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STRONG LAWS OF LARGE NUMBERS FOR r-DIMENSIONAL
ARRAYS OF RANDOM VARIABLES

By R. T. SMYTHE
University of Washington

Let K- be the set of r-tuples k = (ki, ks, - - -, ky) with positive integers
for coordinates (r = 1). Let {Xk: k€ K,} be aset of i.i.d. random variables
with mean zero, and let < denote the coordinate-wise partial ordering on
K,. Set |k| = kikz- - -k» and define, forke K- : Sk = Nj<k Xj. If (Ex: ke K}
is a set of events indexed by K,, we say (given o) ““Ek f.0.” if 3 w) € K-
such that k £ 1 implies we€ Ex®. We say ““Ex a.l.”’ if given any le K,
3k = Isuch that w€ Ex. We prove:

(i) If E{|Xx| (log* | Xk|)—1} = oo, then given any 4 > 0, P{|Sk|/k| >
A a.l}=1. Using martingale techniques, we also give a new proof of the
converse result due to Zygmund:

(ii) If E{|Xk| (log* |Xk|)r~1} < oo, then given any ¢ > 0, P{|Sk|/k| <
efo.}=1.

For non-identically distributed independent random variables with
mean zero, the usual conditions sufficient for convergence of Sy,/n to zero
in the linearly ordered case are also sufficient for matrix arrays.

1. Introduction and notation. We wish to consider the following problem:
Given a probability space (Q, F, P) and an r-dimensional array of independent
random variables with zero mean defined on (Q, F, P), under what conditions
will the sample averages converge to zero?

To make this problem more precise it will be convenient to introduce some
notation. Let K, be the set of r-tuples k = (k,, k,, - - -, k,) with positive integers
for coordinates (r = 1). Let {X,:keK,} be a set of independent random
variables with mean zero and let < denote the coordinate-wise partial ordering
on K,. Set |k| = k,+k,- - -k, and define, for ke K,:

Si = Sk

k — Zisk Xl ’ Ly = —~

k| -
If {E: ke K,} is a set of events indexed by K,, we say (given w e Q) “E, occurs
finitely often” (abbreviated “E, f.0.”) if there exists I(w) e K, such that k £ 1
implies w € E,°. We say “E, occurs for arbitrarily large indices” (abbreviated
“Ey a.l.”) if, given any le K, there exists k = I such that we E,. (Note that
when r > | this last condition is not equivalent to the condition “E, occurs
infinitely often”, which is weaker.) Our problem can now be stated as follows:

Given ¢ > 0, what conditions on the X, will guarantee that

P{Z ] =¢ fo} =12
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For r = 1, the result reduces in the identically distributed case to Kolmogorov’s
strong law of large numbers. For r > 1, the result is of interest in the study of
properties of “Brownian sheets” th,tz,,,’tr with an r-dimensional time parameter
(see [S], [7]); for example, if P{|Z,| > ¢f.0.} =1, one could deduce that
(writing t for (¢, 1,, - - -, t,) with probability one,

The identically distributed case has been treated in the context of ergodic
theory by Dunford ([4]) and by Zygmund ([9]). Dunford proved that the
integrability of |X,|log* |Xy| was sufficient, when r =2, to insure that
P{|Z\| > ¢a.l.} = 0; implicit in Zygmund’s treatment is the result that for
general r, the integrability of |X,|(log* |Xy|)"™! is a sufficient condition for
convergence.

We show in Section 2 that the sufficient condition given above is also neces-
sary when the random variables are identically distributed. We give also a new
proof of the sufficiency via martingale theory, specifically the inequalities
established by Cairoli ([1]). In Section 3 we discuss the non-identically distri-
buted case.

2. The identically distributed case.

THEOREM. Let (X, : ke K,} be i.i.d. random variables with zero mean.
(1) If E{|Xy| (log* | Xy|)"™"} < oo, then for any ¢ > 0, P{|Z,| > ¢ f.0.} = 1.
(2) If E{|X\| (log* | X,|)"""} = oo, then for any A > 0, P{|Z,| > A a.l.} = 1.

PRrROOF. We prove first the necessity of the condition, i.e., (2). Assume that
E | Xy| (log* | Xy|)"™' = co. Then

§v -7 P{IX| > |K|} dk,- - -dk,
= §7 7 (38 Lo s F(dR)) dk, dk, - - - dk,

where F(-) is the distribution function of |X;|. By simple integration using
Fubini’s theorem the above multiple integral is found to be

§s> A(log* 2)*'F(dA) + (terms of lower order) = co .

It therefore follows that 3, --- >, P{|Xj| = AJk[} = co for any 4 > 0; hence
that 3y - - X, P{IXi] > AlkJ) = oo .

By the (converse) Borel-Cantelli lemma one concludes that P{|X,| > A k| i.0.} =
1; by taking r-dimensional differences of the partial sums this implies that
P{|Z,| > AJ2"i.0.} = 1 for any 4 > 0.

To strengthen this to the result that P{|Z,] > 4 a.l.} = 1, it suffices to show
that for arbitrarily large k, > P{|X|]| > A|l]} = co. Butifk; 22,1 <i<r,
the series Y).i P{|X)| > A4 |I]} majorizes, term by term, the series 3, P{|X,|/|k| >
A I} and by the argument above, this latter series diverges. []
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We turn now to (1). Forany r > 1 and k ¢ k,, define &y = Vijau ek, 9(S)
LemMa 1. (Zy, ¥)) is a reversed martingale on K.

Proor. If j < k itis clear that (E(X;| %)), ¥)) is a reversed martingale. Now
Disk E(Xj| @) = E(Sk| ©y) = Sk, so it follows by symmetry that Z, =
E(X;| ), proving the lemma.

LeEMMA 2. Fix k, and let k denote the element (kyy kyy -+, k) of K,_,. Let i(,j
represent the r-tuple (k,, k,, - - -, k,_,, j). Then Z; , , £} ,) is a reversed martingale
onK,_,.

Proor. Let Si, = 2ick Xj
We have

gﬂ,l = v:=l O(Sﬁlm) Vv Vﬁgf« O'(X:"m) M
Now
SA
E(Zi,k, | Egl:l) = Yk E(# ’ gl’:l) .
- &,
Using the independence of the X,, when 1 < k the sum is equal to

S/«
b E (S| 53,,)
1 il k. ki

which by Lemma 1 is equal to 3 k-, S,;lm/]i(lk, = Zi,,

REMARK. The proof of Lemma 2 can easily be extended to show that if any
two coordinates k;, k; of (ky, k,, - - -, k,) are fixed, Z, is a reversed martingale
indexed by the r-2-tuples (k,, - - -, k;_y, kiyyy -5 kj_y, kjoys - -5 k), with res-

(tﬂ
pect to the fields kg kit Lkgan ke Lk g ke

Following Cairoli we will now establish the basic inequalities.

LemMma 3.
(3) AP{supy |Zy| = 4} < A, supy E{|Z,| (log* |Zy|)"'} + B,
(4) E{supy |Zy|"} £ A4, supy E{|Z,]?},

where A,, B, and A, , are universal constants and p > 1.

Proor. We consider first the case r = 2 and proceed by induction.

From Lemma 2 it follows that (sup,, |Z, ,|, £4,.) is @ positive reversed
submartingale, indexed by k, (assuming the expectations are finite). By Doob’s
inequality, we have, for every 1 = 0:

() AP{sup, 4, |Z i kpl = 4} < sup,, E{sup,, 1Z g ipl}

But it now follows by a second inequality of Doob ([3] page 317), since
(Z 4, kp» Z11,) Is @ reversed martingale indexed by k, for fixed k,, that

(6) E{sup,, |Z, iy} < Asup,, E{|Z 4, 1] log* |Z, ipl} + 4.
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In a similar fashion it is shown (see again [3] page 317) that
(7) E{sup, i, [Z 1y |"} < B, SUP, 4, E{|Z ) 1, ") for

all p > 1, where B, is a universal constant. This establishes the lemma for
r=2.
For general r let
H, = all positive submartingales (Y}, &) such that for k; fixed
(Yo ) ky_pikgayk,) 1S @ pOsitive submartingale.
By (6) and (7) (and their proofs), the inequalities (3) and (4) are valid for

r = 2 for all submartingales in H,.
Assume now the validity of the inequalities for all submartingales in H,_,.

Ifk = (k, ---, k,_,), then
AP{supg . |Zi,| = A} = AP{supi (sup,_|Zi, | = 4)} .
By the remark following Lemma 2, sup, |Zi .l € H,_,.
Hence by the induction assumption:
(8) AP{supi, | Zi,| = 4} = A,_ysup; E{sup, |Z;,, [ (log* |2, )"} + B,
But it is clear that for fixed k, |Zt | is a positive supermartingale indexed by &,;
since (log* 1)"~* is a convex increasing function for r > 2, |Z; , | (log* [Z¢ , [)"~?

is also a positive submartingale.
Employing Doob’s inequality noted earlier and the inequality

t(log* r)"=*log* ([t log* ¢]"* < (r — l)t[log™* ¢]" ",
which holds for integers r = 2 and all 1 = 0, we have

(9)  Efsups, |Zi.,| (log* | Z ., )7

Asup, E{\Z;, | (log*|Z;, )7~*log* [|Z .| (log* |Zi ., )71} + 4
A(r — 1)ysup, E{|Z;, |(log* |Z;, )"} + 4.

From (8) and (9) we immediately deduce (3) and (4).

I\ 1IA

LeEMMA 4. If the right-hand side of (3) (resp. (4)) is finite, then limy_,, Z, exists
in the L' (resp. L?) sense (with the usual definition of convergence along a directed
set).

Proor. Itis well known that uniform integrability of a (forward or reversed)
martingale implies L' convergence along a directed set ([4] page 86).
We can now deduce a.s. convergence by a modification of Cairoli’s argument.
Let a be a positive constant and set
X = — X < —a
= (44 X > a .
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Then {X, — X' : keK,}is an array of i.i.d. random variables.

Let S, = 3,k X;' and define Z,® accordingly. Let 1 denote the r-tuple
(1,1, ..., 1). By retracing the arguments leading to (3) for the array
{Xk — X'} we get

(10) P{supy | Zy, — Z)'| = 4}
< (AJA) supy E{|Z, — Z,\@| (log* | Z — Z'®|)'} + 4
< (A2 E(1X; — X (log” [ — X,)=") + A.

The last inequality is a consequence of Jensen’s (conditional) inequality, since

Sk . Sk(a)

E{Xy — Xi" ] o(Sk — S'”)} = WK

Now take a sequence {¢,} | 0 and a sequence {a,} T oo such that
(11) P{supy |Z), — Z,''| > ¢} £ 277
This is possible by (10), since

P{supy | Zy — Zy'*3'| > ¢;} = P{supy ¢ |Zy — Z,'*| > c¢;}
< (Afcg;)E{c | Xy — Xi%9'| (log* ¢ | X7 — X“9|)™* + (A[ce;)

which for fixed ¢; can be made <277 by choosing ¢ and «; sufficiently large.

By (11) and the Borel-Cantelli lemma, P{supy|Z, — Z,'“s'| > ¢; i.0.} = 0.
Thus if we can'show that Z,'® converges a.s. it will follow that Z, converges
a.s.

By Lemma 4 we know that Z,' converges in L for p > 1. Denote the limit
by X'“; then X'¥ e L*. Choose a sequence of indices k”’ such that as j — oo,
ki#— oo, -+, k,7— oo. Fix j; if ©\@ denotes the field V)., S, then for
k = k7, {2,/ — X', ©\“} is a martingale. By (4):

E{sup,ziti |2, — X' P} < BP{supysytir E |2}, — X7}
< BE(Z3) — X\ p}s

(since E{Z,0) — X'V | 2} = Z,'Y — X'9). But E{|Z}{;, — X'“|*} >,,. 0 and
SUPgz K |Zy'® — X'@|? is decreasing in j; hence supy, i |Zx'Y — X'¥| — 0 a.s.,
as j1 oo so Z, — X'? a.s. Since Z, clearly —0 in probability, it follows that
X@ =0 a.s.

We have now shown a.s. convergence in the following sense:

(12) For any ¢ > 0, P{|Zy] > ¢ al.} =0.

To strengthen this to the statement that P{|Z,| > ¢ f.0.} =1 we proceed as
follows. Let ¢ > 0 be given, and take r = 2. On each of the lines x = / and
y = Jj, the one-dimensional strong law holds a.s.; denoting by €, the subset of
Q formed by deleting the null sets of non-convergence, we have P(Q,) = 1. For
w e Q,, find k = (k,, k,) satisfying (12); by taking k’ > k if necessary we can
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(since there are only a finite number of lines x =/ for I < k, and y = j for
j < k,) conclude that

|Z(w)| < ¢ forall 1 £ k’.

Now assume inductively that P{|Z,| > ¢ f.0.} = 1 for r — 1 dimensions. Then
for each of the r — 1 dimensional hyperplanes defined by k; =j(j = 1,2, --)
there is a null set on whose complement |Z,| > ¢ f.0.; again let Q, be the inter-
section of the sets of convergence over these hyperplanes. For we Q,, find
k = (ky, ky, - -+, k,) such that (12) holds; by taking k’ > k if necessary we again
get

|Z(w)| < e for1 £ k',

hence that P{|Z,| > ¢ f.0.} = 1, proving (1).

3. The non-identically distributed case. In this section we consider independent
random variables with zero mean, but we no longer assume identical distribu-
tions. We will simply outline some of the results here, without proof.

One of the keys to an analysis of this case is the following analog of
Kolmogorov’s inequality for the one-dimensional case ([6]):

THEOREM (Wichura) Let

M, = max;, |S;|, a* = E(S,7) .
Then
E(M,;}) < 4707

Using this result one can be prove half of the Three Series Theorem for matrix
arrays, i.e. that the convergence of the three series is sufficient to insure a.s.
convergence of the random series Y], Xy. (The other half is valid also, but we
do not have an elementary proof—what is needed is an analog of Kolmogorov’s
second inequality.) Proceeding as in the one-dimensional case one can then
prove, for example, the following analogue of a well-known theorem (e.g. [2]
page 117):

THEOREM. Let ¢ be a positive, even continuous function on R' such that as |x|
increases, ¢(x)[x increases, and ¢(x)/x* decreases. Then if

Ee(X) o
2k o K <

it follows that P{|Z,| > ¢ f.0.} =1 for any ¢ > 0.

The usual sufficient conditions for convergence in the one-dimensional case are
thus sufficient for n-dimensional arrays as well, e.g., if supy E |X,|? < oo for
for some p > 1, we have convergence.

Finally we remark that the approach via Wichura’s inequality and the Three
Series Theorem can be used to give a different and more classical proof of the
strong law in Section 2. Similar techniques can be employed to yield strong
laws for more general partially ordered arrays.
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