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ALMOST SURE CONVERGENCE OF BRANCHING PROCESSES
IN VARYING AND RANDOM ENVIRONMENTS

v

By ToRGNY LINDVALL
University of Gotebcrg
Using martingale theory, this note proves that Galton-Watson branch-

ing processes are a.s. convergent even when the assumption of homogeneity
of reproduction is dropped.

1. Introduction and summary. Consider a branching process (Z,»z_o, Z, = 1,
where the usual independence assumptions are maintained, cf. Harris [4] page
3 ff., but the time homogeneity of reproduction is not necessarily at hand. Such
processes are called Galton-Watson processes in varying environments in Jagers
[6]. Let

Pal8) = 2520 Pui S’
be the probability generating function (pgf) governing the number of children of
an individual in the nth generation. Then the pgf of Z, is f, = ¢g0 -+ o @,
The following result is due to Church [2].

THEOREM. Suppose ¢, # 1 forall n. Then there exists a random variable Z, such
that Z, —_ Z,,, and P(Z, = 0 or o0) < 1 if and only if 37 (1 — pa.) < oo.

For a proof, see also Athreya and Karlin [1] page 1509 ff., where a process as
above appears as the realizations of a branching process with random environ-
ment, B.P.R.E., conditioned on some outcome of that environment.

The purpose of this note is to prove that convergence in distribution, —_, may
be strengthened to almost sure convergence. (If some ¢, = 1, this statement
becomes trivial, because then P(Z;, = 0 for i = n 4 1) = 1). This also proves
that, almost surely, the realizations of a B.P.R.E. are convergent. The reader
familiar with Heyde [5], should easily detect the influence of the ideas of that

paper.
2. Proof of the almost sure convergence.

The case y,7_,(1 — p,;) < oo. Let g(s) = s and let ||+|| denote the supremum
norm on [0, 1]. Then

[|¢n — €l = SUPog,ss1 |Zi¢1p7:isi — (1 = pa)sl £ 2(1 — pai) >

because },.,p,;s' is nonnegative and increasing. Consequently, »>_, ||¢, —
¢|]| < co. Take n,sufficiently large, so that 31>, |l¢, — ¢|| < §. The functions
¢, have inverses, and they are defined at least on the interval [£, 1] for n = n,.
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Let a, = 4 and define a, recursively for n > n, by ¢, _,(a,) = a,_,. This defi-
nition makes sense, and since Y7, 1@, — @uy| = Don [Pa(@nir) — @] =
Yineny llon — ¢|| = §, we have a, — a, where ; < a < §.

We now observe that (a,”»)7_, is a martingale, adapted to the sequence of
o-fields &, = o(Z,, - --, Z,). Indeed,

E[a1'|| ] = E[a21' || Z,] = [pa(@nsn)) = a,%».

n+1
Since 0 < a,%» < 1, a martingale convergence theorem, (Doob [3] Theorem 4.1,
page 319) implies a,?» —, someY = Z, —,  (Ina)'InY = Z,. Church’s
Theorem tells us that P(Z,, = 0 or oo0) < 1; it is left to the reader to construct
a sequence of pgf’s ¢, such that P(1 < Z_, < o) and P(Z,, = oo) are both strictly
positive. Hint: let ¢,(s) = (1 — (1 + n)~*s + (1 4 n)~s*», where k,, is a rapidly
increasing sequence of positive integers.

Thecase 3, 7_,(1 — p,;) = oo. Letg = lim,_, f,(0). If ¢ = 1, there is nothing
to prove, because then P(Z, —0as k— o0) =lim,_, P(Z, = 0) =lim,_ f,(0) = 1.
Hence suppose g < 1. The pgf of Z, is = g on [0, 1), and it is a consequence
of Church’s Theorem above that

SUP,zn SUPog,sy [ f4(s) — ¢ = 1,1 0
as n — oo. Take n, so large that ¢ + 27, < 1 for n = n,. Let a, be defined by
fa(a,) = g + 2t, for n = n,. Obviously, a, = }. Furthermore,
fa(Pa(@n11)) = far(@ar1) = ¢ + 2, =g+ 2, = fu(a,)»
implying that ¢,(a,,,) < a,. Let the sequence g, be defined by
9.()=0, i=0
=a,’, i>0.
{9.(Z,))%-, is a supermartingale, adapted to (B, w-n, Indeed,

E[gn+l(Zn+1) ” ZO’ ] Zn] = E[gn+1(Zn+1) ” Zn]
= E[afﬁ'l - l(o;(Zn+1) ” Z,]

= (pn(a'/H-I)Zn - @n(O)Zn é anZn - 1(0)(Zn) = gn(Z‘n) ’

because ¢,(a,,;) < a,, and ¢,(0)' = 1,,(/). Again we know that g,(Z,) —,,.
some Y; = 0, see [3] Theorem 4.1, page 324. But

E[9.(Z.)] = fu(as) — f2(0) = 31,

which tends to 0 as n — co. Hence Y, is 0 a.s. We are interested in realizations
of (Z,»3_, which do not become extinct. For such a realization, @,”» — 0. But
since inf,,, a, = 3, Z, is forced to tend to infinity.

If we are interested in B.P.R.E., the population development is governed by
a random sequence {{,»y_, of probability measures on {0, 1, ---}. For such
process we obtain that all realizations are convergenta.s., and P(Z, —0or o) < 1
if and only if P(3 7., (1 — £,1) < oo and {,, < 1 for all n) > 0. For examle, if
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{Cade., is stationary and ergodic, then P(Z, — 0 or co) = 1 if the trivial case
P,, = 1) = 1 is omitted.
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