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NEAREST RANDOM VARIABLES WITH
GIVEN DISTRIBUTIONS .

By GEzA ScHAY
University of Massachusetts at Boston

A new proof, based on the duality theorem of linear programming, is
given of a theorem of V. Strassen, which states essentially that the mini-
mum distance between random variables with given distributions equals
the Prokhorov distance of their distributions.

In 1965 V. Strassen [5] proved that for any two Borel probability measures
¢ and v on a complete separable metric space S with metric d, there is a
Borel probability measure 2 on S x S with ¢ and v as marginals, such that
min {e: A{d(x, y) > ¢} < ¢} equals the Lévy-Prokhorov distance of x and ». If
we introduce a probability space and S-valued random variables, then this can
be restated as saying that there exist nearest random variables distributed ac-
cording to ¢ and v, and their (Ky Fan) distance equals the Prokhorov distance
of their distributions.

Strassen’s proof, however, is a non-constructive one. In 1968 R. M. Dudley
[1] improved Strassen’s result, and gave a construction for the approximation
of random variables with minimum distance. His proof is based on some clever
and involved mappings and combinatorial arguments.

In this paper we give a simple construction based on approximating ¢ and v
by measures on finite sets and applying the duality theorem of linear program-
ming to them.

As in Dudley’s paper one can obtain the minimum distance between random
variables X and Y distributed respectively according to p and v in two steps:
by finding first

B(a) = inf{B: 8 = Pr (d(X, Y) > a)} for 0<agl,

where the infimum is taken over all X and Y distributed according to p and v;
and then finding inf{a: f(a) < a}. Now f(a) can also be obtained by finding
a joint distribution for X and Y with the given marginals, which maximize the
probability of (X, Y) falling into the diagonal strip given by d(x, y) < a. If one
writes this out for X and Y distributed on a finite set, then this becomes a linear
programming problem, the dual of which happens to be closely related to the
Prokhorov distance of the distributions of X and Y, as will be seen below.

Let x,, i = 1,2, ... be a dense sequence in a separable metric space S, let n
be any positive integer, and P and Q probability measures on the finite set
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S, ={x;:i=1,2,...,n}). We shall write p, for P{x;} and ¢, for Q{x;}, and
seek appropriate joint probabilities x,; with these as marginals. Also, for any
F c S,, we shall use the notation

F, ' = {x,e8,: d(x;, x;) £ a forsome x;eF}.
Then we have the following

THEOREM 1. Given any a = 0. Let {1,2, - .., n} be denoted by I, and let
) Bu(a) =1 —max > d;;x;;,

i,5€l

where d;; = 1 if d(x,, x;) < a, and is 0 otherwise; and the maximum is taken over
all x,; subject to the constraints
2) Dierdi;x;; < p, foreach iel, and

Dierdiixi; < q; foreach jel.
Then
(3) Ba(@) = maxpcs, [P(F) — Q(F,)]

= inf{8: P(F) £ Q(F,*)) + B forall FCS,}.

Proor. By the duality theorem of linear programming (see e.g., [2] page
320, or for a summary [3] pages 70-73), the value of the maximum in (1) equals
the value of the minimum in a dual problem, which in our case is easily seen
to be that of finding u, and v, fori =1, 2, - . -, n, that solve
(4) min 3,e; (P + 4:,)
subject to the constraints
®) u,v; 20,u, +v;, >d,; forall i, jel.

Let us substitute w, = 1 — u;,. Then the minimum in (4) becomes

(6) 1 —max 3., (piw; — q,)
with
©) v, 20,0, =2d; —1)+w,w, <1 forall i,jel.

We may assume w; > 0, since if any one of the w; were negative, then it could
be replaced by 0 without violating the constraints, and that would increase the
sum whose maximum we seek. Similarly, we may assume v; < 1. These con-
straints describe half-spaces in 2n dimensions, which intersect in a convex poly-
hedron contained in the “unit cube.” It is well known that a solution to such
an extremum problem is always given by the coordinates of a vertex of this
polyhedron. (Indeed, the level surfaces of a linear function are parallel planes,
and the one with the “highest level” among those that intersect the polyhedron
must obviously contain a vertex.) Now the coordinates of the vertices of our
polyhedron are solutions of sets of 2n simultaneous equations obtained by
replacing the inequalities by equalities in (7) and in w, > O and v; < 1. Itis
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easy to see that for all such solutions, that is, for all vertices, each v; and w; is
either 0 or 1, Now if w, = 1 for all i with x;, in some F c S,, and w, = 0 other-
wise, then the second set of inequalities in (7) shows that v; = 1 forall je I for
which x; € F,*1. Hence the maximum in (6) equals the maximum in (3). The
second equality in (3) is trivial, so the theorem is proved.

Now we want to consider arbitrary Borel probability measures 1 and v on S.
We write, for any F C S, F*1 = {xe S: d(x, F) < a}, and we change our no-
tations P and Qto P, and Q,. Also, we let P,* and Q,* denote the Borel prob-
ability measures on S whose restrictions to S, are P, and Q,, and let 4, denote
the Borel probability measure on S, whose restriction to S, x S, is defined by
the optimal x,;, that is, for any Borel set T < S x S, 4,(T) = >} 2, X;;-

With these notations we have

THEOREM 2. If the separable metric space S is complete,® then for any Borel
probability measures ¢ and v on S, we can find P,* and Q,* forn =1,2, ...,
converging weakly to pr and v. If the corresponding f,(a) and 4, are constructed as
above, then there exists a subsequence 2, of the 4, which converges weakly to some
Borel probability measure 4 on S x S, and we have

(8) B(a) = lim,_,, Bu(@) = A(x, y): d(x, y) > a}
= inf{8: w(F) < v(F*)) 4 B for all Borel sets F C S}.

Proor. This result and its proof are similar to those of Dudley’s Theorem 2.
The main difference is that our approximating 4, are constructed differently,
and do not have the same marginals for each n except in trivial cases.

Due to the assumed completeness of S (see [6] page 202) for any 6 > O there
is a compact K C S such that

©) WS —K) <oz,  wS—K) <o,
and we can choose P, * and Q,* converging to x and v such that also
(10) P.*(S — K) < d/2 and Q,%(S — K) < 92
hold for each n. Then obviously

(11) (S x §) — (Kx K)) < 0

for each n.

Thus the sequence 4, is uniformly tight, and so it has a subsequence such that
4,, — 4 weakly for some Borel probability measure 2 on § x S. The relation
(8) follows easily from (3) and Theorem 1.2 of [4].
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