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ON KHINTCHINE’S ESTIMATE FOR LARGE DEVIATIONS

By DaAvip G. KosTKA
Texas A & M University

The large deviation estimate, used in classical proofs of the law of the
iterated logarithm for i.i.d. random variables, implies the random variables
satisfy a condition more stringent than a finite variance. Thus it is impossi-
ble to prove the law of the iterated logarithm in its full strength (i.e. as-
suming only a finite second moment) by using such a deviation estimate
in a “‘straightforward’’ manner.

1. Introduction. Let {X,},., be a sequence of independent, identically dis-
tributed random variables with mean zero and variance one; let S, = X, +.- .- +
X,. It is well known that the law of the iterated logarithm (L.I.L.) for S, holds
if and only if the random variables X, have finite variance. Hartman and Wintner
(1941) showed the sufficiency of a finite variance, and Strassen (1966) showed
the necessity.

In classical proofs of the law of the iterated logarithm a key estimate (see
Lamperti (1966) pages 41-49) is

(1.1 P(S,/nt = a,) = exp[ — (a,}/2)(1 4+ o(1))]

as n 1 oo where a, = (1 & ¢)(21glgn)}, ¢ > 0. Petrov (1966) showed that such
a large deviation estimate is readily deduced from Berry-Esséen type theorems
when the random variables X, satisfy a condition more stringent than a finite
variance.

The purpose of this note is to point out that estimate (1.1) implies the {X,}
satisfy a condition which is stronger than a finite variance. Thus, it is impossible
to prove the law of the iterated logarithm in its full strength (i.e. assuming only
a finite second moment) by using Gaussian tail estimates of the form (1.1) in a
“straightforward” manner.

2. Large deviations of the form (1.1). Pinsky (1969) derived estimates of the
form (1.1) by examining the convergence rate in Trotter’s method of operators
and thus avoided the use of the Berry-Esséen theorem. However, estimates of
this form can be derived in more generality by using an extended Berry-Esséen
theorem (see Katz (1963) or Petrov (1965)), of the following type.

Assume E[X?h(]X}|)] < co where A(x) 1 oo, x/h(x) 1 as x | oo then

@.1) PS,jnt 2 a) = §2 SRR gy 4 o((h(nty)
(22"
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where the error is uniform in @ € (— oo, o). For a suitable choice of a = aq,
the error term in (2.1) can be absorbed into the Gaussian term. As in Petrov
(1966), this yields the following result. ’

(2.2) PROPOSITION. Assume E[X*h(|X,|)] < oo where h(x) 1 oo, x/h(x) ] as
x 1 oco. If{a,} is a sequence increasing to + co so that

exp[a,’/2(1 + o(1))]/h(nt) - 0
then for each ¢ > 0

(2.3)  exp[—(a,}/2)(1 + ¢)] < P(S,/nt = a,) < exp[—(a,’/2)(1 — ¢)]
for n = N(e)
Immediate consequences of this proposition are estimates of the form (1.1)
that are used in classical proofs of the L.I.L.
(2.4 CoroLLARY. If E(X}(1g|X)|)'*%) < oo, then

P(S,/n* 2 a,) = exp[—a,’/2(1 + o(1))]
where
a, = (1 +¢)(21glgn)t, 0<e¢<9d/3 and
g x = log, x if x=1,
=1 otherwise.

3. A partial converse of equation (1.1). We can get a partial converse to
Corollary (2.5) which shows that estimates of the form (1.1) imply the random
variables {X,} satisfy a condition more stringent than a finite variance. Inspi-
ration for the proof came from a private communication of Howard Stratton
via Mark Pinsky. The first lemma we need appears in Baum and Katz (1965)
in a more specialized form than the following.

3.1 LEMMA. Assume {b,} is an increasing sequence of real numbers such that
nP(X, > b,) — 0 as n — oo and {X,} are symmetric, then

for some C > 0.

ProOF.

P(S, > b,) = PULA{(X; > b,) N (Djor, s X; = 0) 0 (Mg, 52 (X; = 6}
= 20 P{(X: > b,) 0 (Zhon, 2 X3 > 0) N (N, 5 &G = 6,))
= 2 P(X > b,)P{( D5y, i X; 2 0) 0 (NG, o X5 = 5,)}
= 2 P(X; > b,)[P(X5-r, j0s X; 2 0) — P(N}oy, 2 X; < 6,)]
I P(XG > b,)[P(D 5o, e X5 2 0) — P(U3oy, 2 X5 > 6,)]
7 P(X; > b,)[3 — (n — 1)P(X; > b,)]
nP(X; > b,)(3 — 9) for n = N(9) .

YA\

This gives the desired result.
The next lemma we need appears in Davis (1968).
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3.2) LeEMMA. Let X be a random variable and {a,} a non-decreasing positive
sequence such that

na’ = 0(X3r.,ar), a,la,_, = O(1)
then

v a,P(|X| > a,n'?) < o

implies E(X?) < oo.
3.3) ProrosITION. Let {X,},., be a sequence of independent, identically dis-
tributed, symmetric random variables with E(X,) = 0 and E(X,}) = 1. If

P(S,[n* = a,) = exp[(—a,/2)(1 + o(1))]
fora, = (1 + ¢)21glgn)t, ¢ > 0, then E(X2(g | X)) < oo.

Proor. If b, = nta, = (1 + ¢)(2nlglgn)t then the previous lemma applies
since
E(X?
nP(X, > b,) < "E0) 0
by Chebyshev’s inequality.
Now,

fo'e) > Z:=l (lg n) j

n(lg n)(l+e)2(1+0(1))

> zz., 087" exp[ (L4 I2IIEMYNL + o(1)]

> ¢y, B8N pis mt > (1 + o(21g Ig n)Y)
n
by the assumptions of the proposition
> c 5=, 87" 1px, = (1 + ¢)2nlglg n)Y)
n
by the lemma above
3.4) =>Crr, (lg m*P(X*(g X,)* = Cn lg 1g n(lg n)*)
> C Yz, (g n)*P(X2(1g X,)¢ = Cn(lg n)™) .

In the above C stands for various positive constants. The convergence of
series (3.4) combined with Lemma (3.2) gives the desired result that

E(X?(1g X)) < oo .

Acknowledgment. The author’s original proof was based on a modification of
Pinsky’s method. The remark that Proposition 2.2 is a consequence of Katz
extensions of the Berry-Esséen theorem is due to the referee.
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