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ASYMPTOTICS OF RANDOMLY STOPPED SEQUENCES
WITH INDEPENDENT INCREMENTS

By PrisciLLA GREENWOOD
University of British Columbia

Let S»,n=1,2, - -, be asequence of sums of independent, identically
distributed random variables X; such that P{X; > y} is a regularly varying
function of y at infinity. Let N be a stopping time for S, with finite mean.
A necessary and sufficient condition is given that

limyo P{Sn > y}/P{X1 > y} =

Examples further illustrate the role of this condition.

1. Introduction. Let S,,n = 1,2, -.. be a sequence of sums of independent,
identically distributed random variables X; defined on a probability space
(Q, &, P). Let &, denote the subfield of & generated by S, ---,S,. A
stopping time for S, is a positive integer-valued random variable N such that for
each n, {N < nje #,.

A family of equations relates the successive moments of the stopped process
Sy and the moments of N whenever the appropriate moments are finite. For
instance, if E|S,| < o and EN < oo then ES, = EX,EN. Such moment
identities appeared in Wald’s classical work in sequential analysis. Their general
validity for martingales and for processes with stationary, independent incre-
ments has been shown by Chow, Robbins and Teicher (1965), (1966), Brown
(1969), and Hall (1970).

If §, has zero mean, the second moment grows linearly with time, ES,* = kn.
Wald’s equation ES,* = kEN says that this linear growth is preserved under
random stopping. The equation ES,, = EX,EN is a similar statement about the
mean when not zero.

We find that the linear relation governing the asymptotic property of the
process distribution is also preserved under random stopping. If P{X; > y}
varies regularly as y — oo then (see for instance Feller (1966)),

(1) P{S, >y} ~ P{X, > yln.
If in addition EN is finite then ’
(2) P{Sy >y} ~ P{X; > y}EN

is equivalent to condition (8).
In Section 3 the condition EN < co is shown not to imply (2) in general.
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However, a result of Monroe (1972) shows that for strictly stable sequences (2)
is true whenever EN < oo.
The expression a A b will denote the minimum of a and 5. The statement

f(y) ~ g(y) will mean that lim__., f(y)/9(y) = 1.

2. An asymptotic formula. We assume throughout that P{X, > y} varies
regularly at oo, i.e. P{X; > y} ~ y?L(y), p = 0, where L is a slowly varying
function at co : L(yx) ~ L(y) for any x > 0. As an initial step we prove state-
ment (2) for the bounded stopping time N A n,

LEMMA. Foreachn=1,2, ...,
P{Sy,n > y} ~ P{X; > y}E{N A n}.

Proor. If n =1 we have 1 = 1. Assume that the lemma is true with n

replaced by n — 1:
P(Sy >y, N<n—1}

| + P(S, >y Nz n— 1} ~ PX; > YEN A (n = 1)},
i.e.
3)  P(Sy >y N<np+ PS>y, N =n}~ P{X; > JJEN A (n — 1)}

We wish to show
@  PSy >y N<nj+ P(S, >y, N=n~ P(X,> yJE{N A n}.
The difference between relations (3) and (4), since E{N A n} = E{N A (n — 1)} +
P{N = n}, is
(5)  PS,>y Nzn}—PS,, >y, Nz n}~PX,>y}P[N = n} .
We rewrite the left side of (5) as

P(S, >y, S, .=y, Nzn} —P(S,., >y S, =y, N=n}

and show that

(6) lim, ., P{S, >y, S,.s < y, N = n}/P{X, > y} = P[N = n},
and
™ lim,_,, P{S,_, >y, S, <y, Nz n}/P{X; >y} = 0.

The technique used by Feller to prove (1) also proves (6). For any ¢ > 0,
P{S, >y, Sy, =y, Nzn}=PS, .+ X, > S,.=y, N=zn}
> P(S,, > )(1 + <), S, < y, N 2 n}P{IX,]| < ye)
+ P{S,_1| > y&, Suli £y, N2 n}P{X, > y(1 + o)} .
We have used the independence of X, from the event {N > n} which, with its

complement, is measurable with respect to #,_,. The first term on the right is
zero and

lim, .. P{IS,.| < ye&, N = n}P{X, > y(1 + O}/ P{X > )}
= P{N = n}(1 + ¢)*.
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We have, then, the > half of (6). On the other hand, for any ¢ > 0,
P{Sn>y,sn—1§}’,N2”}§P{}’an-1>}’(1 —6),Ngn}
+ P{X, > y(1 — ) P{S,, <7, N = 1)
+ P{y = S,.. > ye, N > n}P{X, > ye}.
Let us deal first with the last term, omitting the {N > n} and recalling (1):
lim, o, P{y = S, > ye}P(X, > ye}/ P{X; > )}
=(n—1)(e? — 1)lim_, P{X, >y} =0.
By a similar computation,
lim, ., P{S, >y, S,., <y, N < n}/P{X, >y}
S((@=97 =D —1)+ (1 —e)?PN=n}.
Since ¢ > 0 was arbitrary we have the < half of (6).
To prove (7) we observe that for any ¢ > 0,

lim, ., P(S, > y}/P(X, > y} = n,
whereas
lim, o P{S,: > y(1 + Y/ PXy >y} = (n — 1)(1 + )77
For a small fixed ¢ and large enough y, then,
P(S, > y} = P(S,. > y(1 + o)} .
It follows that
lim, ., P{S,_, >y, S, = y}/P{X, > y}
< lim, ., P(y < 8,4 < (1 + O}/ P{X, > )}
=1—(14¢".
Since ¢ can be chosen arbitrarily small, the limit is zero.

REMARK. Statement (5) still holds if we replace {N = n} by any event
measurable with respect to &, _,.

THEOREM. Let S,,n=1,2, ..., be a sequence of sums of independent, identi-
cally distributed random variables X;. Suppose that P{X, > y} is regularly varying
at co. Let N be a stopping time for S, such that

8) liminf, ., limsup, . [P{Sy > y, N = n}

— P(S, >y, N Z n)/P(X, >y} = 0.
Then
) P{Sy >y} ~ P{X, > J}EN .

If EN < oo then “lim inf” may be replaced by “lim” in (8), and (8) and (9) are
equivalent.
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Proor. For each fixed n, and then as n — oo on an appropriate subsequence,

lim sup, ., P{Sy > y}/P{X, > y}
= limsup, ., [P{Sy >y, N< n} + P{Sy >y, N = n}
+ (P(S, > 7, N 2 n} — P[S, > y, N = n})]/P{X, > }
(10) = limsup, .. P{Sy., > }}/P{X; > y)
+ lim sup, .. [P{Sy >y, N = n} — P{S, > y, N = n}}/P(X; > }
= lim,_, E(N A n),
by the Lemma and (8). As n— oo, N A n increases to N almost surely, and
E(N A n) goes to EN. If EN < oo and the limit in (8) is not 0, calculation (10)

shows (9) to be false.
A similar argument gives us the

CoroLLARY. If limsup, ., P{Sy > y}/P{X, > y} < oo and EN < oo then

lim,_, lim sup, ., [P{Sy > y, N = n}

—PS, >y, N=n]l/P[X; >y} =M< o,
and
lim sup, ... P{Sy > y}/P{X, > y} = EN + M.

3. Examples. Wald’s equations hold whenever the appropriate moments of
N and S, are fininite. However, finiteness of EN is not sufficient for condition
(9) to hold. In the following example P{X; > y} varies regularly and EN < oo
but P{Sy > y}/P{X; > y} - co. Then the Theorem says that (8) fails.

Let S, be a sequence of sums of independent, identically distributed, symmetric
X; such that P{X, > y} ~ y=*~ for some ¢ > 0. Then ES, = 0 and ES,* < .
Denote by k,, k,, k, the second, third, and fourth moments of X,. Let N be a
stopping time for S, such that EN < oo, whereas EN? = co. For each n < oo,
Theorems 2 and 7 of Chow, Robbins, and Teicher (1965) give us the Wald
equations

ES,* = k,EN,
E(Sy.,)! = 6k,E{(N A n)S%,.}
+ 4k, E{(N A 0)Sy,.} + k,E(N A n} — 3k,E{N A n)?} .
Schwarz’s inequality gives
3k, E{(N A n)'} < 6k, E{(N A n)'PE{S},,}t
— E{Sy\a} + 4kE{(N A n)'BE{(Sy..)}* + k,E{N A n}.
Then
3k E{(N A n)'} < 6k, E(S},,,}t + 4k, E{S},,,.}}
+ k,E{N A n}/E{(N A n)}}.

As n increases the left side goes to infinity. On the right, the second term is
bounded, the third goes to zero, and we conclude that E{S},,} goes to infinity.
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Therefore ES,* = oo and, since X; is symmetric, lim sup, ., y**P{S, > y} = co.

The following theorem of Monroe implies that for a strictly stable process
X,, lim,_, P{X; > y}/P{X; > y} = ET if T is any stopping time such that ET is
finite. By “strictly stable” is meant that X, and /=X, have the same distribu-
tion, where « is the index of the process, 0 < a < 2.

THEOREM (Monroe (1972)). Let X, be a strictly stable process and let T be a
stopping time such that ET < co. Then the distribution of X, is in the domain of
normal attraction of the distribution of Xy,.

A similar result for a strictly stable sequence S, follows from evaluation of
X, at the integers.

Monroe’s theorem enables us to construct an example which shows that
condition (8) cannot be replaced by

lim inf,__ lim _ P{S, >y, N = n}/P{X; > y} =0.

Let S, be a strictly stable sequence, as above, with index «. Let N = min {n:
S, <n}. Then0 < ENZ Y3, nP{S,_ ;= (n— 1)’} = X2 ,nP{X, > (n— 1)»-Ye},
since S, /n"/* has the same distribution as X;. Using the property of the stable
distribution, P{X, > y} ~ y~*, we find that the sum converges if p is, for instance,
4/a. Monroe’s theorem implies that

lim, ., P{Sy > y}/P{X, > y} = EN.
Now we can compute, since N* > §,,,
lim, ., lim, .. P{Sy > y, N = n}/P(X, > y}
= lim,_, lim ., ENP{N = n|S, >y} = EN.
Because EN < oo, our Theorem implies that also

lim, ., lim, ., P{S, > y, N 2 n}/P{X, > y} = EN .

REFERENCES

[1] Brown, B. M. (1969). Moments of a stopping rule related to the central limit theorem.
Ann. Math. Statist. 40 1236-1249.

[2] CHow, Y.S., RoBains, H. and TEICHER, H. (1965). Moments of randomly stopped sums.
Ann. Math. Statist. 36 786-799.

[3] CHow, Y. S. and TEICHER, H. (1966). On second moments of stopping rules. Ann. Math.
Statist. 37 388-392. '

[4] FELLER, W. (1966). AnIntroduction to Probability Theory and its Applications, 2. Wiley, New
York.

[5] HaLr, W. J. (1970). On Wald’s equations in continuous time. J. Appl. Probability 7 59-68.

[6] MoNRoOE, I. (1972). Using additive functionals to embed preassigned distributions in sym-
metric stable processes. Trans. Amer. Math. Soc. 163 131-146.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER 8, CANADA



