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SAMPLE FUNCTIONS OF THE N-PARAMETER
WIENER PROCESS!

By STEVEN OREY AND WILLIAM E. PRUITT

University of Minnesota

Let W) denote the N-parameter Wiener process, that is a real-valued
Gaussian process with zero means and covariance ] ¥ (si A ;) where s =
i, t =<, §i20,4,=20,i=1,2,--- N. Then W¥.4 js to be the pro-
cess with values in R? determined by making each component an N-pa-
rameter Wiener process, the components being independent. Our concern
is with continuity and recurrence properties of the sample functions. In
particular we give integral tests for upper functions which reduce in the
case N = d = 1 to the integral tests of Kolmogorov, and of Chung-Erdds-
Sirao. We formulate and prove precise statements of the fact that W.d)
is interval recurrent (point recurrent) if and only if d < 2N (d < 2N).

0. Introduction. In this paper we study sample function properties of the N-
parameter Wiener process W'V, and more generally of the N-parameter Wiener
process W¥:¥ with values in d-dimensional Euclidean space R¢. More precisely,
we obtain information about the continuity and recurrence properties of the
sample functions.

Our parameter space is R,", that is the set of 1€ R with all components
nonnegative. When dealing with a point 7 in the parameter space we sometimes
find it convenient to write more explicitly ¢+ = (1, t,, - - -, 1, or simply {¢;3;
this notation will be reserved for the parameter space. In case all 1, = 4 we
write t = (4).

W™ is to be a separable real-valued Gaussian process on the parameter space
R." with mean zero and covariance

EW MW,M) =TI A 1 s =850, t =Lt

We call W) the N-parameter Wiener process. W™:? is to be the process with
values in R¢ determined by making each component an N-parameter Wiener
process, the components being independent. For s = (s;), t = {#;) two points
of R, with s, < 1,, we write

A(s, 1) for XX, [s: 4]

and in case s = (0) we write A(?) for A(s, 7). By an interval we mean a subset
of R,¥ which is the product of N one-dimensional intervals, not necessarily
closed, possibly degenerate.

Let now, for brevity’s sake, X = W', Let te R,” and let f be the indicator
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function of A(r). We define
§ f(v)dX, = X(A(1)) = X, .
If g is the indicator function of A(s), se R,”, one can verify
0.1y E[§ flu)dX, § g(u) dX,] = E(X,X,) = |A(s) N A(1)| = §p, v f(u)g(u) du

where |+| denotes the N-dimensional Lebesgue measure. Now one can extend
the map f— § f(u) dX, to all of L,(R,") so that the mapping is linear and the
equality between the extremes in (0.1) is preserved. If f is the indicator func-
tion of a set F we write X(F) for { f(u) dX,. For measurable subsets F and G
of R," this gives

(0.2) E[X(F)X(G)] = |F n G|

Note that it & is the symmetric difference between F and G then the variance
of X(F) — X(G) is equal to that of X(S), both quantities being equal to |S|. So
it is natural for us to use the distance d(F, G) = |S|. We shall write (s, #) for
d(A(s), A(?)), and &(r) for 6(0, r). By (0.2), E[X(F)X(G)] = 0 when F and G are
disjoint, and E[{X(F)}*] depends only on |F|; so in an obvious sense X has inde-
pendent and stationary increments. Of course this refers to increments of the
form X(F). For increments of the form X, — X, the corresponding assertions
are completely false. In particular if s = {s;», t = {s; + u;), the variance of
X, — X, will depend crucially on s.

The first introduction of W™, as far as we know, occurred in Kitagawa [5]
in connection with applications to statistical problems. Chentsov [1] showed
that W has a.s. continuous sample functions; see also Yeh [13]. For further
results, consult also Yeh [14], [15], W. J. Park [9], C. Park [8], Kuelbs [7].

More recently there have appeared results on sample-function behavior. Laws
of the iterated logarithm type, overlapping but not subsumed by our results here,
are given in Zimmerman [16]; also [16] and Pyke [10] contain some information
about moduli of continuity, but these are included in the results of this paper.
Generalizations of Strassen’s law of the iterated logarithm are given in Wichura
[12]. An interesting study of continuity properties of W)(F), where F ranges
over suitable classes of sets (not necessarily intervals) is contained in Dudley
[4]. Some further references are given in [10].

Our principal results appear in Sections 2 and 3. Section 2 gives integral tests
for upper and lower functions. Let X = W®™:¥, Theorem 2.1 tells when a func-
tion ¢(4) is such that a.s. |X(A)| < |Alt¢(]A|™?) for all intervals A included in
A({0Y, (1)) which are sufficiently small; Theorem 2.2 answers the same question
when the A are restricted to be of the form A(r). In Theorem 2.3 we find those
¢ such that, for s fixed and d(s) >0, |X, — X,| < (9(s, t))t((d(s, t))~") provided
o(s, 1) is sufficiently small. In the case N =1, d = 1 Theorem 2.1 reduces to
~ the Chung-Erdos-Sirao test [3], while Theorems 2.2 and 2.3 both reduce to the
Kolmogorov integral test. For the uniform problem for X, — X,, with s and ¢
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both varying we do not have a test; however the modulus of continuity is given
in Theorem 2.4. In discussing tests for upper functions our arguments closely
follow Sirao [11], who considered the problem for Lévy’s N-parameter Brownian
motion; however the nature of the process we are dealing with creates new dif-
ficulties which are made manifest particularly in the somewhat unusual grid we
are forced to introduce in the proof of Theorem 2.1.

In the one-parameter case, N = 1, it is well known that the Wiener process
is interval recurrent for d = 1, 2, i.e. every open sphere is entered after arbi-
trarily large time, while ford = 3 |W,*%| — oo ast — oco. Also, the probability
that any given x e R¢ is hit by W,*¢ for some ¢ > 0 is zero for d > 2, one for
d = 1. In Section 3 we prove analogues for W".¢: with a suitable notion of
interval recurrence W4 js interval recurrent for d < 2N, but not for d > 2N.
For x € R¢, P[W,¥+# = x for some t with 6() > 0] = 1 (0) whend < 2N (d = 2N),
P of course being our probability measure. An open problem, for d < 2N, is
whether the range of the process {W,V+#: te¢ R "} is all of R¢. It is, of course,
a consequence of Theorem 3.3 that the complement of the range has measure
zero.

1. Preliminaries. In this section we shall prove several preliminary results that
we need. Throughout this section, X will be used to denote the process W4,
First we state the very useful scaling property. If r = (r,> € R,” with é(r) > 0,
then

Y, = {5(")}_*X<r‘~t‘~)

and X, have the same finite dimensional distributions.

We now make some remarks to show that we have appropriate analogues of
the familiar zero-one laws. We introduce some notation for this argument only.
Let &, be the class of time intervals in R,» with vertices of the form (k,2-",
k; nonnegative integers, and having all sides of equal length, and for n > 0 each
member of &, is to be a subcube of one in &7. Let ¢, = Uy, %, and

Fo= BXD): Ae F),  Fo= e,

the notation indicating that .5 is the Borel field generated by the indicated class
of random variables, and .5, is the smallest Borel field including all .%,. For
a subset D of R, we put

. D)={Ae¥,: A D}, F (D) = <8{X(A): Ae v, (D)},
Fo(D) = V30 Fu(D)

First we have the Kolmogorov Zero-One Law: LetD, C R¥, m=1,2, ...,
D, | @;if Ae & (D,) for every m then P(A) € {0, 1}. The proof is the same as
in the usual setting: simply approximate A as in the proof of the Hewitt-Savage
Zero-One Law below and use independence. Furthermore, if the D, also satisfy
A(t) < D, foreveryte D, then Ac <B(X,: te D,) for every mimplies P(A) € {0, 1}.
This is clear, since our hypotheses imply 4 ¢ 5 (D,,) for every m.
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A version of the Hewitt-Savage Zero-One Law will also be required. A per-
mutation is a 1-1 map ¢ of &, onto itself such that (i) for every A e &, there
exists a vector v(A) in RY such that ¢(d) is A translated by v(d); (ii) 4, < 4,,
A e Z., A, e ., implies that v(A;) = v(4,). For every 4e .~ , there exists a
Borel function g on R= such that the indicator function of 4 has the form

1, = g(X(4,), X(4,), ---)
where A,, 4,, - .- is an enumeration of =,. We define ¢(A4) by

Ly = 9(X(0(8y)), X(9(8y)), -+ )3

though the choice of g corresponding to A4 is not unique, the definition of a(4)
does not in fact depend on the particular choice of g. If 4 and ¢(4) differ only
by a set of probability zero A is essentially invariant under . Observe that for
any Borel function g and permutation ¢ the random variables g(X(4,), X(4,), - --)
and g(X(a(4,)), X(a(4,)), - - -) have the same distribution; it is a consequence of
this that ‘P(4) = P{o(A4)] for all A€ .5 _,. We can therefore obtain a Hewitt-
Savage Zero-One Law: Let D, be a subset of R,", m=1,2,...,D, | @; if
Ae F, issuch that for every m there exists a permutation g such that A is essentially
invariant under ¢ and o maps € (D,,°) into & (D,,), then P(A) € {0, 1}. The usual
proof works: under the given hypotheses there exist 4, € .+ (D,,°) approximating
A in the sense that both P(4,,) and P(4,, N A) converge to P(4) asm — oco. Since
A, and o(A4,,) are independent

P[A, 0 o(A,)] = P[An] - Plo(Ap)] -

Now a(A4,,) approximates g(4). Using the essential invariance of 4 under ¢ and
letting m — oo leads to P(4) = (P(A))}, so that P(4) e {0, 1}. We will require
the corollary: if de B(X,: t = (1), t, =2 n,i=1,2,...,N),n=1,2, .-, then
P(A) € {0, 1}.

Next we need the asymptotic behavior of the distribution of the modulus of
a standard normal random variable in R?.

LemMA 1.1. Let U be a normal random variable in R* with mean O and identity
covariance matrix. Then

Pl|U| = 2] ~ ¢ 2% %%,

Proor. This follows easily from the well-known fact that |U]* has a y* distri-

bution with d degrees of freedom.

The next two lemmas give bounds for the distribution of the supremum of X
taken over certain time sets. A lemma similar to Lemma 1.2 was obtained in[16].

LeEMMA 1.2, Let S = A(u, v) be a fixed time interval. Then
Plsupgcs | X(R)| > 2] < 4YP[|X(S)| > 4],
where R ranges over intervals.

Proor. This is proved in very much the same way as the classical result for
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N =1 except that a little care is needed to avoid dependence difficulties. Fix
n and let
e = u; + (v, — u)(k;, + 1)27", i=1,2,...,N,

where k = 1 + k, + k,2" 4 ... + k,2"¥-V and each k, runs from 0 to 2" — 1.
Now let

tk = <tki> ’ tk* = <v1) DR} vzv-n ka> ’ tkl = <tk1’ MR ) tk,N—n ’UN> )
and define
E, = [Sup,caqu.e,) [ X(A(s, 1)) > 1], F.=EZE_ . ---E°.

Now we use the usual argument. If we give ourselves X(A(s, t)) for all s, ¢
A(u, t,*), then we are given whether F, occurs and if it does we can find an s
so that | X(A(s, 7,))] > 4. Since A(s, 1, )\A(s, 1,) is disjoint from A(u, 1,*), we get
that X(A(s, £,)\A(s, ¢,)) is independent of the condition and so must conditionally
have probability } of being in a half-space which will make |X(A(s, ¢,))| > 4.
Thus :
P(F,) < 2P[F,; SUD; teaqu,v),ty=vy ]X(A(s’ 0l > 1.

Summing over k and letting n — oo, we obtain the bound
P[suppcs | X(R)| > 2] < 2P[SUP, rcaqu, o, ey=vy | X(A(S, 1))] > 4] .

Now we do the same thing over except that we only need consider those k with
ky = 2" — 1 and this time we will be able to increase 7, ,_, to v,_,. Continuing
in this way we get

P[supgcs | X(R)| > 2] = 2V P[SUP,caqu,n | X(A(s, V)] > 4] -
Finally, we can repeat the same argument with s varying but with
S = v — (v, — w)(k, + 1)27"
to get the ordering reversed.

LEMMA 1.3, Let S = A(u, v) be a fixed time interval and s = (s;> a fixed time
point such that for each i, either s; < u; or s; = v;. Let

7 = 2max, .y {max (v; — u;, u; — s5;, 5, — v,)},

0 = max, ;. v, and w = <{w;) where
W, =U; if sz
= if s;=u,.

If 0 < B < 4 and U is a normal random variable in R® with mean 0 and covariance
I, then

(1.1)  P[sup,.s|X, — X,| > 1]
< 2VP[|X, — X.| > 2 — B] + 4¥P[|U| > y—'N-ipi-77]

REMARK. This lemma is more complicated than the last one because of



SAMPLE FUNCTIONS OF THE N-PARAMETER WIENER PROCESS 143

independence difficulties. If we assumed that s; < u; for all i, these difficulties
would not arise and we would only need the first term on the right of (1.1) and
could let 3 = 0.

Proor. We give the proof for p = 1; the general case follows from the scaling
property. The proof is by induction of the dimension of §; the time dimension
is to be N but S may have any dimension v with 0 < v < N. The induction
hypothesis will be as in (1.1) but with 2%, 4%, and N-# replaced by 2*, 4%, and
N-ty~' respectively. The case v = 0 is clear; we assume the induction hypothesis
proved for all § with dimension less than v. We can also assume that for our
rectangle S of dimension v we have u; < v, fori =1, ..., vand u; = v, fori =
v+ 1, ..., N. There are two cases depending on whether s, < u, or 5, > v,;
we consider the latter case which is the harder one. For a general time point
t = (t;) we introduce three related points:

= U AN Sy e U NS,y L U g AN Sy e, Uy A Sy
2= (1‘1, syt U, ULy, ...,uN>
B=qU NSy ooy Uy g NS,y Uy, Uy N Sy wooy Uy A Sy

Now let 1, = (1,;> as before where with n a fixed positive integer,
t,,¢=v5—(v‘—ui)(ki+1)2‘", i=1,2,---,v,
Ly = U, i=v+1,...,N,
and k = 1 + k, + k2" 4 ... 4+ k2D with 0 < k; < 2*. Set
E, =[|X,, — X,| > 1] and F,=EZE,_, ... E°.
If j < k, then
A MN\A(1?) < A@rY) < A(r;) n A(s)

so that X, , — X, is independent of F,. Thus, as in the proof of the last
lemma,

P(F,) £ 2P[F,; |th — X, — X+ th3| > A].
Summing over k and letting n — co, we obtain the bound

P[sup,cs | X, — X,| > 2] < 2P[sup,s|X, — X, — Xu + X > 1]
(1.2) ’ < 2P[sup,s | X, — Xy — X + Xl > Bo7']
+ 2P[sup.cs [Xp — X,| > 2 — pu7'].
Now we need an estimate for the first term in the last expression. This is ob-
tained as in the proof of Lemma 1.2 by discretizing ¢ and first moving ¢, out to
v,, thent,_ tov,_,, etc. Since sis not involved here, there are no independence
difficulties. We obtain the bound

Plsup,es |[X, — Xu — X + Xyl > 2] S 2°P[|X, — X, — X2 + X, > 1]
S 2P[|U| > Ay7INTH],
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where the last bound follows since each component of X, — X,; — X,» + X5 has
variance

(vv - uv)(Ht'*v 'U‘ - Ht’#» ut’ A si) é er *
(Recall that we assumed that v; < 1 for all i.) Now we use this bound’in (1.2)
and note that the induction hypothesis applies to the last term in (1.2) since
when ¢ varies over S, #* varies over av — 1 dimensional interval. Furthermore,

note that the point w determined by this new interval is the same as that de-
termined by S. Thus

Plsup,.s | X, — X,| > 4] < 241P[|U] > fvy~'N-1]
4+ 2{27P[X, — X,| > A — fut — (v — 1B
+ 47P[IU| > (v — DB INTH e — 1)1}

This has the right form since 2**!' + 2. 47! < 4* if v > 2, while in the case
v = 1, 2**! = 4" and the last term does not enter from the induction hypothesis.
We have not considered the case when s, < u, but this is easy because the in-
dependence difficulties are avoided. To check this case, discretize ¢ so that the
vth component increases. Then X, — X, and X,. — X, areindependent where
t,* is the same as ¢, but with 7} = v,. Thus

P[sup,.s | X, — X,| > 2] < 2P[sup,.s |X,. — X,| > 1]

in the usual way and now the induction hypothesis applies. Note also that if
s; < u; for all i, this will prove (1.1) without the last term as claimed in the
remark.

The next lemma is the form of the extended Borel Cantelli lemma proved by
Chung and Erdés in [2].

LEmMA 1.4. Let {E,} be a sequence of events satisfying the following conditions: _
(i) 2e. P(E,) = +oo.
(ii) For every pair of positive integers h, n with n = h, there exist c¢(h) > 0 and
H(n, k) > n such that for every m = H(n, h) we have

P(E,|Ey --- E)) > c(h)P(E,) .

(iii) There exist two absolute constants ¢, and c, with the following property: to
each E;, there corresponds a set of events E; , - - -, E; belonging to {E,} such that
(@) X5 P(ESE;) < ¢, P(E))
and if k > j but E, is not among the Eie’ 1 <i<s, then
(b) P(E;E,) < c,P(E;)P(E,).
Then the probability that infinitely many events E, occur is equal to one.

The final two lemmas generalize some estimates of Chung, Erdds, and Sirao
[3] to the d-dimensional case. In the proofs of these lemmas and in later proofs
as well, we shall use the convenient practice of letting ¢ stand for unimportant
positive constants which may even change from line to line.
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LemMMA 1.5. Let U and V be normal random variables in R* with mean 0 and
identity covariance matrix, and suppose that

‘E(U; V,) = pd,; .
Then there is a positive constant c, independent of p, such that if |p| < 1/ab,
PIU| > a, |V| > b] < cP[|U] > a]P[|V| > b].
Proor. This is essentially the proof in [3]. We can assume that @ < b and
also that a is large since the lemma is trivially true otherwise. Since

P[|U| > a, |V| > b] = P[|U| > a, b < |V| < 2b] + P[|U| > a, [V| > 2b],

it suffices to obtain the appropriate bound for each term. The second term is
easy since, by Lemma 1.1, for b large
P[|U| > a, |V| > 2b] < P[|V| > 2b] < cbi-te- )
' < c{bd—ze—bz/a}z
= cP[|U] > BIP[V] > b] < cP[|U] > a]P[|V] > b].

For the first term, since |(, v)| < |u||v|,

P[|U| > a, b < |V| < 2b]
__ 1
it 2(1 = pY)

A
o
B

Wp_uwmwaﬁww

, %P { = 5 (41 = ol o)} exp(—4lor) .

2

Now, on the range of integration

2 2
M—WM%M——%MO—T%
a a

and for a > 2, we obtain the bound
PIU > a,b < |V| < 2b] < eP[|U] > (@ — 2a™)(1 — p)~]P[|V] > ]
= cP[|U] > a]P[|V] > 8],
the last step being a consequence of Lemma 1.1.

LEMMA 1.6. Ler U and V be normal random variables in R* with mean 0 and
identity covariance matrix, and suppose that

E(U,V;) = pd;; .
Then there is a positive constant c, independent of p, such that
P[|U| > a, |V| > a] < ce= -4 #P[|U| > a],  forall a=0.

Proor. The case d = 1 is an easy consequence of Lemma 5 in [3] so we as-
sume d = 2. Also we may assume that a*(1 — p*) is large since the lemma is
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clear otherwise. Now
Pl|U| > a, |V]| > a]
1
— 1__ 2\—d/2 ex {_
ol —p)7%" §§ exp =)

a<luls|vl

(ul* — 2p(u, v) + |v|’)} dvdu .

For each fixed u;, we make an orthogonal transformation on v given by w = 4v
where the first row of A4 is given by a,; = u;|u|~'. Then

(u,v) = Zi w0 = Ju| Ti, a,v; = |ulw,
and so

P[IU| > a, V| > a]
1

=c(l — )" §§ exp {—2—(1-:—- (= 2pluw, + W)} dw du

a<lullwl 0%

1

= — p¥)—d2( ... L 2
= (1= ) o §exp | =gt (W — 26lulrcos gy 4 1)

J(ry 1 ooy pay) doy - - dopy_y d"d” ’
where we have changed w to spherical coordinates at the last stepand J(r, ¢, - - -,
¢4_y) is the Jacobian. Since
M(r, @15« -5 @q_y)| = r7Ysin g)|*7?,
we obtain the bound

o(1 =) § a5 2 5 P | = (uf — 2plulr cos o, + )]

21— )

X ré=Ysin ¢,|*"* do, dr du .
This is an even function of p so we replace p by |p| in the exponent and then
the ¢, integration over [0, $z] will dominate the integration over [4z, 7] so we
restrict the ¢, integration to [0, 4z]. On this range we use the inequalities
cos ¢, <1 — n7',* and |sin )| < ¢,. Then

r 1 — o?)r\de-n _
Sgk exp {_(llf.)l_]u’la)n. (p12} (Pld—2 ngl é <( |p] |lﬁr)7t> Sgoe—yzyd ? dy

and so we have the bound

(1 — @) A 5§ expl— s

a<l|ulsr

(P = 2l alr + )}

X (rlu|™")¢"2drdu .

)

The exponential may be written as

exp { =y gsy (= ol b} exp— 4],

and for the r integration, we obtain

o _(r = 1pl D" pa-v gp < _ [P = 16D (-0
§5 exp{ 20— o) }r r=cexp{ 20— o) }|u| .
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Therefore, we have the bound

=] p|—(d=1)/2 _|”|2(1 — 0 __‘”_‘z -1
o(1 = ) o] 4 § s oxp { e W} exp {— L} ju-rdu
< clo]-41 exp {—%ﬁ%} P[|U| > a] .

This completes the proof for |p| = ¢. To handle the small values of |o|, we note
that the lemma follows from Lemmas 1.5 and 1.1 if |p| < a~?, while for |o| = a7?,
we can replace |p|~“~"”2 by a?~! and then for |p| < ¢, we have

a*t exp {_—;(zi_l-lj——lzpl%} < gt exp{—a;g—;:;?} < cexp {—f’i(_lg‘_”z)}

for large a.

2. Continuity properties. In this section we shall derive sharp local and uniform
continuity results for W4, These will take the form of integral tests which
generalize the results of Kolmogorov and Chung, Erdos, Sirao [3]. (Actually,
we have stated our integral tests in a form slightly different from the usual one
(c.f. [3] or [11]). Our form is easier to use for checking specific functions but
the usual form has other advantages. It is easy to pass from one to the other.)
With the lemmas already given we can follow the method of proof of [11] without
too much difficulty. The main point that requires some care is the choice of the
manner of discretizing the unit time interval for the various problems. For the
first theorem we give a fair amount of detail in the proof; for the others we only
mention a few relevant differences. Throughout the section we use X to denote
the process W4,

THEOREM 2.1. (Uniform continuity for intervals) Let ¢ be a nonnegative, non-
decreasing, continuous function defined for large arguments. Then for almost all
w there is an e(w) such that for all intervals A(s, t) with A(s, t) C A1) and
A(s, 1)} < e(@),

(2.1 [X(ACs, D) < [ACs, Dite(|A(s, D]
if and only if

(2.2) §= (log &) +ii-2e=¢2¢) ge
converges.

COROLLARY 2.1. The function
¢(€) = (i aclog, §)t,
where log, & is the logarithm function iterated k times, does not satisfy (2.1) if
\a,=2, a,=6N+d—2, a, =2 for k=3,

but it does if a, is increased by y for any n > 0.
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Proor. The first step is to observe that it suffices to prove the theorem for
¢ satisfying

(2.3) (log )} < ¢(§) < 2(log &) .
The proof of this goes exactly as in [11] so we do not repeat it.
Now suppose that the integral converges. Leti = (i, - - -, iy_)), m = (m,, - - -,

my _,), and define the events
E(i, j, k;m, p) = [sup |X(A(s, 1))| = A*(B7)]

where the supremum is taken over all s, ¢ satisfying

i_"Z""n/Pésn<iL_t_12‘"'n/P, n=1,2...,N—1,

P P
_1.12_"'%/”+2_('“n+1)/p§1n <—l"+ 12_""4/”4-2_"‘1;/”,
P P
n=1,2 .-, N—1;
j_1§5N<j, 1'+k§,n<1'+k_+1,

2v 2° 2» 2°
and
A= Ak, m, p) = (277 — pm)V-12-tmrtmy ok 2o
is the infimum of the volumes of the intervals involved, and
B = B(k,m, p) = (1 + p)N-12=(m++my-0/p(k 4 2)2-7
is the corresponding supremum. The parameters will be restricted to the fol-
lowing ranges: ‘
0<i, < p2me?, l<j=2, fp=sk=sp, 0=m,<p,

p=34 ...
It is easy to check that

(2.4) 0<1— AB' < cp!

where ¢ depends only on the time dimension N. By Lemmas 1.2 and 1.1 we
obtain

P(E(, j, k, m, p)) < 4¥P[|U| = (AB)}p(B™)]
= {p(B7)) " exp[—¢*(B7")/2] exp[p*(B)1 — 4B7}/2]

where U is a normal random variable with mean 0 and covariance matrix 7 and
¢ depends only on N and d. The last factor is bounded by (2.3) and (2.4) since

P(B™) < 4log B~ < 4log 2" = O(p) .
Usin 23 again, we see that p~'¢? B~") is also bounded below and so for large
g (2.3) ag Py gep
P(E(i, j, k, m, p)) < cp*~ exp{—}p’(p12e+ i+ imt - dma-ip)}
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Now for v,p < m, < (v, + 1)p, we replace m, by v,p and obtain the bound

Zi,j.k,m,p P(E(l’_], ka m, P))
Sc X fl_=lo c. 5;1_1=0p21v+d/2—22»1+...+|,N__l+p exp{— Jo(pi2nt Hon-rtrh))

S S PV A exp(—hod(r2))

where we have let r = v, + --- + v,_; + p + 1 at the last step, there being no
more than r7-! ways of choosing v,, ---, vy_,;, and p to accomplish this. This
sum is now seen to converge by comparison with the integral (2.2) and so a.s.
only finitely many of the E(i, j, k, m, p) occur. Then for a given sample path
we can find a p, such that none of these occur for p = p,. Let A(s, t) be an in-
terval with 1, — s, = min {t, — s,} and |A(s, #)| < p,"2~"*. There is clearly no
loss of generality in the first assumption; the second implies that 1, — 5, < py277%0.
Now we choose p so that

(p+ D277 <ty — sy S p27°
and then j; k, m, and i so that
G=D27=sy <277, (J+R27=0,<(+k+ 127,
2ot L f 5 <27, pTN 2T < s, < pri(i, 4 1)27m
It is now easy to check that if A(s, r) € A({1)) the restrictions on the indices
are satisfied and A(s, r) is one of the intervals in the event E(i, j, k, m, p). It

follows that (2.1) is true.
Now suppose that the integral (2.2) diverges. Define the events

F(i, j k, m, p) = [|X(A(s, )] Z 1A(s, Dl*e(1A(s, DI7)]
where
5, = pli,2 ™l t, =5, + 27™/?, n=12,...,N—1,

SN:jZ_P, IN:(j+k)2_P.
The parameters will be restricted as follows:

0i, < gp2m?, 027", $p=k=p, p=m<p,

p=34, ..

These conditions ensure that all intervals under consideration are contained in
the unit interval. Now by Lemma 1.1 and (2.3)

P(F(i, ji k, m, p)) Z cp*™~t exp{— pp(p=i21+o+mur-w+my-vlr)}
If (v, — 1)p £ m, < v,p, we replace m, by v, p and obtain the bound
Ziiikmp P(F(, J, k, m, p))

€ Dins Dys Dlyyea P42 000 o exp = J(p2ieo e o)
C Z:o=3,+21v r3N+d/Z—2r—127 exp{ _%spz(r—lzr)}

where we have let r =2 + p + v, 4+ - -+ + v, _, at the last step and the constant

[\a\%
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has also been changed. To see that there are at least cr¥-! ways of choosing
vi, - -+, vy_1, and p, simply note that if

Lgpgz_r, o< - for n=1,2,...,N—-2,
2 3 4N

then there will be an appropriate value of v, _, at least for large r. By comparison
with the integral (2.2), we know the sum diverges. Thus we have verified con-
dition (i) of Lemma 1.4; next we will check condition (iii). We order the events
so that |A(s, t)| decreases. Now fix an event F = F(i, j, k, m, p) and let F’' =
F'(i, j', k', m’, p') be an event which follows F in the order. We will also use
A = A(s, 1) for the interval involved in F and A’ = A’(s’, ¢') for the one involved
in F’. Let p denote the correlation between the first component of X(A) and
the first component of X(A’). By Lemma 1.5, since

a(pp')t < o(|A[T)e(1A'7Y) = o(pp')?
we can assume that for an appropriate ¢
(2.5) «pp) =0
Now

(2.6) b B0 T = 5) A (1 = 5T
|A| |A | n=1 (t'n - S") Hs’:l (tn' - S”')
—s)N (1 —s,))

(t'lb
(tn - sn) v (tn’ - Sn’)

A

forn=1,2, ..., N. Using (2.6) with n = N in (2.5) leads easily to
(2.7) P’ —p=0(logp).
Furthermore, for every n, we have

m) < p?=0(p); kK =p =0(pp).

To count the number of events F’ which give rise to values of p satisfying (2.5)
it only remains to see how many possible values of i and j’ there are. We will
get an estimate by counting all those where A’ intersects A. Increasing i,’ by
one moves A’ a distance p’~'2-™"/*’; the furthest we can move it is 2-™»/? 4
2-ma/?". Thus the number of possible values of i,’ is at most

plzm"'/‘)'—m"/p + P';
since 2"/?'="+/> = O(pp') by (2.5) and (2.6), this number is O(p®) by (2.7). In
a similar way one shows that there are O(p®) relevant values of j’. Putting these
estimates together we have at most O(p**~! log p) intervals A’ which satisfy (2.5).
Now we assume, for the moment, that p> < 1 — p~%. Then by Lemma 1.6,
P(F 0 F') < ¢ exp{—4(1 — p)¢*(|A|)}P(F) < ¢ exp{—cpt}P(F),

and since p*"~*log p exp{—cp?} = O(1) we may go on to consider those A’ for
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which
(2.8) ozl —ph
We will do this by subdividing further as follows:

—1
(2.9) 1—%§p2<1—f‘T, p=1,...,pt.

As before, we have by Lemma 1.6 that
P(F n F') < c'e~*P(F) .
We will show that the number of intervals A’ which yield values of p satisfying
the first inequality in (2.9) is O(?¥). Since
Miper < K

independent of p, this will suffice to prove (iii). Proceeding as before, even con-
dition (2.8) implies that p’ = p for large p. Similarly, by (2.6) and (2.9),

1~ < P < 2-Imalemmy il _lm, —m,)/| log2 > 1og<1 - ﬁ) ~_F

P P P P

so that m, — m,” = O(g). In much the same way one shows that k¥’ — k = O(p).
We must still count the number of possible values for i/ and j’. Consider the
edges of A and A’ which are parallel to the nth coordinate axis. Changing i,’
by one moves A’ a distance p~'2=™»/». Thus there are

27l — 2mmalr| p2ale < p(2m malle 1) < p(2 — 1) = O(p)

values of i,” which give rise to an edge of length 2-™+/» A 2-™4'/» for the inter-
section. If we have m,’ < m, and change i,’ by an additional v then we must
have

2-mu/p __ yp—lz—mn'/P <1-— i_
2-"",,,/? - p

so that v < p. A similar argument works if m,” > m,. Thus the number of
possible values for i,' is O(x). Finally one estimates the number of possible
values of j” as O(g) in much the same manner. This then gives the total number
of F’" with p satisfying (2.9) as O(¢*") as promised. To complete the proof of
the theorem it only remains to verify condition (ii) of Lemma 1.4. For this
part, we follow Sirao ([11] page 147). He proves that if {U};2, are jointly normal
and one dimensional with mean 0, variance 1, and p;; = E[U, U,], and

0, = MaX; ., 0;n — 0 as m— oo,
then the ratio of the joint density of (U,, ---, U,, U,) to the product of the
joint density of (U, -- -, U,) and the density of U, converges to one uniformly

as m — co provided that the first n arguments are restricted to a compact set
and the last argument is restricted to the interval [—p,,~¢, p,,~] for some a < 1.
(If the distribution of (U, - - -, U,) is singular the densities-must be with respect
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to Lebesgue measure on a lower dimensional subspace.) The generalization of
this fact to d dimensions follows immediately since the joint densities are just
products of d copies of the one dimensional ones. We want to compare

P(F, Fy ---Fc)  with P(F\)P(F, .- F,))

where F, has the form [|U,| = ¢,]. (We have now ordered the events F(i, j, k, m, p)
in terms of decreasing |A(s, #)| and are using a single subscript.) The events
F\, ---, F,° are thus of the form [|U,| < ¢,] and so U,, - - -, U, are already re-
stricted to compact sets. We replace F, by

G, =[cn £ |U,| < 2¢,]

and use the fact that P(F,) < 2P(G,). Then the above convergence of the
densities suffices provided we show that p,, — 0and 2¢, < p,~ for some a < 1.
Now if the p parameter corresponding to F,, is p’ and the ones for F,, ---, F,
are all no larger than p, we have by (2.6)

om < (P27
so that p,, — 0, while

2e = 20(|1A(s, ) = cp < on7
for large values of p’.

THEOREM 2.2. (Local continuity for intervals; local continuity at the origin for
points) Let ¢ be a nonnegative, non-decreasing, continuous function defined for large
arguments and let s € A((1)). Then for almost all w there is an (w) such that for
all intervals A(s, t) with |A(s, t)] < ¢(w) and A(s, 1) < A({1)),

(2.10) | X(A(s, D) < [AGs, DI*e(IAGs, D7)
if and only if

§= §7(log £)"~'(log log §)" +4é-temv*e) dg
converges.

REMARK. By scaling, it is clear that s can be any element of R, ", but it is
important that ¢ be restricted to a compact set, the set depending on s. There
exist (unbounded) sequences 1, such that |A(¢,)| — 0 and

lim sup, ., | X(A(#,))] = oo a.s:
' {1A(1,)] log log |A(z,)| 7'}
CoOROLLARY 2.2. The function
e(€) = (Xiaa 10gk 5), ’

where log, & is the logarithm function iterated k times, does not satisfy (2.10) if

a, = 2N, a,=2N 4+ d, a, =2 for k=4,

but it does if a, is increased by 7 for any 7 > 0.
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Proor. First one shows as in [11] that it suffices to prove the theorem for ¢
satisfying
(log log §)t < ¢(§) < 2N(log log &)t .
Then for the convergent case, let
E(k, m, p) = [sup |X(A(s, 1))| = Abp(B™)]
where the supremum is taken over all ¢ satisfying
2—(m,‘+1)/logp é tn - sn < z—mn/logp s n — 1, 2’ e, N — 1 ,
k2-r <ty — sy < (kK + 1)277,
and
A = Ak, m, p) = 27 (Mt 4my_+N-D/logrfDp
is the infimum of the volumes of the intervals involved and B is the corresponding
supremum. The parameters are restricted to the ranges

}logpékélogp’ Oémn<plogpi p=3y4a""

The only other point where there is a significant difference in the convergent
case is that we may want to allow for the possibility that some f, — s, may be
negative. In other words we may want to let r approach s in an arbitrary way
instead of requiring that ¢, > s, for all n. However, this does not change the
probability estimates and we only get 2V cases exactly like the one we have de-
scribed. Thus the theorem is valid without regard to whether the manner in
which ¢ approaches s is restricted or not. In the divergent case, let

F(k, m, p) = [|X(A(s, 0) Z 1A(s, n*e(|A(s, 7],
where
tn_—snzz-m/losr, n;l,---,N~1,tN—SN=k2"’
with parameter restrictions
glogp<k<logp, logp<m, <plogp, p=3,4 ...

Then the proof goes as before except that in many estimates p is replaced by
log p; this is done, for example, in (2.5), (2.8), and (2.9). Furthermore, in
counting the number of values of m,” which give rise to p values satisfying the
analogue of (2.5), one must use (2.6) to get a bound of O(log p log log p). Note
that we have ensured that ¢, — s, > O for all n so that this proof is valid even
if the manner in which r approaches s is restricted.

Next we will discuss these problems where we consider X, — X, instead of
X(A(s, 1)). We will consider the local problem (i.e. with s fixed) first this time
since our results are more complete in this case. Distances are to be measured
in terms of the metric ¢ defined in the introduction. Note that if 5; = O for any
i, then s is identified with the origin and, moreover, X, — X, = X, = X(A(?))
while d(s, t) = |A(r)|]. Thus Theorem 2.2 gives the correct integral test for this
problem for an s of this type. However, the integral test is different for s with

a(s) > 0.
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THEOREM 2.3. (Local continuity away from the origin for points) Let ¢ be a
nonnegative, non-decreasing, continuous function defined for large arguments and let
se€ R.Y with 6(s) > 0. Then for almost all w there is an ¢(w) such that for all t
with 0(s, t) < &(w),

(2.11) X, — X, < {3(s, N}e(1/0(s, 1))

if and only if
§= £1(log log &) +##-1e=+*E1 d¢ < oo .

COROLLARY 2.3. The function
0(§) = (Tiona, log, &)? ,
where log, & is the logarithm function iterated k times, does not satisfy (2.11) if
a,=2, a;=2N+d, a=2 for k=4,
but it does if a, is increased by y for any 5 > 0.

Proor. The first step in the proof is to show as in [11] that it suffices to prove
the theorem for ¢ satisfying

(loglog §)! < ¢(§) < 2(loglog ¢)?.
For the convergent case, let
E,, = [sup |X, — X,| > Alp(B7)]
where the supremum is taken over all those ¢ satisfying
(2.12) k,27<t, —s, <(k,+ 1)277, n=12...,N

and A is the infimum of the values of d(s, f) when ¢ varies over this set and B
the corresponding supremum. The range of the parameters is

|an§|kN|+l’ n=l,2,...,N_1;
flogp < |ky| s logp; P =34 ..
For given ¢, letu, = s, At,,n =1, ... N, and let
I=(n<N:k,<O={n<N:iu,=1t}; J={n<N:k,20}.

Then A(s) n A(t) = A(u) and
(213) 5(5, t) = Hne.l sn(HneI Sp — Hnel tn) + Hnel tn(HneJ tn - Hne.lsn) :

We take p large enough so that there is a ¢ > 0 with ¢, > ¢ for all n and all ¢
that appear in any E, . Then it is easy to check from (2.13) that

c,2?logp< A< B=<c2"logp

and that B — A4 = O(27?). Now we use Lemma 1.3 to estimate P(E,,). First
we have y < 277*'log p and if we take § = 2777, it is easy to check that the
second term in the estimate is dominated by the first. Now by Lemma 1.1,

P(E,,) < c(log p)**~'exp[—3¢™(B~")]exp[¢p*(B7'){1 — AB~'}/2]exp[p(B~")BB!]
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and the last two factors are bounded due to the bounds we have given for 4,
B, and ¢. Thus

2k P(Ey,) < ¢ 30, (log p)V+4*~1 exp[ — ¢*(27/c, log p)/2]

and the series converges by comparison with the given integral. This proves the
result for all ¢ such that

lty — syl = max,g,on |1, — 3,
and this is clearly sufficient. For the divergent case, let
Fy, = [|X, — X,| > {3(s, D}e(1/d(s, 1))]

wheret, =5, + k,2"7and §logp < k, < logp, p = 3,4, - ... Then one shows
that infinitely many of these events occur by using Lemma 1.4 very much as in
the previous theorem.

For the uniform problem involving X, — X,, we have been unable to obtain

the integral test. The integral
Soo EN-x(log 5)2N+§d—le—¢2(5)/2 df

seems to be the correct criterion but there is enough dependence in the events
involved that it is impossible to check condition (iii) of Lemma 1.4. We have
also been unable to find any other version of the Borel-Cantelli Lemma which
will work. We have, however, obtained the modulus of continuity for this
problem and we give this now.

THEOREM 2.4. (Uniform modulus of continuity for points) Let h(§) = (2£log 1/§).
Then
. X, — X,
lim, _, sup, ;e iy, 005 Ttﬁ(s,—t))l =N as.
Proor. For notational simplicity only, we give the proof for N = 2. Let K
be the symmetric difference between A(s) and A(f) and write K = 4 U B where

A and B are disjoint intervals. Then for ¢ > 0, we have by Theorem 2.1
[Xe — X| = [X(A)] + [XB)| = (1 + )(A(|4]) + A(|B]))
for |A|, |B| sufficiently small. For § small, 4(§) is concave so

() + h(B) < 2 (ML) - 2inqa) + 15

as |A4| + |B| — 0. Since 4(s, f) = |A4| + |B|, this proves the upper bound. For
the opposite inequality, first note that it is sufficient to prove it for 4 = 1 since
|X, — X,| is larger than any of its components. Now let ¢ > 0, » > 0, and set

=8 ({4 E o) (3455 154)),

m

k=0,....m—1,m=1,2,...,
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Then Lévy’s proof for the uniform modulus of continuity of Brownian motion
shows that with probability one, for all but finitely many m there exists a k
such that

(2.14) X(Am) 2 (1 — )h(|4,) -
Similarly, for all but finitely many m there is a j such that
(2.15) X(Bnj) 2 (1 = )h(|B,;l) »
where

By =2 ((0.3+ L), (1a+1E00)),
m m
j:o, cee,m — 1,m= 1,2, cee
Let A = A, and B = B,,; be such that (2.14) and (2.15) hold and let
k ] k+1 i+ 1
s=(4+ X+ Loy, =y L),
_ m m . m m

Then X, — X, = X(K) where K is the symmetric difference of A(s) and A(r). If
C = K\(4 u B), then C = C" U C” with C’, C” disjoint intervals. Then

X(K) _ X(4) | X(B) | X(C)  X(C")

2.16 = .
(2-16) HIK) — RQKD)  R(K)) T R(K]) T A(K])

Since
K| = |A4] + |B| + [C| = 2|4 + |C| = |4|(2 + 49),

we have h(|K|) < (2 + 47)*h(]A4|). Thus the sum of the first two terms on the
right in (2.16) is at least 2(1 — )(2 + 47)~*. For the last two terms we know
by the first part that

X(C) z —24(C")) =z —2h(27|K]) ~ —2(27)*h(|K])

and X(C”) is handled similarly. By choosing 5 and ¢ appropriately we can thus
make (2.16) as close to 2 as we desire.

3. Recurrence properties. If X = W% is the ordinary one parameter Wiener
process with values in R, it is well known that if d = 1 or 2 X is interval re-
current in the sense that any open ball is entered by X, for arbitrarily large values
of ¢ with probability one. For d > 2 the probability that a given ball is entered
for arbitrarily large values of ¢ is zero. For d = 1 the process is also point re-
current in the sense that for each x, the probability that X, = x for arbitrarily
large values of ¢ is one; by contrast, when d > 2, the probability that X, = x
for some ¢ > 0 is zero. This section is devoted to establishing correct analogues
for w9,

For N = 2, d = 1, consider the one parameter process

Y) = ng")d—)l,l,...,l} ) 1 > O ’

with values in R?. This process has the same finite dimensional distributions as
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AT'W ;@ and it is easy to check that Y, enters any open ball for arbitrarily large
A with probability one regardless of the value of d. This shows that if we do
not wish to conclude that W®:9 jis interval recurrent, we must exercise care
about the way the N-dimensional parameter ¢ goes to infinity. In particular it
will not be enough to require that 6(f) — co. For by considering a process similar
to Y, we can find, for any p > 0 and any open ball B, a ¢ such that 6(r) = p and
W, ¥4 e B. Thus we obtain {z,} with é(7,) — co and Wi"¥ ¢ B.

In Theorem 3.1 we show that when d > 2N, W4 jis not interval recurrent
in a sense made precise in the theorem. On the other hand, Theorem 3.2 shows
that when d < 2N a strong notion of interval recurrence does hold. Point re-
currence is shown to hold when d < 2N in Theorem 3.3. Finally, it is shown
that W4 does not hit points when d = 2N in Theorem 3.4.

THEOREM 3.1. (Transience) Let d > 2N, p > 0. Then, with probability one,
there exist only finitely many N-tuples of positive integers j = (jy, jo -+, jy) Such
that

inf{]Wt“V»d’|:ji = <Ji+ I,i=1,.--,N}<p.

REMARK. This is equivalent to saying that if ¢ is restricted to the domain
{t:t;,=1,i=1, ..., N} then |W,"¥| — oo as (1) — oo.

Proor. Let X = (X, X®, ..., X@) = W™D, Fix j = {jp, fo» +++» Jyp With
each j; = 1, and let

s py = i+ pijil0()) pi =0, 1, 0(j)/j; -
If A;, = A5 p). {js p + 1)), then we have
P[|X,| £ p forsome ted;]

S Pl[Xiiml = 20] + Siais0 PISUPesy, [ X0 — Xl 2 [X] — 0]P[X,;p € dX]

< o' BUN " + BN S 1m0 PXesipnny — Xejiml 2 3lx{1dx
where Lemma 1.3 and the remark following it have been used at the last step.
Since the variance of X(} .., — X{}.,, is the volume of A({j; p + 1)) minus the
volume of A({j; p)), it is bounded by N2¥. The last integral above is then

bounded by a constant depending only on N by Lemma 1.1. Summing over all
p:» we obtain the bound

(3.1 P[|X,| € p forsome treA(j,j + 1)] £ cfo())}V1-2,

the constant depending on p, d, and N. Since the bound is summable over all
Ji» an application of Borel-Cantelli completes the proof.

THEOREM 3.2. (Interval Recurrence) Forn = 1,p = (p, -+, py), 1 < p; < n,
let
mpy =<n 1+ pofn, 1+ pyfn, - 1 + py/n)

and
= [IWanl = 17.

Then for d < 2N, infinitely many of the events A,, occur a.s.
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ReMARK. The same proof shows that for any open set B in R? infinitely many
of the events W4 ¢ B occur with probability one.

Proor. Suppose d = 2N; it suffices (by a projection argument) to treat this
case. Since
P(A,,) = cn™¥* = cn¥

uniformly for p in the range in question,

(3.2) AV P(A, )= c XM nt~clogM
z » ») b3 g

as M — oo. Since the events under consideration are not independent, we need
a refined version of Borel-Cantelli to finish the proof. A convenient one here
is that given by Kochen and Stone [6]; it requires that

fim inf, . Dtwcs Ty Py 0 Au)

{Z3- 2 P(AL)Y
According to (3.2) the denominator is at least ¢ log* M. A rather more tedious
calculation bounds the numerator by a constant times log* M. Thus we may
conclude that there is positive probability that infinitely many A4, , occur; by the
zero-one law this probability must be one.

THEOREM 3.3. (Point Recurrence) Letd < 2N, X, = W4, Then

(1) {X,: teA(K1))} has positive d-dimensional volume a.s.;
(ii) for each xe R* and 2 > 0, P[X, = x for some t > (4)] = 1.

Proor. Let d = 2N — 1; it is enough to consider this case. Partition the cube
A((3), (1)) into m" little cubes, to be referred to as cubicles. Each cubicle has
sides of length 1/2m. For a > 0 let Z7(a) be the class of cubes in R* with edges
parallel to the coordinate axes, sides of length a, and vertices of the form
(ak,, - -+, ak,) with k, ..., k, integers. Let

V={X,: 1e A&, (1))

and let N(a) be the number of cubes of &(a) intersected by V. Each of the
cubicles has a least vertex, i.e. closest to (0). Let N(a, m) be the number of
distinct cubes of &(a) into which these least vertices are mapped by X. Any
pair of distinct least vertices mapping into the same cube of Z(a) will be said
to give rise to a coincidence. Let Q(a, m) denote the total number of coinci-
dences. We need an estimate for E[Q(a, m)]. To this end, consider two least
vertices:
s=((m+j)2my  and  t=((m+ k)2m) .
Note that
E[( Wt(N’l) —_ W‘(N,l))2] ; Cm—l iN=J |k' _.]'DI .

Thus we obtain

P[s and r give rise to a coincidence] < P[|X, — X,| < ad!]

=
< ca'm (LN, |k — Ji)7.
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Keeping ¢ fixed and summing over s we obtain a bound for the expected number
of coincidences involving t:

catmi’ Z:N=1 Z';N_fo . Z’;ﬁo pr+ -+ pN)-‘i‘/2
< catm 3y py Tt < 2catmV .

Now summing over all ¢, we have the needed estimate
(3.3) E[Q(a, m)] < ca*m*™ .

To utilize this result we conceive of our set up as an urn model. The cubes of
&’(a) are urns, the least vertices of the cubicles are balls, and the mapping X
distributes these balls into a number of distinct urns. Note that the number of
occupied urns is N(a, m). It is easy to see that for given m and N(a, m) the
number of coincidences is minimized if the m" balls are distributed as evenly as
possible between the N(a, m) urns. Keeping a fixed, we shall let m tend to in-
finity. Since N(a, m) £ N(a), with probability one,

m2N

1 m" m¥
(3.4) Q(a, m) = IN(a, m)

=2 N(a, m) <N(a, m) B

ngm~

as m approaches infinity. Since Q is nonnegative, we have for ¢ > 0
PIO > E(Q)] < ¢
and so it follows from (3.3) and (3.4) that for m sufficiently large
N(a) = N(a, m) = cm®* Q7! = eem®[E(Q)]* > c'a™*

with probability exceeding I — . Now a?N(a) is the value of a Riemann sum
approximating the volume of V; it is indeed an upper Darboux sum. Since V
is the image of a compact set under the continuous map X, it is compact, and
as a consequence the upper Darboux sums will converge to the volume of V.
So V has positive volume with probability exceeding 1 — ¢; since ¢ is arbitrary,
(i) is established.

We turn to the proof of (ii). We will write {s;> > (#;) for s, > 1, i =1,
2, .-+, N. Clearly the proof of (i) can be used to show that for any non-degen-
erate interval A, {X,: te A} has positive d-dimensional volume. In particular,
{X,: 1> (1)} has positive d-dimensional volume. An application of Fubini’s
Theorem allows us to conclude that

(3.5) {x: P[X, = x for some 1> (1] > 0}

has positive volume.

Let h(x, 1) = P[X, = x for some s > t]. Then A(x, (0)) is non-increasing as
a function of p; letting p approach infinity we obtain a limit function h(x). The
scaling property implies

(3.6) h(x, 1) = h(A%x, A1), 1>0.

It follows that A(x) = A(4x), 2 > 0. On the other hand, symmetry considerations
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make it apparent that (x) = h(y) if |x| =-|y|. So there is a constant ¢, such that
h(x) = ¢, for all x = 0. The zero-one law implies that ¢, = 0 or ¢, = 1; we wish
to establish the second alternative. For p > 1,

(3.7)  h(x, oY) = § ¢(x — YPIX, — Xy, = y for some 1> (pd]dy

where ¢ is the standard normal density in R?. Therefore A(x, (0}), o = 1, isan
equicontinuous family of functions. So the limit 4(x) will be continuous in x,
i.e. h(x) = ¢, including x = 0. Using (3.6), we obtain

(3.8) R0, ) = h(0, At) = h(0) = ¢, .
According to (3.5), there exists an x making A(x, (1)) > 0. By (3.7) with p = 1,
{y: P[X, — X,, =y forsome ¢ > (1)] > 0} .

has positive volume. Using (3.7) again with x = 0, p = 1, we see that 4(0, (1>) >
0 and so by (3.8) ¢, > 0. This means ¢, = 1 and establishes (ii).

THEOREM 3.4. (Non-recurrence for points) Let d = 2N, X, = W, ¥, Then

(1) {X,: te R} has zero d-dimesional volume a.s.;
(ii) for each x € R*, P[X, = x for some t with 5(t) > 0] = 0.

Proor. It is enough to consider the case d = 2N. Because of scaling, in order
to prove (i) it is sufficient to show that

V={X:1ed($), <)}
has zero volume. We partition A = A((}), (1)) into m" cubicles of side 1/2m

and consider the class of cubes Z(m~%) in R? defined in the proof of Theorem
3.3. Let N(m) be the number of these cubes intersected by V. Since

[Vl = N(m)(m~#)" = N(m)m~="",

it will suffice to prove that E{N(m)} = o(m"). Fix m and consider the order on
R.” given by letting s precede ¢ if and only if for some j, 5; < t;and 5, = 1,
forj<n<N. Letrs, k =1,2, ..., m", be the least vertices of the cubicles
arranged in increasing order, S, the cubicle corresponding to ¢*, and C, the
(random) element of & (m~*) which contains JX,.. Define the events

F,=[C,n Cj=¢ fOI‘j:l,Z,---,k—l];

F, is the event that a new cube is hjt at time ¢* if we only observe X at the
vertices. We are now ready to obtain an upper estimate for N(m). If a new
cube is hit at time * we count in a central block of (2M + 1) cubes centered at
C,,» where M is a large integer to be chosen soon. If the cube is not new, this
central block will have been covered previously. In addition, whether the
cube is new or not, we add any cubes outside this central block which are in-
tersected by {X,: se S,}. Let N, denote the number of cubes added outside the
central block. Then we have

(3-9) N(m) < T8 2M + 1)'[(F,) + S5 N,
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Now
E(N) = Yaau E[N,; nm™t < Sup,cs, X — X < (n + )ym=4]
Zinzn (20 + 3)'P[sUp,es, |X, — Xul = nm™4]
¢ Dinan (20 + 3)ini~le=r?
by Lemmas 1.1 and 1.3 since the § distance between the least and largest ver-

tices of S, is at most N/2m. Therefore, given ¢ > 0, we can choose M so large
that E(N,) < ¢, independent of k and m. Then by (3.9) we have

(3.10) E[N(m)} < (2M + 1)¢ 7% P(F,) + em" .

A 1A

The remainder of the proof is devoted to showing that the sum is of smaller order
then m". Let A(x) = 2(x log log 1/x)* and

a, = sup,., P[|X, — X,| = h(d(s, 1)) for some s with (s, 1) < m~#].
If it were not for the sup over ¢, it would be a consequence of Theorem 2.3 that

a, — 0. In fact, it is easy to see by looking at the proof of Theorem 2.3 that
all the estimates are independent of ¢ for 7 ¢ A so that @,, — 0. Now let

Jp = [|X, — Xu| < h(3(s, t*)) for all s with s, < 1% and (s, t*) < m™¥];

we know that P(J,°) < a,, for all k. We let T, be the sojourn time in C, up to
time (2}, i.e.

T, = oy I[X, € C,ldr.
Note that

(3.11) SENIF)T, < 2V .
We introduce the time sets
H, ={t:0<1, — k< (ty — ty%)/loglogm, 1 < n <N,

mt <ty — tyf < mmiINTI27NY
where we assume that m is large enough so that H, is not empty. Now
(3.12) E(T\; F,) 2 E(T,; FJ,) 2 E({, 11X, € C,]d5; FJ,) .
For any re H,, let

U=t e Iy 5

We want a lower estimate for
(3.13) P[X,eCi|X,: sy < t,*] = P[X, — X, e C, — X, | X,: sy < 1,*].

X, — X, is independent of the conditioning o-field, J,, F, are in it, and X, is
measurable with respect to it. Since Xy e C,, C, — X, is a cube of side m™*
which intersects the sphere of radius | X, — X, | centered at the origin. Further-
more, since

otk 1) < 2V V(1 — 1,5) S 2¥N(ty — ty*)/loglogm < m™,

we have, on J,
| X — Xo| < h(O(Y, t¥) < c(ty — 15},
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so that the cube C, — X, is contained in a sphere of radius c¢(r, — #,*)}. We
can now estimate the conditional probability in (3.13) by scaling since

27ty — ") S T (0 — 13%) = 8(1, 1) < 2%(1y — 1) .

Because the normal density is bounded below on compact sets (the cube will be
in a sphere of fixed radius after scaling) the lower estimate is just a constant
times the volume of the rescaled cube. Thus, on J,

P[X, e C|X,: sy £ ty¥] = e[m~ ¥ty — t,5) 74} = em~V(t, — t,4)7.
Inserting this bound in (3.12), we have
(3.14) E(Ty; F) 2 cE(§y, m(ty — ;%) dt; F,J,)
= cm~"(log log m)~"+log m P(F,J,) .
If P(F,) = 2a,, then, since P(J,) = | — a,, it follows that
(3.15) P(F,) < 2P(F,J,) .
Now, by (3.15), (3.14), and (3.11),

el P(Fy) £ 2a,mY + Z(k:P(F,,)zza,,,) P(F})
< 2a,m" + 23, P(FJ,)

< 2a,m" + cm"’(ILIIOQgg::—)N—1 > E(T, F)
< 2a,m" 4+ cm? (l_og_lM.l .
=" log m
By (3.10) this completes the proof of (i).

To prove (ii), define

h(x,t) = P[X, = x for some s with 5, >1,n=1,2,..., N]

as in the proof of the last theorem. By Fubini we know from (i) that 4(x, (0>) = 0
for almost all x. Since A(x, {p)) < h(x, {0)), we also have k(x, (o)) = 0 for
almost all x. But &(x, (o)) is continuous for fixed p by (3.7) so that A(x, {p)) = 0.

Finally A(x, {0)) = lim,_, k(x, {p}).
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