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A DIMENSION THEOREM FOR SAMPLE FUNCTIONS
OF PROCESSES WITH STABLE COMPONENTS!

By W. J. HENDRICKS

Case Western Reserve University

For processes X(f) with stable components we calculate dim X(E) in
terms of dim E, where E is a fixed Borel subset of [0, 1] of known Hausdorff-
Besicovitch dimension, dim E. Our results extend the earlier ones of
Blumenthal and Getoor in the stable case.

1. Introduction. In [1], Blumenthal and Getoor proved that for stable
processes X(r) of stable index @« < 2 in R” and fixed Borel sets E C R',
1) dim X(E) = min {N, a dim E}
holds (with probability one), where dim 4 denotes the Hausdorff-Besicovitch
dimension of 4. The object of the present investigation is to prove results
analogous to (1) for another type of stochastic process. Our process will be
one with stable components as studied by Pruitt and Taylor in [10], and more
recently in [5] and [6]. In [6] we obtained a partial solution to the problem

and observed that processes of this type provide an interesting counterexample
to some earlier conjectures.

2. Preliminaries. To define a process X(7) with stable components in RY (see
[5] and [10]) we let X,(f) be a stable process of index «, in Euclidean space of
dimension d,, fori = 1,2, ..., n, n = 2, assume the X, are independent and let
2 X)) =X, X(0), -+, X)) and N=di+ - +4d,,
where the d;-dimensional subspaces in which the X,(r) take their values are
orthogonal. We assume that the stable indices satisfy: 0 < a, < a,_; < +++ <
a, < 2. X(t) will have the strong Markov property and stationary and inde-
pendent increments. The sample functions X(#, w) are right continuous and have
left limits everywhere.

The d-dimensional characteristic function of a stable process in R? of index
a has the form exp[r¥(z)] where:

W(z) = i(b, 2) — elz]® §sa w (2, 0)p(db)
with e R?%, ¢ > 0,
wo(z,0) = [1 — isgn (z, 0)tan ] «/2]|(z/|z|, 0)]*, a +#1,
wi(z, 0) = |(z/|2], 0)| + (2i/11)(z/z], 6) log |(z, 6)|
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and ¢ is a probability measure on the surface of the unit sphere S¢ in R? [7].
We assume y is not supported by a proper subspace of R? and that b = 0,
¢ = 1. If p is uniform the process is called symmetric.

Blumenthal and Getoor [2] used the characteristic function of a process with
stationary and independent increments to define indices 8, f’, ” which satisfy
0 < p” < ' =B < 2, are uniquely determined by a given process, and which
can be used to characterize many aspects of the sample function behavior. We
will not repeat the definitions here but point out that for stable processes of
index a we have § = 8” = a, and for processes with stable components as
defined in (2) we have 8 = ;. However, some of the processes we shall con-
sider will have:

a=p"<1l4+a—afa,=p < a,=§.
It has been proven, [2] and [9], that for an arbitrary process X(#) with station-

ary and independent increments of index 8’ < d (8’ > d cannot occur in pro-
cesses with stable components) and fixed Borel subset £ C [0, 1]

(3) g dim E < dim X(E) < fdim E

holds with probability 1. In [6] we observed a process with stable components
which showed that the bounds in (3) are the best possible. For this same pro-
cess we will show that, given a number ¢ such that 8/ < ¢ < 8 we can find a
Borel subset E (depending upon ¢) of [0, 1] for which dim X(E) = ¢ dim E.

The density function p,(z, x) of a stable process X(¢) of index a in R* is con-
tinuous and bounded in x for each fixed z. Tt also satisfies the scaling property
(except for some nonsymmetric processes of index a = 1, which we henceforth
exclude)

4) Pult, X) = po(rt, r/exri/e
for all r > 0. The density of X(r), a process with stable components as defined
by (2), will be denoted by p(z, x) and is given by:
p(t, x) = [T pa(t; X))
where x = (x, x,, -+, x,)eRY, x,e R%, and d, 4 ... 4 d, = N.
3. Dimension theorem. The result of this study is the following

THEOREM. Let X(f) be a process with stable components as defined in (2), and
suppose that E is a fixed Borel subset of [0, 1]. Then (with probability one):

() If e, > d,
dim X(E) = a;dim E if 0<dimE < 1/a,
=1 — ay/a; + a,dim E if 1o, <dmE<1.
(i) If a; < d, (see remark (iii) of Section 4)
dim X(E) = a, dim E .
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Proor. The proof of (ii) is shorter, so we will do it first. One way to prove
(ii) is to observe that 8 = 5’ = a; whenever @, < d, and use the inequalities in
(3). A second method, which is also used in the proof of (i), is the following
projection argument. If a; < d; we have:

(5) dimX(E) < Bdim E = «;dim E by (3) and
dim X(F) = dim X,(E) = min {d;, &, dim E} = a; dim E by (1) .

This completes the proof of (ii). We remark in passing that the projection
argument used in proving the last inequality could also have been used in [6]
to obtain the lower bound on dim X(F) (page 692).

The more interesting result and proof is that of (i). If 0 < dim E < 1]a; we
have dim X(E) = a, dim E by application of Theorem 1 of [6], or by the same
argument used above in the bounds in (5). Now suppose that «; > 1 = 4, and
that E is a fixed Borel subset of [0, 1] of Hausdorff dimension y, where 1 > y >
1/a;. To establish the upper bound we will use the following result of Pruitt
and Taylor [10] (pages 282-283):

Lemma 1. Let X(t) be a process with stable components for which a; > d,, and
suppose that A(a) is a fixed collection of abutting cubes of side a < 1 in R¥. Let
M(a, s) denote the number of these cubes hit by the path X(t) at some time t € [0, s].
Then there is a positive constant ¢, such that, for all a < 5"/,

6) E[M(a, 5)] < c¢ysa~°, where o =1 + a, — a,/a; .
We now let 6 > 7 = dim E and select a sequence of coverings of E by intervals

E; , of length d; , for which E c U, E; ., m =1,2,3, ---, and

(7) 2adl, < 1jm for m=1,2,3,....

We now consider X(E, ,), the range of X(f) on the interval E, . Since the

process has stationary and independent increments, X(E, ,) has the same distri-

bution as X([0, d, ,,]). Cover R" by abutting cubes of edge a = d;/;?. Lemma
1 then gives:

(8) E[M(a, d,,)] < ¢,d, ,d; 5" = ¢, d}/7iV" .

Consider only thoes cubse of the above collection which are hit by the process
in the time interval [0, d,,]. These cubes form a covering of X([0, d,,]) by
cubes of side d; ,,.,(w) = dV/@ for j=1,2,3, ... . From (8) we now obtain:
©) E[3; di el = (dp) -/t E[M(a, d, )] < ¢,d)
Consequently, we can cover X(E) by a sequence of covers, X(E) C U, X(E, ),

m=1,2,3, ..., in such a way that the diameters, d, ,(®), of the covering
sets satisfy:

(10) E[ X2 Dia d ] < ¢ B din < % -0 as m—oo.
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Hence, by Fatou’s lemma, the lim inf of the double sum is (with probability one)
zero. Thus, dim X(E) < 1 — a,/a, + a,0. Since d > y was arbitrary, the proof
of the upper bound is complete.

We now proceed to the lower bound proof when a, > d, = 1 and 1 > dim E=
7 > 1/a,. First we state and prove the counterpart of Lemma 1 of [6].

LeEMMA 2. Let X(t) be a process with stable components as defined in (2) for which
a, > d, =1, and suppose 1 = v > 1ja,. Ifde (1,1 + ya, — a,/a,) then:
an E|X(1) — X(5)|7° < cyel/mlain
where © =t — s > 0, and ¢, is a positive constant whose value does not depend upon
t, s, orc.

Proor. The hypotheses on a;, a, and y imply that § < 2. Under the assump-
tion that the scaling property (4) holds for each of the components we can
express the density, p(¢, x) of X(r) by
(12) P(t’ X) = ?:1 Pai(l’ t“l/“ixi)t_‘ii/% s X € RN, X; € Rt .
Now let ¢ = ¢ — s, use the change of variable , = r~“x,, and the boundedness
of P14, to Obtain:

E1X(r) — X(5)|™°
= Yatn -+ Satr [¥[7°p(7, X) dixy - -+ dx,

Pl 0Pl w) - p (L) o

= (e auy, ouy, o, T )P
(13) = ¢ (ata S(l)uzlfl/az—l/alpag(l’ Uy) T2\ uy| =% duy du,
+ € $ata §giervep1/e Pag(1s )™ 0s| 7 dty
< e rt/mmVen § gty (U0, (1, uy) duy

= §ptn - § "

from which the lemma follows since 1 < § < 2 and ¢, and ¢, are independent
of r.

The proof now parallels that of Blumenthal and Getoor [1] (pages 371-372)
and we give only the outline. Denote the exponent of r in (11) by —2. Then
the hypotheses on d assure us that 0 < 2 < 7, and A*"(E) = + o0 if 0 < 9 <
7 — 4. According to Davies’ [3] theorem there is a closed set F contained in £
such that A**(F) > 0, so that C,(F) > 0 by Frostman’s [4] theorem. Thus
there is a probability measure m, concentrated on F such that

(14) §r §r |x — y[Tim(dx)m(dy) < oo .
Integrate (11) over F x F with respect to m x m and use Fubini’s theorem to
show that

§r V7 |X(t, @) — X(s, @)| 7 m(dt)m(ds) < oo
for almost all w. Finally, the theorem of McKean [8] guarantees that A’X(F) >
0 with probability one. Hence dim X(E) = 4, and the proof is complete since
0 < 1 4 a,7 — a,/a, was arbitrary.
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4. Remarks.

(i) By using a process with a; > d, = 1 we can find sets E, depending upon
¢, such that dim X(E) = ¢ dim E, for any ¢ in [, B]. '

(ii) If, in (i) of our dimension theorem, a graph is made of dim E vs dim X(E)
one can think of dim X(F) using up the X, component first on sets £ with
dim E < 1/a, and then the X, component. Thus, we see more intuitively how
the number p = 1 + a, — a,/a; = dim X([0, 1]) arises.

(iii) Our proofs of (i) of our theorem rely heavily upon the scaling property,
so that processes with components for which (4) fails are excluded from our
considerations.

Acknowledgment. The author wishes to thank Professor W. E. Pruitt of the
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and proof of part (i) of our theorem.
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