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A NOTE ON THE STRONG CONVERGENCE OF ¢-ALGEBRAS

By HirokicHI Kupo
Osaka City University

A quantity § |E 5 f| dP (or equivalently § |u — P(4: &7)|dP,0 < u < 1)
associated with a g-algebra <7 is shown to act as a criterion for a type of
convergence of g-algebras. This quantity also defines an ordering of o-
algebras, so that upper and lower limits can be defined in terms of this
quantity. Another criterion for the convergence of s-algebras is described
based on the existence of these limits.

1. Introduction. The purpose of this article is to establish a parallelism, with
respect to convergence and ordering, between a c-algebra &% and the L-norm
§ |E_, f| dP of conditional expectation E_, f, given <7, of every bounded function
f. The convergence of these quantities § |E_, f| dP was used, instead of the strong
convergence of c-algebras (see [5] IV.3.2, page 124), by the author in his pre-
vious article [3] in an application to asymptotic theory in statistics. In Section
2, we shall show the equivalence of the (strong) convergence of s-algebras <z,
to that of the quantities § |E , f|dP for every bounded f, and to the convergence
of these quantities for merely every f of the form f =u — I, with0 < u < 1
and a measurable set 4. In Section 3, we concern ourselves with the relation-
ship between the inclusion ordering of s-algebras <% and the magnitude ordering
of the quantities § |E , f| dP; as a consequence of this discussion upper and lower
limits of c-algebras naturally come to be introduced. The existence of these
limits is shown and another condition for the strong convergence of £z, is given;
namely: lim sup <%, = lim inf <Z.

2. Conditions equivalent to strong convergence. Let (X, o7, P) be a prob-
ability space consisting of a set X, a g-algebra .27 of subsets of X and a probability
measure P on .%7. Throughout this paper all sub-g-algebras of .9 are assumed
to be complete, that is, to contain all sets in % of P-measure zero; they will be
referred to simply as “g-algebras”. These o-algebras are denoted by script letters
B, &, ..., etc. The conditional expectation E_ f, given a g-algebra B, is
given, by definition, by the Radon-Nikodym derivative, on <%, of the measure
{z fdP, Be <7, with respect to P. In particular, if f is the indicator function
I, of a set A(e. ), then E_ f is called the conditional probability of A, given
%, and denoted by P(4: <7). In the sequel, an integral sign without any affix
will be understood to denote integration over the whole space X.

We shall begin by establishing some lemmas which will be needed later.
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LeEMMA 2.1. Let <8 and & be two g-algeblas and u a real between 0 and 1. For
any C in & we have
(2.1) 2inf,. , {(1 — u)P(C — B) 4+ uP(B — C)} .
=§|lu— PC:€)dP — § |u— P(C: <) dP.

Proor. Since (1 —u)P(C—B)+uP(B—C) = (1—u)P(C)+§, (u—P(C: %)) dP
for any B e &, the left-hand side of (2.1) equals

2.2) 2(1 — u)P(C) + 2 §,- (u — P(C: 7)) dP

with B~ = {x: u < P(C: &)}. Denote by H and K the values of the integrals
of a function u — P(C: %) over domains B~ and X — B~, respectively, with
respect to P. It is easily verified that H + K=u — P(C) and K — H =
§ |u — P(C: &)| dP, and hence

(2.3) 2H=u— P(C) — § |u — P(C: &Z)|dP.
Replacing the integral part of (2.2) by (2.3), the left-hand side of (2.1) equals
u+ (1 —2u)P(C) — §|u— P(C: Z)|dP.

Since P(C:%)=1, a.e., on C and =0, a.e., on X —C, we have
§|lu— P(C: €)dP =u+ (1 —2u)P(C). Thus (2.1) has been obtained for
every Ce &

LemMA 2.2, Let{<8,: n =0, 1,2, ...} be an arbitrary sequence of g-algebras
and u an arbitrary real between 0 and 1. If B is a member of <%, satisfying

(2.4) lim,_ ., §|u— P(B: &Z,)|dP =\ |u — P(B: <%)|dP,
then we have

(2.5) lim, .z E, fdP =, E, fdP

for any bounded .S7-measurable function f.

Proor. Let B, be an arbitrary member of <z, n = 1,2, .... If fis bounded

by M, then

N5, Ep,fdP — Sz E, fdP| = |§s, fdP — §, fdP| < MP(B, A B),
and

§,E, fdP —§, E, fdP| < .., E., fdP < MP(B, A B),

where A denotes the symmetric difference operation. Therefore

|§BEandP — SBEﬂofdPl < 2MP(B A B,)

< 2M{(1 — w)P(B — B,) + uP(B, — B)},

where M, = M max {u~, (1 — u)™'}. Since B, is arbitrary in <7, it follows from
Lemma 2.1 that

S0 B fdP — V5 E., fdP| < M{§|u — P(B: )| dP — §|u — P(B: 5,)|dP}.
The last inequality shows that (2.4) implies (2.5).
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LemMa 2.3. Let {<Z,: n=0,1,2, ...} be a sequence of g-algebras. Let u bea
given real between 0 and 1. If (2.4) holds for every B in 5, then for any bounded
7-measurable f

lim su lim su J
(lim s § [, f14P = § 1.1, 14P + 2 (jim inf ) $re o, /1P

where B, = {x: E_, <0} forn=0,1,2, ...

ProoF. Since
SIE, fldP=SE, fdP —2§, E, fdP
:5fdP~2§BnE,MfdP, n=0,1,2,...,

we have
(2.6) SIE,, fldP = § |E, fldP + 2K, ,
where
K,L:SBOEQOfdP—sB"EandP, or
(2.7) Ky =S5, (Esof — E5, /) AP + Ns,05, [E, f1 4P
Since (2.5) with B = B, follows from our assumption and Lemma 2.2, (2.7) yields
lim su lim su
(2-3) <1im inf ) K. = <lim inf ) $o,00, 1B, f14P -

By (2.6) and (2.8) we have our desired result.
THEOREM 2.1. The following three statements are equivalent to each other:
(i) P(A: &Z,) converges to P(A: <&y in probability for.any A in 7.
(ii) lim, . §|E, fldP =§|E, f|dP for any bounded S7-measurable func-
tion f.
(iliy For any real u between 0 and 1 and any A in &7, the integral
§ |u— P(A: )| dP converges to § |u — P(A: )| dP as n— oo.

PROOF. Since the convergence of P(A: <Z,) to P(A: &%) in probability for
any A4 in .o/ yields the L'-convergence of E , fto E, f for any bounded .o/~
measurable f (see Neveu [5]), the statement (ii) above is implied by statement
(i), due to the inequality: |§ |E_, f|dP — §|E, fldP| < SI|E, f— E f|dP.
Statement (iii) follows directly from statement (ii) by taking f = u — /,. Assume
now that statement (iii) holds. From Lemma 2.3 it follows that

v — P(A: B)|dP = § |v — P(A: <5)| dP
+ 21im, . § 5 an, [0 — (A1 25,)] dP

for every v in (0, 1), where B, = B,(v) = {x: P(4: &%) > v}forn =10,1,2,.--
Comparing this equation with statement (iii), we get '

(2.9) lim,_, SBn(v)ABO(v) [v — P(A: &4,)|dP =0.

lim

—

Let ¢ be a positive number and take a set S,(v,¢) = {x: P(4: &) > v and
P(A: B)<v—eU{x: P(4: ) < vand P(A: &5,) > v + ¢} for every v in
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(0, I)and e > 0. Obviously we have S, (v, ¢) C B,(v) A B,(v), and s0 eP(S, (2, ¢)) <
S0 0 — P(A )| dP < §y () apy0 [V — P(A: 25)| dP. Therefore it follows
from (2.9) that

(2.10)" lim, . P(S,(v,¢)) = 0.

Let k be an arbitrary positive integer. Since

B | i1
X1 |P(A: 28) — P(A: o2, _}c 3@—1571(_,&),
fee P o) = Pz > o e U = o
it follows from (2.10) that

lim, . P<{x: (P(A: 8 — P(A: )| > %})

lim, S P<Sn <L, i)) ~0;
2% 2k

that is to say, P(A: 2s,) converges to P(A: <4,) in probability.

I\

REMARK 2.1. According to Neveu [5], {--7,} is said to converge to =7, strongly
if statement (i) of Theorem 2.1 holds. Hence, the other statements of Theorem
2.1 may be regarded as equivalent definitions of strong convergence. The second
of these, statement (ii), which is based on the quantity § |E | /| dP associated
with a ¢-algebra ..~ is suitable for generalization of the concept of limit, as is
seen in the next section. The third, statement (iii), is more intuitive than the
others. When ./ is regarded as a metric space equipped with a distance
P(AN B), every v-algebra is a closed subset of .. and d(4, :#') = inf,, , P(AAB)
denotes the distance of a point 4 from a closed set 4. In this geometrical setup,
a new concept of convergence of g-algebras is introduced as follows: a sequence
{4} converges to .4 “in d-sense”, if d(A4, 25) converges to d(A, £2), as
n— oo, for every Ain ../, Since d(A4, +#) = 5 — { |} — P(A: £7)| dP, accord-
ing to Lemma 2.1, the convergence of {..#,} to <4, in d-sense is equivalent to
lim, ., §|3— P(4: 25)dP = { |} — P(A: 24)| dP. Therefore it follows from
Theorem 2.1 that convergence in d-sense is weaker than strong convergence.
The pseudometric recently introduced by Boylan [1] is closely related to con-
vergence in d-sense.

3. Existence of the upper and lower limits. In this section we are mainly
concerned with the monotonicity of the'expression § |E , f| dP pertaining to a
g-algebra .2, This property is given in the following

THEOREM 3.1. § |E, f|dP < § |E , f| dP holds for every bounded . -~ -measurable
Jifand only if < C .o

Proor. 1f ~" ..~ then by Jensen's inequality we have
VIE, f1dP =S E|E, fldP = §|E . E_ fldP =I|E. [f|dP.

Conversely, suppose that § |E_. f|dP < § |E , f| dP, and take a set C in '«.". Put-
ting f= 4 — 1, wehave L = {|§ — P(C: «)|dP < § |} — P(C: =£)|dP < }.
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Hence P(C: &%) =0or 1, a.e., on X. Since &7 is complete, C belongs to <7,
which completes the proof.

DEFINITION 3.1. A g-algebra &7 is called the lower limit of {7}, and denoted
by P-liminf &7, if

(a) <& = &7, satisfies
(3.1) liminf, ., § |E, f|dP=§|E, f|dP

for every bounded .%/~measurable f, and
(b) any g-algebra <% satisfying (3.1) is contained in Z%,.

DEFrINITION 3.2. A g-algebra <7 is called the upper limit of { <7}, and denoted
by P-lim sup <7, if
(a) & = <z, satisfies

(3:2) limsup, ., § |E,,, f|dP < § |E., | dP

for every bounded .%~measurable f, and
(b) any c-algebra 4 satisfying (3.2) contains <% as its subset.

THEOREM 3.2. For any sequence {<5,} of-algebras, the class of sets
by ={Ae &7 lim,_, infy. , P(4 A B) = 0}
is the lower limit of {<7,}.
Proor. From the inequalities

. P((A, N A)) A (By 0 By)) < P(A, A B) + P(A, A By)
an

P((A, U Ay) A (B, U B))) = P(Al A B) + P(A4, A Bz) ’
for any sets 4,, 4,, B, and B, in .27 it follows directly that 4, € <%, and 4, ¢ <5,
imply 4, N 4,e€ &%, and 4, U 4,¢€ <5, Suppose that B,, n = 1,2, ..., are in
5, and take

B = U7 B, and B = Ui B,.

Let ¢ be a given positive number. There is a positive integer m such that
P(B A B,) < ¢/2. Since B, is in <% as just shown, there are a positive integer
N and a set C, in <7, for each n = N such that P(C, A B,,,) < ¢/2. Hence
inf, ., P(BAB,)<PBAC,)Z PBAB,,) + P(B., AC,) <ce for each
n= N. Since ¢ is arbitrary, we have ‘Be <%, Thus, <%, is closed under the
formation of countable unions. Since <% is also closed under the formation of
complements, %, is a g-algebra. Next we shall show that &7 = <7, satisfies (3.1).
According to Lemma 2.1, any set B in <% satisfies lim,_, § |4 — P(B: <2,)| dP =
§ |4 — P(B: 5)| dP. Therefore, by Lemma 2.3, (3.1) holds with. &' = .
Lastly, we shall show that a g-algebra <#'satisfying (3.1) is a subset of <%,. Sup-
pose that <% satisfies (3.1) and B is a member of <5, Taking f = 1 — I, in (3.1),
we have { > limsup, ., § |3 — P(B: £%,)|dP = liminf __§ |} — P(B: <5,)|dP =
§13—P(B: )| dP={|3—1I;|dP=%. Thuswehavelim,__ §|41— P(B: &,)|dP=1,
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that is, by Lemma 2.1, lim,_,, inf 5,ew, P(B A B)=0. Thus we have B¢ <3,
which completes the proof.

Now we shall proceed to establish the existence of the upper limit of ZZ,.
Lemma 3.1, If a g-algebra <7 satisfies (3.2), then we have

limsup, ... § |[E, E_ f|dP =limsup, . §|E, f|dP.
Proor. Replacing fin (3.2) by E_, f — f, we have

limsup, . § |E; (B, f— )dP < § |E5(Es f— [f)|dP
= |E§?Eﬂf— Eﬂf] dp

=S\|E,f—E_f|ldP=0.
Therefore,

[lim sup,, ., § |EﬂnEgZ, fldP — limsup,_,, § |Eemf| dP|
<limsup, . |E; (E, f—f)|dP =0,

which completes the proof.
LemMMA 3.2. Denote by U the family of all o-algebras <% satisfying (3.2). Then

(i) if < and & are members of U, so is & N &,
(i) if FeUand <6 C &, then e U.

Proor. The statement (ii) is clear from Theorem 3.1. To prove (i), let <&
and ~” be members of U. We shall verify by mathematical induction that

(3-3) limsup,., § |Eg, fldP = § [(Es E.)"f| dP

form =1,2,.... Replacing f in (3.2) by E_ f, and applying Lemma 3.1, we can
easily obtain (3.3) for m = 1. Suppose that (3.3) holds for some m. Replacing
fin(3.3)by E_ E_ fand applying Lemma 3.1 twice, we get { |(E_, E_)""'f|dP =
limsup, .. §|E, EE, fldP=limsup,_ ., §|E, E. f|dP=limsup, . §|E, f|dP.
Thus (3.3) has been proved for all m. Now we shall prove that &&# n < e U.
Since a bounded .“-measurable function belongs to L*(X, %7, P), the operator
E _, is regarded as the projection of L*(X, %7, P) into itself. It is well known

that (E_, E_)"f converges to E_, .. f in the L’-sense as m — co (see [2; Theorem
3]). Therefore by the Schwartz inequality,

limm—wo [S I(Eﬂ E?f)mfl dp — S |Eﬁn%’f| dPI
= limm—m S |(Eg E?)mf— E@n?f' dp
< lim, o (§ (Eg E)"f — Egoe fIPdP)}- 1 =0.

Hence, from (3.3) it follows that limsup,_,, § |E;,_f|dP<lim,, . S|(E E.)"f|dP=
§ |E_ .. f|dP, which shows that <& n "¢ U. '

THEOREM 3.3. The upper limit of {<5,} exists, whatever the sequence {<Z,} may be.

Proor. Let {<Z,: y eI'} be a monotone nonascending generalized sequence
of elements of U. Since the generalized limit of £;_f in probability exists and
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coincides with E . f, #* = (,.r Z,, for every bounded .5%7~measurable f (see
[5] page 124), <Z* = (,.r <7, belongs to U. Therefore, by Zorn’s lemma, there
is a minimal member <%, in U. If it were not the smallest member in U, then
we could choose a g-algebra & in U such that <&, n Z° # £%,. By Lemma 3.2,
however, &, N & ¢ U, which contradicts the assumption that <% is minimal in
U. Thus &%, must be the smallest in U.

THEOREM 3.4. For any sequence {<5,} of g-algebras, we have

P-lim inf,_, s

%, C P-limsup,_,, %,

where the sign “C” is replaced by the equality sign if and only if {8} is strongly
convergent. In this case P-lim inf <7, is the strong limit of {<Z,}.

The proof is direct from the definitions of the upper and lower limits of {<Z,}.
We shall now give an example of a case in which

P-lim sup &%, # P-liminf &7, .

ExAMPLE 3.1. Take an interval X = [0. 1) and the family .% of all Borel sets
in X. Let P be a probability measure on . defined by P(A4) = §(|4| + 1,(0))
for A € o7, where || stands for Lebesgue measure. Let 0.x,x, - - - be the binary
expansion of an x € [0, 1); in particular, 0=0.000- - .. Take a set B, ={x: x,=0}
and consider the complete g-algebra <7, generated by {X, ¢, B,, X — B,}. Note
that there is no ambiguity in defining <7, because B, is determined except for
a set of Lebesgue measure zero. Define probability distribution functions F, by
F,x)=0for x <0 =2§; pndx for0 =x=<1; = 1 for x > 1, for n =
1,2, ... From the fact that the family C[0, 1] of continuous functions on [0, 1]
is dense in L0, 1] in the L'-sense, for any given bounded measurable function
f on [0, 1] and any given ¢ > O there is an element g in C[O0, 1] such that
{s|f — 9l dx < ¢ and consequently §|f — g| dF, < 2¢ for every n. Therefore
wehave |§ fdF, — § fdF| < §|f — g|dF, + |{ gdF, — § gdF| + §|f — g|dF <
3¢ + |§ g dF, — § g dF|, where F is the probability distribution function of the
uniform distribution on [0, 1]. Since lim,_,, F,(x) = F(x), by the Helly-Bray
theorem (see [4]) we have lim,_,, § g dF, = § g dF, and hence lim,__, |§ fdF, —
§ fdF| < 3e. Since ¢ is arbitrary, we have lim,_,, {, f(x)dx = }lim, . § fdF, =
1 §8 f(x) dx. Similarly, lim,_, §x_p f(x)dx = 3 {; f(x) dx.

By a simple calculation, we get E_, f = ¥{§,_f(x)dx + f(O)}/(5 + })forxe B,
and = } §,_,, f(x)dx[} for x¢ B,. Therefore we have

lim, o, § |E,, f|dP = }lim, ., §5, fdx + fO)] + [lim, . §x— 5, fdX]
= 31/(0) + & 5 f1x) dx| + 4[5 f(x) dx] .
Take } — I, for fin the above expression of lim § |E, f|dP, where E is a measur-
able subset of [0, 1]. Since {|3 — 27,(0) — |E|| + |4 — |E||} = % if and only if
E = X or §(P-a.e.), by Theorem 3.2 and Lemma 2.1 we have P-lim inf &, =
{X, 8}, and hence §|E;.iniac 0, f|dP = }|§i fdx + f(0)|. On the other hand,
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the completion <%, of {X, 0, (0, 1), {0}} is the upper limit of <Z,, because
SIE, f1dP = 3{|§; fdx| + [f(0)]} = lim,_,, § |E, f| dP and there is no proper
sub-g-algebra of 7 satisfying this inequality.

REMARK 3.1. The set theoretical definition of the upper and lower limits
should be N, Vi, &2, and Vi, N3, 5,, respectively, where \/ denotes the
formation of the smallest s-algebra containing all s-algebras following the sign.
If {<Z,} is monotone, these limits coincide with ours. However, in general, this
is not true. As is easily shown, we have Vi, Nz, <, c P-liminf <&, c P-
limsup <&, C N, Voo, -
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