PROBABILITIES FOR A kth NEAREST NEIGHBOR PROBLEM ON THE LINE

By Sylvan R. Wallenstein and Joseph I. Naus

Sandoz Pharmaceuticals and Rutgers-The State University of New Jersey

Given N points distributed at random on [0, 1), let p_n be the size of the smallest interval that contains n points. Previous work finds Pr $(p_n \le p)$, for n > N/2, and for $n \le N/2$, p = 1/L, L an integer. This paper finds the distribution of p_n , for all n, N, and p.

1. Introduction. Let $x_1 \le x_2 \le \cdots \le x_N$, be the ordered values of N independent random variables from the uniform distribution on [0, 1). For any $2 \le n \le N$, let

$$p_n = \min_{1 \le i \le N-n+1} \{ x_{n+i-1} - x_i \} .$$

The statistic p_n measures the length of the smallest interval that contains n points. Let P(n; N, p) denote the distribution function of p_n .

Let n_p be the largest number of points clustered within an interval of length p. Rothman [7], [8] has shown that rejection of the hypothesis of randomness for large values of n_p is a Uniformly Most Powerful test against alternatives suggestive of clustering. Newell [6], Naus [5], and Ederer, Myers, and Mantel [2] describe various applications of the statistic n_p . Newell [6] relates the distributions of the statistics n_p and p_n ;

$$P(n; N, p) = \Pr(p_n \leq p) = \Pr(n_p \geq n)$$

and derives asymptotic expressions for a generalization of this probability.

The distribution of p_2 , the smallest gap, and of p_N , the sample range are well known. Naus [3] derives explicit expressions for P(n; N, p) for $p \ge \frac{1}{2}$, and for $p < \frac{1}{2}$, p > N/2; Naus [4] derives a formula for P(n; N, 1/L), L an integer. The next section derives a general formula for P(n; N, p) for all p, and rational p.

2. A general formula for P(n; N, r/L). We view the unit line divided into L disjoint intervals (cells) each of length 1/L. Denote the cell occupancy numbers as n_1, n_2, \dots, n_L . Let

$$J(a, b) = \sum_{i=a}^{b} n_i$$

and let

(2.1)
$$V_L(N, r) = \{ (n_1, \dots, n_L) \mid n_i \ge 0, i = 1, \dots, L; J(1, L) = N,$$
 and $J(i, i + r - 1) < n, \text{ for } i \le L - r + 1 \}.$

Received March 6, 1972; revised May 5, 1972.

www.jstor.org

¹ This article is based in part on the author's Ph. D. dissertation.

AMS 1970 subject classifications. Primary 60; Secondary E05.

Key words and phrases. Coincidences, clusters, nearest neighbor distances, maximum clusters, smallest intervals.

188

THEOREM. Given r and L are positive integers with greatest common denominator of one, 0 < r/L < 1, and given n and N are integers, $2 \le n \le N$, then

(2.2)
$$\Pr(n_p \ge n) = P(n; N, r/L) = 1 - N! L^{-N} \sum_{V_L(N,r)} \prod_{k=1}^{r} \det D^k,$$

where D^k is a square matrix with elements,

$$D_{a,b}^{k} = 1/[(b-a)n - J(k+1+(a-1)r, k-1+(b-1)r]!, \quad \text{for } a < b,$$

= 1/[(b-a)n + J(k+(b-1)r, k+(a-1)r)]!, \qquad \text{for } a \geq b,

subject to the convention that 1/x! = 0, for x < 0. The dimension of the matrix D^k is $e_k + 1$, where

$$\begin{split} e_k &= [L/r] - 1 \;, \qquad \text{if} \quad kr > L - r \;, \\ &= [L/r] \;, \qquad \qquad \text{if} \quad kr \leqq L - r \;, \end{split}$$

where [x] denotes the greatest integer in x.

PROOF. Let y_p be the number of points in [y, y + p), and let,

$$A = {\max_a J(a, a + r - 1) \ge n, a \le L - r + 1}$$

and

$$B_i = A^c \cap \{\sup_{y} y_{y} \ge n, (i-1)/L \le y < i/L\}.$$

For general r and L, there are $(L-r)B_i$'s to consider, and we group these into r sets, $c(1), \dots, c(r)$, where

(2.3)
$$c(k) = \{i \mid i = k \pmod{r}, i \leq L - r\},$$

and let e_k be the number of integers in c(k). Let E_k denote the event

$$E_k = \bigcap_{i \in c(k)} B_i^c$$
.

Then, for $\{n_i\}$ in A^c ,

$$(2.4) \Pr(n_n < n | \{n_i\}) = \Pr(\bigcap_{i=1}^{L-r} B_i^c | \{n_i\}) = \Pr(\bigcap_k E_k | \{n_i\}).$$

Conditional on $\{n_i\}$, the events E_k are mutually independent. To see this, let $y_i(t)$ denote the number of points in the interval [(i-1)/L, (i-1)/L+t). Conditional on $\{n_i\}$, the points in cell i are distributed uniformly over that interval, and independent of points in cell j. The quantities $y_i(t)$ and $y_j(t)$, for $i \neq j$, are conditionally independent. The event E_k is equivalent to the event $q_p(k) < n$, where,

(2.5)
$$q_{p}(k) = \max \{ y_{p}, (i-1)/L \leq y < i/L, i \in c(k) \}$$

$$= \max_{i \in c(k)} \sup_{t \leq 1/L} \left[J(k+ir-r, k+ir-1) + y_{k+ir}(t) - y_{k+(i-1)r}(t) \right].$$

Since the statistics $q_p(i)$, $q_p(j)$ depend on disjoint sets of $y_i(t)$'s, the events E_i , E_j are conditionally independent. Thus,

(2.6)
$$\Pr(n_p < n | \{n_i\}) = \prod_{k=1}^r \Pr(E_k | \{n_i\}).$$

Naus [4] notes that for the case r = 1, $\Pr\left(\bigcap_{i=1}^{L-1} B_i^c | \{n_i\}\right)$ can be interpreted as an L-candidate ballot probability, and applies a result of Barton and Mallows ([1] page 243) to find this probability. The same result applies here to $\Pr\left(E_k | \{n_i\}\right)$:

(2.7)
$$\Pr(E_k | \{n_i\}) = \det D^k \prod_{i=1}^{e_k+1} (n_{k+(i-1)r}!).$$

To complete the proof, note that the joint distribution of the n_i is multinomial, and that,

(2.8)
$$\Pr(n_p \ge n) = 1 - N! L^{-N} \sum_{V_L(N,r)} \Pr(n_p < n | \{n_i\}) / n_1! \cdots n_L!$$
.

Substitute the right-hand side of (2.7) into (2.6), and the resulting expression for $Pr(n_p < n | \{n_i\})$ into (2.8) to find (2.2).

REFERENCES

- [1] Barton, D. E. and Mallows, C. L. (1965). Some aspects of the random sequence. Ann. Math. Statist. 36 236-260.
- [2] EDERER, F., MYERS, M. H. and MANTEL, N. (1964). A statistical problem in space and time:

 Do Leukemia cases come in clusters? *Biometrics* 20 626-636.
- [3] Naus, J. I. (1965). The distribution of the size of the maximum cluster of points on a line.

 J. Amer. Statist. Assoc. 60 532-538.
- [4] NAUS, J. I. (1966a). Some probabilities, expectations, and variances for the size of largest clusters and smallest intervals. J. Amer. Statist. Assoc. 61 1191-1199.
- [5] NAUS, J. I. (1966b). A power comparison of two tests of non-random clustering. Technometrics 8 493-517.
- [6] Newell, G. F. (1963). Distribution for the smallest distance between any pair of kth nearest neighbor random points on a line. *Proceedings of Symposium on Time Series Analysis*, Wiley, New York, 89-103.
- [7] ROTHMAN, E. (1967). Tests for clusters in a Poisson process. Ann. Math. Statist. 38 967.
- [8] ROTHMAN, E. (1969). Tests for uniformity against regularly spaced alternatives. Technical Report Number 119, John Hopkins University.
- [9] WALLENSTEIN, S. R. (1971). Coincidence probabilities used in nearest neighbor problems on the line and circle. Ph. D. Dissertation, Rutgers University.

8 Brian Road East Brunswick, New Jersey 08816