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WEAK CONVERGENCE OF SUPERPOSITIONS OF
RANDOMLY SELECTED PARTIAL SUMS!

By RicHARD F. SERFOZO

Syracuse University

The main results are functional central limit theorems for superposi-
tions of randomly selected partial sums in which the random variables
eing summed are independent and have distributions in the domain of
attraction of stable laws. These results extend those of Tucker and Sreehari
concerning when convolutions of distributions are attracted to stable laws.
Other functional central limit theorems are presented for more general
sums. The results herein extend the central limit theory for additive pro-
cesses on Markov chains.

1. Introduction. Functional central limit theorems (invariance principles or
weak convergence theorems in a function space setting) are presented for super-
positions of the form

(1.1) S, =N XY &y n

where £,(1 £i< N, j= 1, N < oo being a constant) is a double sequence of

v

L,

random variables (rv’s), and v,(n) (1 £ i £ N, n = 1) are positive integer-valued
rv’s.
The sums (1.1) appear in many contexts. For example, suppose the §;; are

independent rv’s such that for each i, the &,,, £, - - - have a common distribu-
tion F, and suppose
(1.2) v(n) = i1 Liy(e) »

where I, is the indicator function, and {z,} is a process taking values in
{1, - -, N} which is independent of the £,;. Then (1.1) can be written as §, =
e, X, where all n, x;, ---, x,and i, - -, i

n

PIX,Sxp o 0, Xy Sx, =0 oo = 1] = HI7:=1Fik(xk)'

In other words, S, is a sum of independent rv’s whose distributions are randomly
selected from the family {F,, - - -, F} by the process 5,. This S, could be thought
of as a random walk in a randomly changing environment, where 7, is the
environment process. Recent studies of stochastic systems (viz., branching,
queues, Brownian motion, Poisson processes) in random environments appear
in [1], [19], [24], [29], [34]. When 7, is a Markov chain, S, is called an additive
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process defined on a Markov chain, [7], [9], [13], [20], [25], [26], [30]. Many
other examples can be described fcr an N-dimensional process (9,(n), - - -, 7y(1))
(n = 1) where v,(n) = >%_, fi(n:(k)) for appropriate functions f;.

Our major result is Theorem 3.1, a functional central limit theorem for S, in
(1.1), where §,; are independent rv’s such that for each i, the ,;, §,,, - -+ have
a common distribution function F; belonging to the domain of attraction of a
stable law. This generalizes Theorem 2 of Tucker (1968) and Theorem 3.1 of
Sreehari (1970) concerning the ordinary limit law of S, for nonrandom v(n).
Theorem 3.2 is a similar result, under weaker hypotheses, for S, with a random
translation term (similar normalizations appear in Srechari (1968)). Theorems
3.1and 3.3 are proved by a random time change argument, which was introduced
by Billingsley (1968) page 144, and extended by Iglehart and Kennedy (1970)
and Whitt (1971a, 1972b) (other applications appear in [16], [18], [29], [30],
[40]—[42]). Also used in their proofs are: (i) a weak convergence result in-
volving summations (Theorem 2.1) due to Whitt (1972b), (ii) a weak convergence
result invoiving stable processes (Theorem 2.3), which is a corollary of Theorem
2.7 of Skorohod (1957) as noted in Theorem 1 of Liggett (1968), and (iii) a basic
property of stable distributions (implicit in Proposition 2.4), which is also the
key to the results of Tucker (1968) and Sreehari (1970).

In Section 4, two functional central limit theorems for S,, with no independ-
ence assumptions on the &,; or v,(n), are presented. They are similar to Corollaries
5.1 and 5.2 of Whitt (1972b), which extend Iglehart and Kennedy (1970) and
Whiit (1971a). The results of Section 3 and 4 generalize the functional central
limit theorems for additive processes on Markov chains [5], [11], [13]—[15],
[30], [32], [33], and their classical central limit theorems [7]—[10], [13], [20],
[21], [25], [26], [28].

The results of Sections 3 and 4 are proved for N < co. Modifications required
for N = oo are discussed in Section 5, where we also discuss continuous time
versions of our results and other generalizations. Finally, in Section 6 an example
due to M. Sreehari is presented which shows that a major assumption in Theorems
3.1 and 3.2 cannot be relaxed.

2. Preliminaries. Let D = D[0, oo), the set of all real-valued functions on
[0, co) which are right-continuous and have left limits everywhere. The topology
we use on D is the J, topology of Stone (1963), which is the extension of Skorohod’s
J, topology on D[0, 1], as discussed in Billingsley (1968). For more details see
Lindvall (1972) and Whitt (1972b). Let D™ denote the Cartesian product of m
copies of D with the product topology. A major tool that we use is the follow-
ing, which is directly from Lemma 4.2 and Corollary 4.1 of Whitt (1972b).

THEOREM 2.1. Suppose Z,*, - .., Z ™ (n = 1)and Z*, ..., Z™ are random ele-
ments of D such that

Q1)  (Z} e Z) o, (2 -, 2" in D™ as n— oo,
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and

(2.2) P[O™,Disc (Z) = ¢] =1,

where Disc (x) denotes the discontinuity set of x € D. Then

(2.3) LI A D A in D as n—oo.

In particular, (2.3) holds if (2.1) holds and Z?, ..., Z™ are independent and all

but one is continuous in probability.

The remainder of this section deals with properties of stable distributions and
stable stochastic processes which we use in proving Theorems 3.1 and 3.2. A
stable distribution with constants (a, 8,4,6),0 < a <2, -1 <<1,6=0
and a any real number, has the characteristic function, Feller (1966) page 542,

(2.4) d(u) = expliau — blu|“[1 4 iB(u/|u|) tan (za/2)]} if a=+1
= exp{iau — blu|[1 + if(u/|u|)(2/7) log |u|]} if a=1.

We call @ and $ the characteristic constants of ¢. They determine the distri-
bution type, page 44 of Feller, as seen in the following (apparently unnoticed)
result, which is evident using (2.4).

PROPOSITION 2.2. Two nondegenerate stable distributions with respective constants
(a, B, a, b) and (a*, B*, a*, b*) are of the same type if and only if a = a* and
p=p*

Recall, Section IX.8 of Feller, that a distribution F belongs to the domain of
attraction of a nondegenerate stable distribution G, if there are location param-
eters a, > 0 and b, such that if &, &,, - .. are independent rv’s with common
distribution F, then G is the limiting distribution of

(2.5) by {Zia e —an}

The characteristic constants « and 3 of G do not depend on the choice of a,’ and
b,. The a is such that {*, y dF(y) ~ x*~“L(x) for some slowly varying function
L, page 303 of Feller. And 8 =0ifa =2,and 8 =2p — 1if0 < « < 2, where

p=1lim,_ {1 — F)}fl — F(x) + F(=x)},

see Theorem 2 on page 546 of Feller. The other constants ¢ and 4 of G, which do
depend on the choice of a, and b,, arealso obtainable from page 546 of Feller.

A random element X of D is called a stable process with constants (a, 8, a, b)
if it has stationary independent increments, is continuous in probability, and
X(1) has a stable distribution with constants (a, 3, a, b). We call « and 3 the
characteristic constants of X. The existence of processes of this sort is noted in
Skorohod (1957), Theorem 14.20 of Breiman (1968), and Liggett (1968); and can
also be derived by Theorem 15.7 of Billingsley (1968). For our next result, let
£, &, - -+ be independent rv’s with a common distribution F which is in the
domain of attraction of a stable distribution with characteristic constants a« and
B. Leta, > 0and b, denote location parameters as in (2.5), and for each n and
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t =0, set

X (1) = b, {0 €, — 1a,},
where [s] denotes the integer part of s. Let { be a random element of D which
has stationary independent increments, is continuous in probability, and is such
that {(1) has the distribution F. For each n = 1 and ¢ = 0, set

Z,(0) = b,7{L(nt) — 1a,} .

THEOREM 2.3. Under the above assumptions, Y, —_Xin D, and Z, —_ X in D,
where X is a stable process with characteristic constants o and 3.

Proor. By elementary calculations one can show that for each ¢, X, () —_ X(¢)
(this is convergence in distribution of rv’s), see Liggett (1968). Then by Theorem
2.7 of Skorohod (1957), X, —_ X in D0, s] for each s = 0, and so by Theorem
3 of Lindvall (1968), X, —_ X in D. The proof of Z, —_ X in D is the same.
The only nontrivial step is in showing that Z,(r) —_ X(f) as n — oo for each ¢.
This follows since

Z,(0) = b,7{L([nt]) — ta,} + b,7{C(nt) — &([n1])} -

b,E([n1]) — 1a,} =2 X.(1) =5 X(1)
and b,~Y{(nt) — {([nt])} —., 0. The latter follows as
P[b,7HE(nt) — C([ne])] > e] = P[b,!fsup {E(5): 0 = s = 1}| > ¢] =0,

since { has stationary independent increments and sup{{(s): 0 < s < 1} < oo
a.s. by page 307 of Breiman (1968).

The above theorem can be generalized, along the lines of Theorem 2 on page
480 of Gikman and Skorohod (1969), to the case where X has stationary inde-
pendent increments. It also appears that multiparameter versions of Theorem
2.3, similar to Theorem 5 of Bickel and Wichura (1971), are obtainable. Our
last preliminary result is a generalization of the property (7) on page 1387 of
Tucker (1968) for stable distributions.

where

ProPOSITION 2.4. Let X', ..., X™ be independent identically distributed stable

processes with constants (a, 8, 0, b). Let p,, - - -, p, be positive real numbers satis-
fying 3™, p,* = 1, and set
(2.6) 7(t) = 2tBext Ym pilogp,  if a=1

Then Y™, p, X' + 7 is a stable process with constants (a, 8, 0, b).

Proor. This followssince the process Y7, p,X* + r hasstationary independent

increments, is continuous in probability, and by an elementary calculation, the
characteristic function of };™, p, X*(1) + r(1) is stable with constants (a, 3, 0, b).

1=1

3. Weak convergence to stable processes. Theorems 3.1 and 3.2 are based
on the following assumptions and notation. Let&,; (1 i< N,j=1,2, .. °)s
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where N < oo, be independent rv’s such that for each i, the variables §,,, &, - - -
have the common distribution F, which is in the domain of attraction of a stable
distribution with characteristic constants a, and 8,. Let « = min {ay, - -+, ay},
and take the F,’s to be subscripted such that if @ < 2, then ‘

a=ar = = oy < Q= - Zay,

and if « = 2, then F,, ..., F, have infinite second moments and F,,, ---, Fy
have finite second moments. Assume that at least one of the F, has an infinite
second moment. This insures that a < 2, or that M =1 when a = 2. The
results of this section do not apply to the case where each F; has a finite second
moment. However, this case is covered in Section 4. Assume also thatif a < 2,
then8 =B, = --. = B,. Thatis, the F, - .-, F, are in the domain of attraction
of stable distributions of the same type, see Proposition 2.2. This assumption
cannot be relaxed either in our results, or in Theorem 2 of Tucker (1968), or in
Theorem 3.1 of Sreehari (1970). See Section 6. The referee pointed out that
Tucker fails to mention this assumption. Because of this assumption we can,
and therefore do, take the location parameters a,(n) and b,(n) for 1 < i < M, to
be such that each of the sums

(3.1) by(m) X516 — a(n)}
converges to the same stable distribution with constants (a, 8, 0, b) for some b.
Letv(n)(1<i< N,n=1,2,...) be positive integer-valued rv’s. No as-

sumptions are made concerning the dependency between these rv’s and the &,;.
Foreachl1 < i< N,n>=1and ¢ >0 let

®,5(1) = v ()

Q1) = m,t
(3.2) XM (1) = by(m)™{ X5 €y — ra(n)

Xo(1) = B, {0 D5 & — 14,

X.() =B, T, Dimoé, — td,)

Y. () = Bu(m) 7 ul(nt]) — nrm(n)},

where
B.(n) =n if 0<a<l
= o(n?) if l<a<2 forsome J< lja
= O(n?) if a=2
r(n)— 7, >0 as n— oo
B, = {31 7 b(n)*}=
(3.3) A, = DX,z ma(n) — g,(a)
4, = DY, vi(mnta(n) — g,(a)
and

(34)  g.(@) = 2fen T, m,b(n) log (x,b(m)B, ) if a =1

=0 lf ail.
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Let Y1, ..., YV denote random elements of D, let § denote the zero function,
and let X denote a stable process with constants (a, §, 0, &) (recall (3.1)). Under
the above assumptions we have the following two results.

THEOREM 3.1. IfY,' —_Y'in D, for each 1 <i < N, where Y' =0 if 0 <
a <1, then X, » X in D.

THEOREM 3.2. If vy(n)/n —p «, for each 1 < i < N, then X, —_ X in D.

Proor oF THEOREM 3.1. We begin by noting some general properties of the
norming constants in X,. It is known (Lemma 5 of Tucker (1968)) that

(3.5) b,(n) ~ nM*L(n)

for some measurable slowly varying function L,. We adopt the definition of
page 1381 of Tucker (1968) for slowly varying functions. This differs slightly
from that on page 269 of Feller. From this and Lemma 1 of Tucker, it follows
that

(3.6) B, ~ n/aW(n)

for some measurable slowly varying function W. Any slowly varying function
L satisfies

(3.7) xL(x) > oo, and x~L(x) —> 0 as x — oo

for any ¢ > 0 (page 302 of Feller). From this we get

(3.8) lim,_, n°B,”* =0 for any ¢ < 1/a .
Our results depend heavily on the property that for i > M

(3.9) lim,_, b,(n)B,"* = 0.

This follows if a < 2 by (3.5)—(3.8), since

n—wo 3

by(m) B, ~ nt*iTVL(n)| W(n) ,
where L,/W isslowly varying and @ < @,. And if @ = 2 then (3.9) follows since
by(m)B,™* = {bi(n)*[m}H{ T30, by(n)’[n}H
and from page 304 of Feller, we know that b,(n)’/n — co or 0, if k < M or
k > M respectively.

We prove X, —_ X in D by using a random time transformation argument
as on page 144 of Billingsley and in Whitt (1972b). Using the notation (3.2),
and letting o denote the composition mapping, we can write
(3.10) Xy = D pmX, o @F + 7, + Xl pu(m)X,' o @

+ 25 Bl (n)B(mntY
where p,(n) = b(n)B,™* and 7r,(f) = tg,(a)B,*. Then our result, X, —»_ Xin D,
will follow by Theorem 5.1 of Billingsley upon showing that

(3.11) T p(mX, o O 7, X in D,
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and that the last two summations in (3.10) converge weakly to the zero function
in D.

We first consider the limiting behavior of X, o ®,*. Under the hypothesis of
Theorem 3.1, ®,' —»_ @' in D, since @, — @' = B(n)n~'Y,' —»_4@ in D by
Theorem 5.1 of Billingsley. By Theorem 2.3 and the fact that {X,’} (1 < i < N)
are independent,

XL o, X% > (XY .-, X% in DV,
where the latter are independent stable processes. Moreover, by our assumption
that F,. .., F, are in the domain of attraction of the same type of stable law
and our choice of a,(n) and b,(n) (1 < i < M) in (3.1), it follows that X*, ..., X¥
are equally distributed stable processes with the same constants (a, 8, 0, b). Since
the ®¢ are constant elements of D, it follows by Theorem 4.4 of Billingsley that

(.12) (XL L 0N Q0 -, 00
S, (XY, e, XY, @, ..., DY) in DWW,
Thus by Corollary 3.1 of Whitt (1972b), and the definitions of X* and @,
(3.13) Xlo® - oy X,V 0o DY) —_ (Xto @, - o0y XV o DY)
=, (TMXY, oo, T VN

We now prove (3.11) by an argument similar to that used in the proof Theorem
2 of Tucker (1968) and Theorem 3.1 of Sreehari (1970). From any subsequence
of integers, select another subsequence n’ such that for each i < M
(3.14) nMep(n') — p; asn’ — oo,

for some 0 < p, < 1. This can be done as 0 < z,;'*p(n) < 1 for each i and n.
These p, satisfy > 2, p,* = 1 since X, 7, p,(n)* = 1 for each n. By (3.14) we
obviously have y,, —_ r in D where 7 is as in (2.6). Then by (3.13) and (3.14),

(.15) (AL o Bhy -, py(H) X 0 O, 7,)
o (ple, ""PMXM’ 7/) in D¥*1 asn — oco.

Since the processes on the right of (3.15) are independent and continuous in
probability it follows by Theorem 2.1 that as n’ — co,

(3.16) L p(n) X 0o O + 7, G DX+ in D.

But the term on the right of (3.16), by Proposition 2.4 is equal in distribution
to X, and so (3.11) holds for the subsequence n’. Thus by Theorem 2.3 of
Billingsley it follows that (3.11) holds in general.

Now consider the second summation in (3.10). This term converges to the
zero function in D by Theorem 5.1 of Billingsley, since for each M < i < N we
have p,(n) — 0 by (3.9), and by (3.13) we have X, ' o @  —_=x*X"in D. It
remains to show that the last summation in (3.10) converges to the zero function
in D. To show this it suffices to show for each 1 < i < N that

(3.17) B,'a,(n),(n)n71Y,} —_ 0 in D as n—oo.
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With no loss in generality we may assume (page 305 of Feller) that the location
parameters a,(n) and b,(n) satisfy

(3.18) nU(b,(n))[by(n)* — 1 : asn-— oo
and
an) =0 if 0<a; <1
(3.19) = nVy(b(n)) if a,=1
= ny, if Il<a, g2,

where p, is the mean of F,,
(3.20) Vix) = §2,tdF(r) and  Uy(x) = §2, 2 dFr).
From (3.19) we see that (3.17) is trivially satisfied for those i with a, < 1. For
those i with &, = 1 we have for any ¢ > 0
(3.21) B, ta(n)py(mn=1Y," = {by(m)B, H{Vi(b(n)[b(n)}Y," ,
(recall 8,(n) = nas a £ a; = 1). The first term in braces in (3.21), when ¢ <
1/a, converges to zero as n — oo by (3.7), since (3.5) and (3.6) imply
bi(n)B, ™t ~ n7VeLy(n)'|W(n),
where L/ W isslowly varying. The second term in braces in (3.21) also converges
to zero as n — oo since x~¢V,(x) — 0 as x — oco. The latter follows since
X7V (x) Z x7 25, [t dF () forx =1

and the last term converges to zero as x — oo, since F; has finite absolute mo-

ments of all orders less than «;, = 1, Lemma 2 on page 545 of Feller. Then since

Y, —,, Y?in D, by assumption, it follows that (3.17) holds for those i with «;, = 1.
Lastly, for those i with | < a, <2

Bﬂ—lai(n)tgi(n)n_lyni = Bn_lﬁi(n)/jiyni :
If « < 2 then (3.17) follows, since B, B,(n) — 0 by (3,3), (3.6) and (3.7). If
a = 2 then (3.17) follows, since (3.18) implies b,(n)*/n — oo for each k < M, and
this in turn implies
B,7By(n) = {Bm)[mHZi m b (m)/n} ™t — 0.
We have shown that (3.17) holds for €ach i, and this completes the proof of
Theorem 3.1.

ProoF oF THEOREM 3.2. Similar to (3.10) we can write
(3:22) X, = DL pmX o Wl 4 7y + Bilua p(m X, o W1,
where W, i(f) = tv(n)/n. The hypothesis v,(n)/n — =, implies, see (17.17) of
Billingsley, that ¥ ' —_ @‘in D[0, 5] for any s > 0; and so ¥,'—_ @°in D.
With this observation in hand, the proof of Theorem 3.2 is the same as that for
Theorem 3.1, excluding the arguments involving (3.17).
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4. More general results. Consider the summation S, in (1.1) with no assump-
tions on the dependency of the &,; and v,(n). For each 1 <i< N, n>1 and
t =0 let

O, (1) = ntv((nr]) D) =t

XM(1) = bi(m)™{ L5 &y — tnay(m)}

Y1) = ai(m)B,{v([nt]) — mz(n)}
4.1) X.() = B,7{EiL D5 €y — tna(n)w(m)}

X4ty = b(n) (DY €y — tmp)

Y, () = B, { X Py — I 2000 pim(n)}

X.(1) = B, (D3l & — mp,m(n)))
where a,(n), b,(n), B,, p,, m(n), =, are constants with z,(n) — =, > 0 and {3,} is
a stochastic process which takes values in {1, --., N}. Let X%, X, v,zi(1<
i < N)and Y denote random elements of D and let § denote the zero functionin D.

THEOREM 4.1. Suppose the following hold.

@) (X5 -, XN, Y0 oo, Y, ) (XY -, XY, YL, oo, YY) in D, where
Xto @, ..., XY o @Y, Y2, ..., Y¥ satisfy condition (2.2).

(b) Foreachl <i <N, b(n)B,”* — r;, and

a(n)B, ' =o(n) if Y0
~ n if Yi=46.
Then
(4.2) X, >, 2N (r(XPo @Y + YY) in D.
THEOREM 4.2. Suppose the following hold.

@) vi(n) = Xk L)

(b) ®, —_ D" inD foreach 1 < i< N

(©) (X5 XN Y,) -, (XY, XY, Y)in DV, where X' o @', ... XV o @Y,
Y satisfy condition (2.2).

(d) Foreach 1 <i< N, b(n)B,™ — r,. Then
(4.3) X, 5, S rXe®)+ Y in D.

These results follow by applying the random time change argument along
with Theorem 2.1, to the respective representations

(4.4) X, = XY {(b(n)B, )X, 0o D, + Y,}
and
(4.5) X’n =y, (bi(n)Bn‘l)(X'”" o CD,,") + Y'n .

Theorem 4.2 is easier to apply than Theorem 4.1 when the v (n) are as in (a)
of Theorem 4.2. For example, if {7,} is a Markov chain or a strictly stationary
process, then there are well-known conditions [4], [11], [30] under which (b) and
(c) of Theorem 4.2 hold. But the establishment of the joint convergence of
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(Y,!, -+, Y,Y), or even of the random variables (Y,(1), - - -, ¥,¥(1)), in these
instances, is much harder. (The author is not aware of any widely used refer-
ences on this.)

Note that Theorem 3.1 is a special case of Theorem 4.1 if each p,(n) in (3.10)
converges as n — co. These p,(n) do not generally converge, see page 1385 of
Tucker (1968). They do converge if each F,(1 < i < N) belongs to the domain
of normal attraction of a stable law with exponent a;, page 547 of Feller, in

which case b,(n) = n"/*.

5. Comments. Our results can be generalized to the case where N = co.
Theorems 4.1 and 4.2 are valid simply under the condition that the sums in (4.2)
and (4.3) exist. Theorems 3.1 and 3.2 would be valid under some additional
assumptions which would guarantee that the 4,, B, and X, are finite, and that
the last two terms in (3.10) and (3.22) converge weakly to the zero function.
These more general results would be based on weak convergence in infinite
product spaces. However no new difficulties are encountered in going from finite
to infinite product spaces. This is due to the fact that a probability measure is
tight on an infinite product space if and only if its marginal distributions are
tight on each coordinate space, see comments on page 40 and Problem 6 on page
41 of Billingsley.

Our results also hold for the continuous time counterpart of S, in (1.1), which
is )1, L(vi(¥)), where £, -- -, {, are random elements of D and Yy, -+, vy are
positive real-valued processes. Simply replace v,([nf]), 3] &,; and 3 ulr g, ;
in (3.2) and (4.1) by v(n?), {,(nt) and {,(v,(nt)), respectively. Also in Theorems
3.1 and 3.2 make the assumption that each ¢, - .-, {, are independent random
elements of D which have stationary independent increments, are continuous in
probability and are such that {,(1), - -, Cy(1) have distributions F,, ..., F, as
described in Section 3. The continuous time result Z, —_ X in D of Theorem
2.3, is used in the proofs. In the latter setting, if {; is independent of y,, then
Li(vi(1)) is a process with conditional stationary independent increments, Serfozo
(1972a).

Results such as ours can also be obtained for multiparameter stochastic
processes of the form

X, (s, 1) = B, Y3, Y Lvafms) Cij(t> — 54,} for se[0, 1], re]o0, 177,

where {;; are D,-valued processes, see Theorem 6 of Bickel and Wichura (1971).
Notice that random time change arguments can be used here. Other types of
results such as functional laws of large numbers and functional laws of the
iterated logarithm, can also be obtained by similar arguments under appropriate
moment conditions [11], [16], [38], [42].

6. An example of two distributions attracted to stable laws but their con-
volution is not. Let F e Z(a, fB) denote that the distribution F is in the domain
of attraction of a stable law with characteristic constants « and 8. The following
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example, related to me by Professor M. Sreehari, shows that one can have an
F, e Z(r, ) and an F,e Z(y, —0) for some y and J, whereas their convolution
F,x Fy,¢ Z(a, B) for any a and B. This implies that our assumption
B, = = B, in Section 3 cannot be relaxed.

Con51der the slowly varying functions ¢,(x) = log x = exp §Z (¢ log f)~*dr and
dq(x) = exp {7 (0,(?)/1) dt for x = e, where

0,(1) = 3/(21og ?) if 6, <tZt,.
= 1/2log ¢) if ¢, ., <t<t,,

and where e = 1, < --. < 1, < ... are chosen so that #,, is the smallest positive
integer x > t,,_, for which ¢,(x)/¢,(x) < %, and 1,,,, is the smallest integer x > t,,
for which 1 < ¢,(x)/¢,(x) < 2. Then there are subsequences k, and m, so that
@y(k,)|$:(k,) — ¢ for some ¢ < %, and ¢,(m,)/¢,(m,) — d for some 1 <d < 2.
Choose F, e Z(y, 0) and F,e Z(y, —0d) as on page 1383 of Tucker (1968),
where for simplicity we take y = } and d = I, such that F,"*(n’¢,(n)x) and
F,"*(n*¢,(n)x) converge as n — oo to stable distributions with respective constants
(3,1,0,1)and (4, — 1,0, 1). Let G,(x) = F,"* « F,"*(n*[¢,(n)? + ¢,(n)?}’x). Then
G, does not converge as n — oo, since the subsequences Gy, and G, converge
to the two different stable distributions with respective constants (3, 8, 0, 1) and
(3, B2, 0, 1), where 8, = (1 — ¢?)/(1 + ¢t) and B, = (1 — d*)/(1 + d*), and ob-
viously 8, # $,. Furthermore, by the convergence of types lemma (page 246 of
Feller) and Proposition 2.2, it follows that F, x F, ¢ Z{(«, p) for any « and B.
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