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ON THE LOCAL BEHAVIOR OF CHARACTERISTIC FUNCTIONS!

By STEPHEN J. WOLFE

University of Delaware

Some theorems are obtained relating the asymptotic behavior of a dis-
tribution function with the local behavior of its characteristic function.

1. Introduction and Summary. We first introduce some notation. Let F(x)
be a distribution function with characteristic function f(r). Let p,(f) be the kth
symmetric difference of f at 0, i.e. p, (1) = X, (—1)"()f[(k — 2n)t], and let
D, f(0) denote the kth symmetric derivative of f at 0, i.e. lim,_, p,(?)/(2¢)* if
this limit exists. If f(r) = 1 + X %_, ¢;t%/j! 4+ o(#*) as t — O then the number ¢,
is called the kth generalized derivative of f at 0, denoted by f,,(0). The charac-
teristic function f{7) is said to satisfy the smoothness condition S, at 0 if p,,(f) =
o(t*)as t — +0.

The primary purpose of this paper is to give proofs of the following three
theorems:

THEOREM 1. Let k be a positive even integer and let 0 < A < k. Then 1 — F(x) 4+
F(—x) = o(x7%) as x — oo if and only if p,(tf) = o(t*) as t — +0. This statement
remains true if o is replaced by O.

THEOREM 2. Let k be a positive even integer and let 0 < A< k. Then (=, |x|* dF(x)<
oo if and only if i t=27Yp,(¢)| dt < oo for some ¢ > 0 in which case
1) 12w |X|? dF(x) = [2F {5 v~ (sin v)* dv]~ {5 14 o,(1)| dt .

THEOREM 3. Let k be a positive integer and let k < A < k 4 1. The charac-
teristic function f(t) admits the expansion
) f) =14 Shoae; 6l + o(ld) as 10
if and only if 1 — F(x) + F(—x) = o(x~*) as x — oo. This statement remains true
if o is replaced by O.

Several well-known results can be combined to yield the following theorem:

THEOREM A. If k is a positive even integer, the following four statements are
equivalent:

3) f®(0) - exists,
4 f(0) exists,
3) D, f(0) exists,
(6) {2 Xt dF(x) < oo .
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Proofs of the equivalence of (3), (4), and (6) can be found in [6]. The equiva-
lence of (5) and (6) can be shown quite easily using Fatou’s Lemma and the
Lebesgue Dominated Convergence Theorem. If one of the conditions (3)—(6)
holds then

FP0) = fi(0) = Duf(0) = i* {2 x* dF(x) .

Theorem 1 can be combined with theorems of Zygmund and Pitman to yield
an analogue to Theorem A.

THEOREM B. If k is a positive odd integer, the following four statements are
equivalent:

©) f*(0) exists,
®) fun(0)  exists,
) D, f(0) existsand f(t) satisfies condition S, at O,

(10) lim,_. {7, x* dF(x) existsand 1 — F(x) + F(—x) = o(x7¥)

as x — oo .

It is easily seen that (7) implies (8). If (8) holds, then p,(f) = ¢,(2t)* + o(t*)
as t— 40 and p,,,(f) = o(#*) as t — +0 and so (9) holds. If (9) holds then it
follows from Theorem 2 of Zygmund [15] that lim,_, {7, x* dF(x) exists and
from Theorem 1 that 1 — F(x) + F(—x) = o(x¥) as x — oo. If (10) holds then
(7) follows from a theorem of Pitman [7]. If one of the conditions (7)—(10)
holds then f#/(0) = f£,,,(0) = D, f(0) = i* lim,._, {7, x* dF(x).

Let F(x), Fy(x), and F,(x) be distribution functions with characteristic func-
tions f{r), f,(¢) and f(¢) respectively. Let F = F,*F, and let 2 > 0. It has been
shown in ([13] Theorem 1) that 1 — F(x) + F(—x) = o(x~%) as x — oo if and
only if 1 — Fy(x) + Fy(—x) = o(x"*) as x » oo for j=1and j = 2. Wintner
proved ([12] page 47) that {>_, |x|* dF(x) < oo if and only if §=, |x|* dF;(x) < o
for j = 1and j = 2. Boas proved ([2] Theorem 1) that f(r) € Lipa for 0 < a < 1
ifand only if 1 — F(x) + F(—x) = o(x™*) as x — oco. The following corollaries
follow from Theorems 1 and 2 and the above remarks:

CoroLLARY 1. Let f(t), fi(1), and f,() be characteristic functions such that f(t) =
fi(F(1). Let k be a positive even integer and let 0 < 2 < k. Then A'f(0) = o(#)
ast — +0 if and only if Af;(0) = o(t") as t > +0 for j=1 and j =2. Also
s 71714, (0)| dt < oo if and only if {5t~ *Y|A,'f;(0)| dt < oo forj = 1andj=2.

CoROLLARY 2. Let f(t), f(t), and f|(t) be characteristic functions such that f(f) =
fi(Of(t). Let 0 < a < 1. Then f{(t) e Lip a if and only if fi(f)eLipa for j=1
and j = 2.

The proof of Theorem 1 for k = 2 and 0 < 4 < 1 is contained in a Theorem
of Boas ([2] Theorem 1). Binmore and Stratton [1] obtained Theorem 1 for
k = 2 and 0 < 2 < 2 by an entirely different method of proof.
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Theorem 2 is a generalization of a Theorem ([10] Theorem 5) of Ramachandran.
Ramachandran’s method of proof, however, is somewhat different and does not
yield a formula for the absolute moments of a distribution function. Formula
(1) should be compared with other formulae for the absolute moments of a dis-
tribution function that were obtained by Brown ([3] page 658) and by Zolotarev
([14] page 440).

Theorem 3 sharpens some results that were obtained by other authors. Loéve
([5] page 199), showed that if F(x) has an absolute moment of the ith order
where k < 2 < k + 1 then f{(r) admits an expansion of the form (2) where o is
replaced by O. Ramachandran ([10] Theorem 3) showed that if f{r) admits an
expansion of the form (2) where o is replaced by O then F(x) has absolute mo-
ments of all orders less than 4. Both of these results are contained in Theorem
3. Theorem 3 is closely related to a result of Brown ([3] page 659) that states
that if k is an even positive integer and if k < 2 < k + 2, then {*,, |x|*dF(x) < oo
if and only if f{f) = 1 4+ 33%_, ¢;#9/j! + R(r) where {;Re [R(f)}r*"1dt < oo for
¢ > 0. Brown’s result makes use of a Lemma of Von Bahr ([11] Lemma 4).

Pitman ([8] and [9]) has obtained some more precise theorems about the rela-
tionship between the asymptotic behavior of distribution functions and the local
behavior of their characteristic functions when the tails of the distribution func-
tions are functions of regular growth or when the distribution functions satisfy
some similar condition.

2. Proof of Theorem 1. Let G(x) = F(x) — F(—x). It is easily seen that
oult) = 2<(— 1) §5 (sin yr)* dG() .
Assume that p,(f) = o(t*) as t — +0. Then if t > 0,
§5/¢ (sin yt)t dG(y) = o(t}) as t— +0.
If0< 6 <1,thensinf/f > 1 — 6°/6 = §. Thus (sin yr)* = (B)*y*rif 0 < y <
1/t and
t* §i¢ Yy dG(y) = o(t%) as t— +0,
or equivalently
(11) A(x) = {2 y* dG(y) = o(x*~%) as x— oo .
If x >0,
1 — F(x) + F(—2) = 1 — G(x) = §2 dG(y)
= 207 dAQy) = —x7RA(x) + K §7 YT A(y) dy
= o(x7%) as x— oo.
Assume conversely that 1 — F(x) + F(—x) = o(x~*) as x —oo. Then if >0,
lou(0)] < 2§ (sin yo)* dG(y)
< 280§y dG(y) + 2§, dG(y) -
The assumption that 1 — F(x) + F(—x) = o(x~*) as x — oo implies that
{57 dG(y) = o(t)) as t— +0
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and that
55ty dG(y) = 1§ y* d[G(y) — 1]
= G(1/) — 1 + ke* §i" y*[1 — G(y)] dy
= o(t) as t— 0.
Thus p,(f) = o(#*) as t — 0.
3. Proof of Theorem 2. Assume that {=_ |x|*dF(x) <oco. Then {3 x?dG(x)< co
and if ¢ > 0 then
§5 1710 (1)] dt = 2% §5 2§ (sin xt)* dG(x)] dit
(12) = 2% {2 [§5 r-(sin x1)* dt] dG(x)
= 2% {7 X[ {57 v=*71(sin v)* dv] dG(x) .
Since {7 v=*Y(sin v)* dv < oo, it follows that {5 1=*~1|p,(7)| dt < oo.

Assume conversely that §§1=*-%p,(r)| df < co where ¢ > 0. Then it follows
from the above argument that

§5 X[ §6° v=*"Y(sin v)* dv} dG(x) < co ,
and so
§3 X [§57 v=*=Y(sin v)* dv] dG(x) < oo .
But if x > 1, then
§57 v (sin )t dv = §iv=*1 (sinv)* dv > 0.
Thus § x* dG(x) < oo and so {=_, |x|* dF(x) < oo.
Formula (1) follows from (12) when ¢ goes to infinity.

4. Proof of Theorem 3. Let/bean even integer that is greater than 2. Assume
that (2) holds. Then p,(f) = o(#*) as t — +0 and it follows from Theorem 1 that
1 — F(x) 4+ F(—x) = o(x™%) as x — co.

Assume conversely that 1 — F(x) + F(—x) = o(x™%) as x — co. Let G(x) =
F(x) — F(—x). By a Lemma of Feller ([4] page 512), if § > 0 then

le? — 1 — X3, (i0)7]j!] < 0*+1)(n + 1)!
Thus f(#) admits an expansion of the form

[y =1+ Thoie; 0t + R()
where

IRl = (1/(k + 1)1) §5 [ex|*** dG(x) + (2/k!) §55 [£x]* dG(x) .
If 1 — G(x) = o(x~%) as x — oo then
§2 78 dG(y) = —xH(1 — G(x)) + k §7 (1 — G(y)) dy
= o(x*=%) as x— oo and so
§50 |x]* dG() = 0|1 as 10,

By an argument similar to that used in the proof of Theorem 1, it can be shown
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that if 1 — G(x) = o(x~%) as x — oo then
§3/1 | 2x|¥ 1 dG(x) = o(|t]*) as t—0.
It follows that R(r) = o(|?|*) as t — 0.

5. A counter-example. Statement (11) remains true if A = k. It follows that
if k is a positive even integer and p,(7) = O(t*)ast — +0, then §=_, |x|* dF(x) < oo
and thus 1 — F(x) + F(—x) = O(x*) as x — co. Also, if p,(f) = o(t*) as
t — +0, then F(x) is degenerate at 0 and thus 1 — F(x) + F(—x) = o(x¥)
as x — oo. It is easy to show that the converse statements are not true. Let
c=[§ (1/y** Iny) dy]™, let p(x) = 0if x < 2, let p(x) = ¢/x**'Inx if x > 2,
and let F(x) = {*,p(y)dy. Then 1 — F(x) + F(—x) = o(x7*) as x — co.
However §=., |x|*p(x) dx = oo, so it is not true that p,(f) = O(¢*) as t — 0.
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