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A STABLE LOCAL LIMIT THEOREM

By J. MINEKA
Herbert H. Lehman College

Conditions are given which imply that the partial sums of a sequence
of independent integer-valued random variables, suitably normalized, con-
verge in distribution to a stable law of exponent a, 0 < @ < 2, and imply
as well that a strong version of the corresponding local limit theorem holds.

1. Introduction. If {X };,isasequence of independent integer-valued random
variables whose partial sums S, = »;»_, X,, after suitable normalization, converge
in distribution to a stable limit law with exponent @, 0 < a < 2, i.e.,

(1) 1){571,/Bn_~ An <x}_)sz(x),

{4,} and {B,} being sequences of constants, G,(x) being the distribution function
of a stable law, then {X,} are said to satisfy a stable local limit theorem if, in
addition,

(2) limn—mo Bn P{S'n = X} - g(x(x/B'n - A'n) =0

uniformly for all integer x, where g,(x) = (d/dx)G(x). P{-}is, of course, the
product measure defined by the distribution functions {F,(x)} of the sequence.
If such a theorem holds for all sequences {X, ., }i;, then {X,}7, is said to satisfy
a strong stable local limit theorem. Rozanov [5] has shown that if B, — o, a
necessary condition for a strong local limit theorem is that

(A) Tl [max,.,, P{X, = x(mod £)}] =0, forall h >2:

We note that if {X,} satisfies (A), so also does {X,’}, the symmetrization of {X,},
i.e.,, X, = X, — Y, where Y, is independent of X, and has the same distribution.

Stable local limit theorems have been proved by Gnedenko [1] in the identi-
cally distributed case, and by Mitalauskas [3], [4] in the non-identically distri-
buted case. In this paper similar results are obtained under weaker hypotheses
by modifying the methods of [2].

2. Local limit theorem. We employ the notation
Py(x) = P(X, = x), P/(x) = P(X,/ = x),
Pi(f) = 25 e P(x) , (1) = Tz 041) -
Note P//(x) = X Pu(y)Pu(x +)-
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THEOREM. If {X,} satisfies (A) and for some {B,}, B, — o, 0 < a < 2,
(C) Sup,<, P{|X,| > ¢B,} -0, forall ¢ >0,
(Cy) S Fu(x) = (¢, B,* + e, (x)|x|™*, for x <0, and
Sia(l = F(¥) = (6B, + e(x)x|™*, for x>0,
where ¢,, ¢, = 0, ¢, + ¢, > 0, and e, (B, x)B,~ — 0 for any x,
(Cy) 3{L,} satisfying n(L,/B,)" — 0,
p=1 for a<l,p=2 for a=>1,

and such that max, ., |e,(x)|B,~* is uniformly bounded, and, if a < 1, approaches
zero as n — co,

(C) 3{M,} and L such that, setting Q, = }z_, P{0 < |X,/| = L},

(a) maxy, ., |e,(x) + e,(—x)[B,™* < (1 — d)(e: + ¢) 0>0,
(a,) M, logn/Q, — 0,

and either

(ay) inf,_, P{|X,| < M,} = U >0, forall n,
or

(ay"") SUP,.<p SUPy, <0 [ §jaice X dF(x)] — 0 as n— oo,

then {X,} satisfies a strong local limit theorem of the form (2), i.e.,
limn_m Bn P{Sn = X} — ga(x/Bn —_ An) =0

uniformly in integer x, where {A,} is defined by

A, =B, 'Yy EX, if a>1
A4, =B, Y Slzl<r8n x dF(x) if a=1
An =0 . lf a < 1

and where g,(x) is determined by
O(t) = § e*7g,(x) dx = exp {ir(t)t + ¢, {25 (€ — 1)|x|*"1dx

+ ¢ §2, (e — 1 — itx)|x|~* 1 dx

+ ¢ §5 (e — 1 — itx)x™*tdx 4 ¢, {7 (e — 1)x~*"'dx},
in which y(t) = 0 when a = 1, and y(r) = (¢, — ¢;)at’~*/l — a otherwise.

REMARKS. No requirement is made that B, be of strict order of magnitude

nv« as in [3], [4]. Of course, hypothesis (a,) implies the bound B, < O(n"*M,,).
The most unsatisfactory hypothesis is the alternative (a;') or (a;””) which places
a uniform restriction on the distributions of the individual X,. It seems quite

difficult to remove.
A more standard form for the characteristic function ¢(¢) is

o(t) = explir’t — clt]o[1 + iBt/|| tan wa/2]) if a1, or
o(t) = expliy't — c|t*[1 + 2itf/x|t| - log |¢]]} if a=1,
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where 8 = (¢, — ¢,)/(¢; + ¢;) and ¢ = — (¢, + ¢,)I(a), I(a) being a constant de-
pending on a. We use the nonstandard form to facilitate the application of
Gnedenko’s theorem.

If 1 < a < 2,setting L, = M, = n', the following simplified result is obtained
from the theorem:

CoroLLARY. If {X,} satisfies (A), (C,), and (C,) holds with 1 < a < 2,

(D)) B, . nnfF=A4>0, where 8> 1,
(D,) inf, min, ., P{X, + x, |X,| < L} > 0, and
(Ds) maan<z len(x) + en(_x)an_a é (1 - 5)((:1 + cz) ’

where y < min (4,8 —3%),d >0,
then {X,} satisfies a strong local limit theorem of the form (2).
An analogous result can be given in the case 0 < a < 1.

Proor oF THEOREM. (C,) is simply the natural requirement that the random
variables {X,/B,} be infinitesimal. Verifying the conditions of Gnedenko’s theo-
rem ([1] page 124), we first establish that the relevant integral limit theorem (1)
is satisfied. It is obvious that (C,) implies that for x < 0,

(3) 2k Fu(xB,) — ¢|x|™*
and a similar result for x > 0.
Next we must show

4 lim,_ lim, o B, 70 {§a<n,e X' dFu(X) — (§51<5, X dF ()"} = 0
for which it suffices that ‘
(%) limsup,_., B,™* 31i_1 Yiai<n,e X' dF(x) — 0 as ¢—0.
For the sum of the integrals over the positive range, we have
(6) B, Y $on X dF(x) + B, 2k, (n x* dFy(x)
= nB,’L,* + B,7[ X X(Fi(x) — D]
+ B, § 2xi(c, B o+ e,(x)) dx .

The negative of the second term is equal to

B, [~ L, (1B, + €(L,)) + (B}~ (B, + €,(¢B,))]

= —(L,/B,)"""(¢s + ex(L,)B, %) + €7%(c2 + €,(¢B,)B, ™)

which by (Cy) is o(1) + &*%(c; + o(1)).
The third term in (6) is bounded by

2B,

—

(CZBna + maan<z [en(x)[)((eBn)z—“ - an_a)

2

=
= 5

& (¢, + max; ., le (x)|B,” ) =

=%(c, + O(1)).
2 —«a o
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Treating the integrals over the negative range similarly, since ¢ is arbitrary, (5)
follows.

We have now only to establish the value of the constants 4, in (1). Ifa > 1,
it suffices to take 4, = ES,/B,, since if EX, = 0, for all n, then .

B, 2 Smgrsn xdF(x) = B, 1 SIzI>rB,n x dF(x)

which, for a fixed value of = approaches ((c, — ¢,)a/(a — 1))r'~* by (C,) and (C,).
If « = 1, we take, for an arbitrary r, the constants A,() given by Gnedenko’s
theorem, i.e., 4,(c) = B, Ti.; §isi<cn, X dF(X).
If a < 1, we have
B, 30\ x dF (x)
= §r o+ §i0
= B, X (g x dFy(x)
+ B, [Lu(¢e; B, + e, (L)L, — ©B,(¢c, B, + e,(cB,))(B,) "]
+ B,77[(cB,) " — L *]1)(1 — a) + B, {iPne,(x)x~"dx
and by (C;) this is equal to the sum of ¢,7'~*a/(1 — a) and terms which ap-
proach zero as n— co. A similar treatment of the integral over the negative

range gives us the value of the constant y(r), concluding the proof of the integral
limit theorem.

Therefore, for any interval (— A, A) of values of ¢,

(7 e g (1/B,) — ¢(t)
uniformly. By the Fourier inversion formula,
2z[B, P(S, = x} — 9(x/B, — 4,)]
= B 2. g (0e7te di — {7 gl)e oA dr
= [Yiusa Qult[B,)e™"Pndt — § 1y P(E)e™ e/ Pn*tint dr]
= Supa PB4 dt + B, § 45 cusnm, Pa(t)e™ dt
+ B'n SB/Mn<It|§C ¢n(t)e—itz dt + Bn SC<ItI§7r sb'n(t)e_it:c dt
=L+ L+ I, 1+ 1.
By (7), for any fixed 4, |/;| can be made arbitrarily small for n sufficiently large.

Since ¢(t) is absolutely integrable, |I,| < ¢ if 4 is sufficiently large.
To bound /7, we use the fact that

(8) o) = exp #{len() — 1} = exp 3{ X, (cos tx — 1)P,/(x)},

and the bounds 1 —cosu > b, >0 for n/2R < |u| < (4R — 1)x/2R and
1 — cosu = u?[6 for |u| < 2. ,
If (a') holds, setting 4, = (z/R, (2R — 1)x/R), then for || < n/2RM,, k < n,

1 — Igok(t)lz = bR Z|zt|eA23 Pk,(x) = bR Zlyt|<z/2R Pk(y) Z|zz|eAR Pk(x)
= Ub, P{[iX,] € 45)
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so that by (a,), if R is taken sufficiently large

©) zamuwmmmzUmm+@wmw(wwr—a—®@§¥%g

g c/B”altla

where ¢’ > 0 does not depend on n, or ¢.

If (a,”) holds, let G (t) = X <o Pu(x)s E(t) = X n<iy XPu(x), 0,(f) =
Diai<ue X*Py(x). We prove (9) by using the inequalities

Z|z|<2/|t| x2Pk,(x) = Gk(t)ak(t) - (Ek(t))2 = 0
from which it follows that
(10) = euF 2 § Zsuca (x0)'P)/(x) — £[6[G(1)(0,(1) — au(R1))
— (E((n) — Ey(RO)(EW(t) + Ey(RD))]
By (a,”), for arbitrary ¢ > 0, if n is sufficiently large, k < n, |t| < 1/RM,,
(11) E(t) + E,(Rt) < et
and from (a,), for |t| < 1/RM,,
(¢ + ¢)B,*((2 — O)(R[t])* — aJr]") = Zi-1 [Gullr]) — Gu(R|1])]
= (er + ) B (O(R|t))" — (2 — 9)le|")
= ¢/ B,i|"

and 37, G () = n — 2(c, + ¢,)B, |t|* = n — ¢"B,*|t]*, ¢/ being a constant
dependent on R.

Let 1,(f) = {k/k < n, G,(t) < }}. Since the cardinality of this set is bounded
by 2¢”B,*|t|*, if R is chosen so that ¢’ > 4c”,

Zeer,n Oullf) — Gu(R[f]) = 2¢”B,"[¢]" .
Therefore,
(12) X (= leuOF) = £/6{3(RN™ Lo, [Gu((t]) — Gu(R,[1])]
— a7 17 2L [Gu(lf) — Gu(RITDT}
Z cllanaltla
if ¢ is chosen sufficiently small in (11). It follows, by either (9) or (12) that, for
an appropriate choice of B, and c,
|| = B, Su/p,<itisn/m, eXP{—cB, |t} dt < §, oy €7 dt

which can be made small by choice of 4.
If |74 < 7/2L, then

leuF < 1 — PO < X, < L} + PO < X, < L)1 — 13),

! Subtract the inequality Gi(R|¢|)ox(R|t|) — (Ex(R|t]))? = O from the previous inequality.
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so that, setting C = /2L,
|I4| é 2’Bn Sg/Mn exp{_ Qn t2/6} dt é Bn/Qni SOB?Q«,,‘}/M” e—u2/6 du

= o, 1,150, oxp { 5% |

n

which by (a,), for any fixed B, approaches zero as n — oo, since B, = O(ntM,).

|Z,] is bounded by using the procedure of [2]: let {t,} be the set of points in
[C, 7] of the form 24/j, h and j relatively prime and 2 < j < L. Let {A;} be the
intervals covering [C, ] of the form A, = [$(¢t,_, + 1), 3(t, + t;,1)], {#;} indexed
in increasing order, and A, = [C, §(¢; + 1,)], A, = [¥(tn_; + ta), 7]. For each
A, write u = t — t; and

B, SAi ¢ (1) dt = SIuIéD/B.,, + SD/B,,<|uI§E/Mn + SE/M,,<|u|,u+tieAi .

The second and third integrals can be bounded in the same manner as /;and J,.
A bound on the first integral is established by use of condition (A). Details are
included in [2].
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