≤ 1 + 1/k ≤ e1/k for all
k. Thus,

P

{
n∑
i=1
εiα∧2/�M0i� > t2/16+ 1+ log n

}

≤ exp
(−t2/16− 1− log n

)
exp

(
n∑

k=1
1/k

)
≤ exp�−t2/16��

Inserting the above inequality into (3.18), we obtain (3.15). ✷

Proof of Lemma 3.2. Let Tj =
[∑n−j

k=1 maxk≤l≤n−j
{(∑l

i=1 εi+j/l
)+}2]1/2.

The second term on the right-hand side of (2.8) is bounded by max0≤j<n T
2
j
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with �εi� replaced by �ε′i� and the first term is bounded by max0≤j<n T
2
j with

�εi� replaced by �ε′n+1−i�. Since �Xi� and �εi� are independent and the con-
ditions on εi are uniform in i, it suffices to prove

P

{
max
j

T2
j > 4C2

n�ξ + 1
}
≤ E

(
max
j

T2
j − 4C2

n�ξ

)+
≤ exp

(− ξ
)
�(3.19)

where Cn�ξ = �ω�1 + log n + ξ��γ for some ω ∈ �1�∞�. Since the maximum
and sum of convex functions are convex, T2

j and max
{
maxj T

2
j−4C2

n�ξ�0
}
are

convex functions of �εi�, so that by standard symmetrization methods

E

{
max
0≤j<n

T2
j − 4C2

n�ξ

}+

≤ E

max
0≤j<n

n−j∑
k=1

max
k≤#≤n−j

{(
#∑

i=1
ηi+j�εi+j − ε̃i+j�/#

)+}2

− 4C2
n�ξ

+

≤ E

[
max
0≤j<n

�T′j + T̃′j�2 − 4C2
n�ξ

]+
≤ 4E

[
max
0≤j<n

�T′j�2 −C2
n�ξ

]+
(3.20)

where �ε̃i� is an independent copy of �εi�, �ηi� is a Rademacher sequence
independent of ��εi�� �ε̃i��, T′j are the �εi� version of (2.5) and T̃′j are the
�ε̃i� version of (2.5).
Let β = 1/�αγ�. We split the expectation on the right-hand side of (3.20)

into two parts:

E

[
max
0≤j<n

�T′j�2 −C2
n�ξ

]+
=
∫ ∞
Cn�ξ

P

{
max
0≤j<n

T′j > u

}
du2

≤
∫ ∞
Cn�ξ

P

{
max

1≤i≤2n−1
εi > uβ

}
du2(3.21)

+
∫ ∞
Cn�ξ

n−1∑
j=0

P

{
T′j > u�max

1≤i≤n
εi+j ≤ uβ

}
du2�

It follows from our assumption on the tail probability of εi that∫ ∞
Cn�ξ

P

{
max

1≤i≤2n−1
εi > uβ

}
du2

≤ 2n
∫ ∞
Cn�ξ

� exp
{− cuαβ

}
du2

≤ 2n� exp
{− �c/2�Cαβ

n�ξ

} ∫ ∞
1

exp
{− �c/2�uαβ}du2

= 2n� exp
{− �c/2�ω�1+ log n+ ξ�} ∫ ∞

1
exp

(− �c/2�u1/γ)du2
≤ e−ξ/8

(3.22)
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for sufficiently large ω < ∞. Let �t� v� = �c0u1/�2γ�� uβ� in (3.15) with a small
c0 > 0. Let ω > 16/c20. Since C

1/γ
n�ξ ≥ ω�1 + log n� ≥ 1, t2/16 + 1 + log n ≤

c20u
1/γ/16+C

1/γ
n�ξ/ω ≤ c20u

1/γ/8 for u ≥ Cn�ξ. Thus, for u ≥ Cn�ξ the quantity in
(3.15) is bounded by

�16/
√
3+ t�

√
2M0v

�2−α�+�t2/16+ 1+ log n�

≤ (
16/
√
3+ c0

)
u1/�2γ�

√
2M0u

β�2−α�+c20u1/γ/8

≤ u1/γ+β�2−α�
+/2 = u

for sufficiently small c0 > 0 and ω = ωc0
> 16/c20, since β = 1/�αγ� and

γ = max�1�1/2+ 1/α�. It follows from Lemma 3.3(ii) that∫ ∞
Cn�ξ

n−1∑
j=0

P

{
T′j > u�max

1≤i≤n
εi+j ≤ uβ

}
du2

≤
∫ ∞
Cn�ξ

3n exp
(
− c20u

1/γ

16

)
du2 ≤ e−ξ

8

(3.23)

for sufficiently large ω. The second inequality above holds from the argument
in (3.22) after the first inequality of (3.22). Inserting (3.22) and (3.23) into
(3.21), we find that the right-hand side of (3.20) is bounded by e−ξ. This gives
(3.19) and ends the proof. ✷

Proof of Theorem 1.1. As mentioned in the beginning of the section, we
assume that �Xi� are iid uniform variables from �a� b�. We shall further
assume without loss of generality that f0�m0� = 0, m0 = 0, a < 0 < b
and b − a = 1. Let k0 ≥ 1 be the smallest positive integer satisfying a ≤
−1/2�k0+1� < 1/2�k0+1� ≤ b. For k ≥ k0, define

Fn�k�x� =
1

nk ∨ 1
n∑
i=1

2ksYiI�−1/2 ≤ 2kXi ≤ x�� −1/2 ≤ x ≤ 1/2�(3.24)

Gn�k�x� =
1

nk ∨ 1
n∑
i=1

I�−1/2 ≤ 2kXi ≤ x�� −1/2 ≤ x ≤ 1/2�(3.25)

with nk =
∑n

i=1 I�Xi ≤ 1/2�k+1��, and define

m̂n�k=argmax
m

∫ 1/2

−1/2
f̂ 2
n�k�x�m�dGn�k�x�� f̂n�k�·�m�=Dm

(
Fn�k

∣∣Gn�k

)
�(3.26)

where the “argmax” is taken over allm in the set �2kXi � Xi ≤ 2−k−1�. Thus,
m̂n�k ≤ 1/2. Let F∞�x� =

∫ x
−1/2 f∞�t�dt with f∞�t� = −Bts [the special

h0�t� in Remarks 3.2 and 3.3 of Subsection 3.1]. Let G0�x� be the uniform
distribution on �−1/2�1/2�.
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To obtain the conclusion (1.4), it suffices to prove

P

{
2pn+1m̂n>1� i.o.

}
=0� 2pn≤

(
n

M�1+logn�2γ
)1/�2s+1�

<2pn+1(3.27)

for some large M<∞. This is done by proving

P

{
m̂n �= 2−k1m̂n�k1

i.o.
}
= 0(3.28)

for some large k1 ≥ k0 and that

∞∑
n=1

P

{ pn⋃
k=k1

�Dc
n�k�: ∪Ec

n�k�δ�
}
<∞(3.29)

where

En�k�δ =
{�Fn�k −F∞�∞ ∨ �Gn�k −G0�∞ ≤ δ

}
(3.30)

for some small δ > 0, and for some small : > 0�

Dn�k�: =
{ ∫ 1/2

−1/2

{
f̂+n�k�x� m̂n�k�

}2
dGn�k�x� < :

}
�(3.31)

The details are given in two steps.
Step 1. Proof of �3�27� based on �3�28� and �3�29�. It suffices to show{

En�k�δ ∩Dn�k�:

} ∩ {En�k+1�δ ∩Dn�k+1�:
} ⊆ {

m̂n�k = m̂n�k+1/2
}

(3.32)

for k1 ≤ k ≤ pn. This implies (3.27) based on (3.28) and (3.29), since it implies{
m̂n �= 2−pnm̂n�pn

} ⊆ {
m̂n �= 2−k1m̂n�k1

} ∪ [ pn⋃
k=k1

�Ec
n�k�δ ∪Dc

n�k�:�
]
�

Note that m̂n�k ≤ 1/2 by (3.26) and P
{
2pnm̂n �= m̂n�pn

i.o.
} = 0 by (3.28),

(3.29) and the above argument.
Let us prove (3.32). Let h0 = f∞ in Lemma 3.1 and f∞�·�m� = Dm�F∞G0�.

Let δ > 0 be sufficiently small so that by Remark 3.4 f̂ 2
n�k�x�m� has jumps in

all four intervals ±�1/16�1/8� and ±�1/8�1/4� for all m ≤ 1/16 on En�k�δ, so

that by (3.1) and Remark 3.1 the following two identities hold: (a) f̂n�k�x�m� =
f̂n�k�x�0� for all x ≥ 1/8 and m ≤ 1/16; and (b) f̂n�k+1�2x�2m� = f̂n�k�x�m�
for all x ≤ 1/8 and m ≤ 1/32. These imply

argmax
m≤1/32

∫ 1/2

−1/2
f̂ 2
n�k�x�m�dGn�k = argmax

m≤1/32

∫ 1/8

−1/8
f̂ 2
n�k�x�m�dGn�k

= 1
2 argmaxm≤1/16

∫ 1/4

−1/4
f̂ 2
n�k+1�x�m�dGn�k+1(3.33)

= 1
2 argmaxm≤1/16

∫ 1/2

−1/2
f̂ 2
n�k+1�x�m�dGn�k+1
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on En�k�δ ∩En�k+1�δ. The last equation above follows from the first identity (a)
for k+ 1. Note that by (3.24) and (3.25),

Fn�k+1�2t� −Fn�k+1�2s�
Gn�k+1�2t� −Gn�k+1�2s�

= 2s
Fn�k�t� −Fn�k�s�
Gn�k�t� −Gn�k�s�

for s ∨ t ≤ 1/4, so that the second identity (b) above follows from (3.1).
Let : > 0 in (3.31) and ε > 0 be sufficiently small such that ε + : <

.sB
2�1/32�2s+1. It follows from (3.26), (3.3), (3.31) and (3.6) that, for δ ≤ δε�0�f∞

as in Lemma 3.1,

0 ≤
∫ 1/2

−1/2

{
f̂ 2
n�k�x� m̂n�k� − f̂ 2

n�k�x�0�
}
dGn�k�x�

≤ ε+ :+
∫ 1/2

−1/2

{
f2∞�x� m̂n�k� − f2∞�x�0�

}
dG0�x� = ε+ :− .sB

2
∣∣m̂n�k

∣∣2s+1
onDn�k�:∩En�k�δ. Since ε+: < .sB

2�1/32�2s+1, ∣∣m̂n�k

∣∣ < 1/32 onDn�k�:∩En�k�δ.
This and (3.33) imply m̂n�k = 2−1m̂n�k+1 on En�k�δ ∩Dn�k�: ∩En�k+1�δ ∩Dn�k+1�:
for sufficiently small δ > 0 and : > 0. Thus, the proof of (3.32) is complete.
Step 2. Proofs of �3�28� and �3�29�. In addition to Lemma 3.2, the exponen-

tial inequality in Lemma 3.4 below is used in the proof. The proof of Lemma
3.4 is omitted since it is simpler than that of Lemma 3.2 and it follows from
standard methods [cf., e.g., Pollard (1984)].

Lemma 3.4. LetXi� εi be as in (1.1) satisfying the tail probability condition
on εi in Theorem 1�1. Let N = #�i ≤ n � Xi ∈ A� with a Borel set A. Let φi

be Borel functions such that
∣∣φi�x� t�

∣∣ ≤ 1+ t and E
[
φi�Xi� εi�

∣∣Xi ∈ A
] = 0.

Let γ = max�1�1/2+ 1/α� be as in Theorem 1�1. Then,

P

{
sup
x

∣∣∣∣ ∑
Xi∈A

φi�Xi� εi�I�Xi ≤ x�
∣∣∣∣ > √Nω

{
1+ logN+ ξ

}γ∣∣∣∣N}
≤ e−ξ

for all ξ > 0, provided that ω is a sufficiently large constant.

Let us first prove (3.29). Consider the events in (3.30). Let nk be as in (3.25).
Since nk are binomial variables with parameters �n�1/2k�,

P
{
nk ≤ n/2k+1

} ≤ E exp
(
n/2k+1 − nk

) ≤ exp
{− n�1/2− 1/e�/2k}�

so that by the definition of pn in (3.27)

∞∑
n=1

pn∑
k=1

P
{
nk ≤ n/2k+1

} ≤ ∞∑
n=1

pn exp
{− n�1/2− 1/e�/2pn

}
<∞(3.34)

for all choices of M < ∞ in (3.27). Let µn�k�x� = E
[
Fn�k�x�

∣∣nk]. Set A =
�−1/2k+1�1/2k+1�, N = nk and φi�Xi� εi� = Yi − µn�k�Xi� in Lemma 3.4.
Then, conditions of Lemma 3.4 follows from those of Theorem 1.1 and �nk/2ks�
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Fn�k�x� − µn�k�x�

} = ∑
Xi∈A φi�Xi� εi�I�Xi ≤ x� by (3.24). Thus, by Lemma

3.4,

P
{�Fn�k − µn�k�∞ ≥ δ/2� nk > n/2k+1

} ≤ exp�−2 log n� = 1/n2�(3.35)

provided that
√
nkω

{
1 + log nk + ξ

}γ ≤ �nk/2ks�δ/2 for nk > n/2k+1 and ξ =
2 log n. By (3.27), 2k�2s+1� ≤ n�1 + log n�−2γ/M for k ≤ pn, so that ω

{
1 +

3 log n
}γ ≤ √

n/2k+12−ksδ/2 for M > �2ω3γ/δ�2. Thus, (3.35) holds. It follows
from (3.24) that for nk > 0,

µn�k = E
[
2ksf�Xi�I�2kXi ≤ x�Xi ≤ 1/2k+1

]
= 2ks

∫ x

−1/2
f�t/2k�dt�

which converge uniformly to F∞�x� =
∫ x
−1/2�−Bts�dt =

∫ x
−1/2 f∞�t�dt by our

conditions on f. Choosing k1 large enough to ensure �µn�k −F∞�∞ ≤ δ/2 for
the given δ, we find by (3.35),

∞∑
n=1

pn∑
k=k1

P
{�Fn�k −F∞�∞ ≥ δ� nk > n/2k+1

} ≤ ∞∑
n=1

pn/n
2 <∞�

This and (3.34) give
∑∞

n=1
∑pn

k=k1 P
{�Fn�k−F∞�∞ ≥ δ

}
<∞. We omit the proof

of
∑∞

n=1
∑pn

k=k1 P
{�Gn�k −G0�∞ ≥ δ

}
<∞, as it is similar. Thus, we obtain

∞∑
n=1

pn∑
k=k1

P
{
Ec
n�k�δ

}
<∞�(3.36)

Let us consider Dn�k�:. Let Fn�x� =
∑n

i=1YiI�Xi ≤ x� and Gn be the
empirical distribution function of �Xi�. It follows from (3.1), (3.26) and (2.3)
that

f̂n�k�x�m� ≤ 2ksDm/2k�FnGn��x/2k� = 2ksf̂n�x/2k�m/2k�
for all x ≤ 1/2 and m ≤ 1/2, so that by (3.25),∫ 1/2

−1/2

{
f̂+n�k�x�m�

}2
dGn�k ≤

22ks

nk ∨ 1
sup
m

n∑
j=1

{
f̂+n �Xj�m�

}2
�

This and the definition of pn in (3.26) imply
pn⋃
k=1

(
Dc

n�k�: ∩ �nk > n/2k+1�
)
⊆
{
sup
k≤pn

2k�2s+1�

n/2
sup
m

n∑
j=1

{
f̂+n �xj�m�

}2
> :

}

⊆
{
sup
m

n∑
j=1

{
f̂+n �xj�m�

}2
> 2M:�1+ log n�2γ

}
�

It then follows from (3.34) and Lemma 3.2 with ξ = 2 log n that for M >
�2:�−1�3ω�2γ,

∞∑
n=1

P

{ pn⋃
k=k1

Dc
n�k�:

}
≤

∞∑
n=1

exp�−2 log n� +
∞∑
n=1

pn∑
k=k1

P�nk ≤ n/2k+1� <∞�

This and (3.36) imply (3.29).
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Finally let us prove (3.28). Since f̂n�·�m� = Dm�FnGn�, the proof is nearly
identical to Step 1 and we shall omit detains. By the standard results in
empirical process theory [cf., e.g., Pollard (1984)], �Fn −F�∞ → 0 and �Gn −
GX�∞ → 0, where F�x� = ∫ x

a f�t�dt. Thus, Lemma 3.1 applies with h0 = f
and G0 = GX ∼Unif[a,b]. The conclusion follows since the contribution of the
spike to the sum of squares are controlled by Lemma 3.2. ✷
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Birgé, L. (1989). The Grenander estimator: A nonasymptotic approach. Ann. Statist. 17 1532–
1549.
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