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LIMITING BEHAVIOR OF MAXIMA IN STATIONARY
GAUSSIAN SEQUENCES!

BY YAsH MITTAL

Northwestern University, Evanston

Let {X»,n = 1} be a real-valued, stationary Gaussian sequence with
mean zero and variance one. Let M, = maxXi<i<n Xi, rn = E(Xn41X1);
¢cn = (2Inn)t and bn = cn—3[In (47 In n)]/ca. Define Uy, = 2cn(Mn—cy)/Inlnn
and V, = ca(My — b,). If r, = O(1/In n) as n — oo then

(i) pdiminfy—w Un = —1) = p(lim supp—o Un = 1) = 1, and

(ii) E{exp (tVa)} — Efexp (tX)}
as n — oo for all ¢ sufficiently small where X isa random variable with dis-
tribution function e—¢~%;

; —oo < x < oo,

1. Statement of results. Let {X,, n > 1} beareal-valued, stationary Gaussian
sequence with EX, = 0 and EX,* = 1. Let {r,,n = 0}, r, = E(X,,,X,) be the
covariance sequence and M, = max,,_,X,. The convergence of M,, suitably
normalized, as n — oo has been of considerable interest. Berman ([1], Theorem
3.1) showed that », Inn — 0 as n — oo is sufficient for (M, — b,)c, to converge
in distribution to X where X has distribution function e=*"%, —oo < x < oo;
and b, and ¢, are constants defined as follows.

(1.1) ¢, = (21nn)t, b, = ¢, — [In (4= In n)]/2c, .

Convergence of M, /c, and M, — c,, called “relative stability” and “stability”
of M, respectively, has been studied by Gnedenko [3], Berman [1] and Pickands
[5]. Pickands shows that as n — oo, r, — 0 is sufficient for M, /c, — 1 a.s. and
r,In n — 0 is sufficient for M, — ¢, — 0 a.s.

Pickands ([7] Theorem 1.1) also considered the problem of the rate at which
M, — c, converges to zero. In this direction we prove the following theorem.

THEOREM 1. If

(1.2) r, = O(1/In n) as n— oo
then

(1.3) liminf,_ ., 2(M, — ¢,)c,/Inlnn = —1 a.s.

and

(1.4) limsup,_ . 2(M, —c,)/Inlnn= 41 as.
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Pickands uses the condition r,n" — 0 as n — co for some 0 < y < 1 instead of
(1.2).

An example is given in ([5] page 193) which shows that r, can be chosen to
tend to zero so slowly that on some subsequence {n,}, M, — «a, -converges in
distribution to a normal variable, the «, being constants with ¢, — a, — oo as
n — oo. Consequently it is deduced that r, — 0 is not sufficient for Theorem 1.
Theorem 2 exhibits a specific rate at which r, may tend to zero that is sufficient
to violate (1.3) and thus illustrates the sharpness of condition (1.2).

THEOREM 2. If

(1.5) r, is non-increasing and

(1.6) r,Inn/lnlnn— oo as n— oo,
then

(1.7) lim inf,___ (M, — c,)c,/Inlnn = —oco a.s.

The convergence of moments of suitably normalized maxima was considered
by Pickands ([6] Theorem 2.1) for independent variables. Theorem 3 shows the
convergence of moment generating functions for maxima of dependent variables.

THEOREM 3. Let X be a random variable with distribution function e=*™*, —oo <
x < oo. For all stationary Gaussian sequences {X,, n = 1} satisfying

(1.8) rnlnn—>0 as n— oo
(1.9) lim,_., E(exp (tY,)) = E(exp (tX))
for all t sufficiently small where Y, = ¢, (M, — b,).

The following two lemmas are used as tools in the proofs of Theorems 1 and
3 and may be of independent interest.

Lemma 1. (1.2) Implies that
(1.10) exp (tA)P(M, < b, — Alc,) — 0 as A— o
uniformly in n for all t sufficiently small.
LeMMA 2. Under condition (1.2)
(1.11) pM, = ¢, + (1 —¢)Inlnn)/2c, i.0.) =1
forall e > 0.

Lemma 2 is a special case of Theorem B of Pathak and Qualls [4]. The result
(1.11) was obtained independently of Pathak and Qualls at about the same time
and uses methods similar to those of Lemma 1.

As corollaries of Theorem 3 we obtain the following numerical estimates.
For any random variable X let ¢°(X) = EX* — (EX)*. Then

CoroLLARY 1. lim,_, (In n)e*(M,) = (z* — 6)/12.
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COROLLARY 2. E(M,*)/b,* =1+ O(1/lnn) as n— oo forall k = 1.

Section 2 contains proofs of Theorems 1, 2 and 3 and Lemma 1. For proof
of Lemma 2 we refer to [4]. Section 3 has comment on nonstationary sequences.

2. Proofs. PrRoor oF LEMMA 1. Define 9, = sup,;, r,. Condition (1.2) to-
gether with the stationarity of the sequence implies that 0 < 4, < 1. If we let
L(n) = [n"] ([+] denoting integral part), 0 <7 <1, then (1.2) implies that

0..n Inn is bounded as n — co. In the following we set
p(u) = 2r)~texp (—uf2); @) = (Lo p(x)dx, —oo Ju oo

In order to find an upper bound for p(M, < b, — A/c,) we select some vari-
ables out of X, ... X, as follows. Group the variables X, ... X, consecutively
into [n/L(n)] blocks of L(n) variables each. Excluding the variables in every
other block, we will be left with mL(n) variables where m = [(n/L(n)] + 1)/2].
Thus we have selected X, ()45 = 0,1, .-, m—1;j=1,2,...,L(n). Rename
these as U,, -+, U, .. Clearly,

P(M, < b, — Afc,) < P(MaX,g;cmrn Ui = b, — Alc,) .
Next consider the variables
Zu‘ = (1 - Bl)iYiJ' + (51 - aL(n))iWi + 5%(n)V

fori=1,2,...,m, j=1,2... L(n), where the Y,;’s, W;’s and V are mutually
independent Gaussian variables with zero mean and unit variance. We see that
the covariance matrix of U, - .- U, is bounded above by that of Z,, Z, - -
Ziriws Zoy -+ s Z pn)- By Slepian’s Lemma ([8] Lemma 1, page 468)

hE}

pMmax ;e U = b, — Afc,)
(2.1) < pl(1 — 0.)1Y; + (81 — 0,0)* Wy + 04V S b, — Afe, Vi, ]
= {Z. p[(1 — 05 + (6, — 0,V < b, — Afc,
— ot u Vi, jle(u)du.
If we split the integration in (2.1) into ranges (—oo, 4,] and [4,, co) where
A, = A|(2¢,6%,,)), then the right-hand side of (2.1) may be seen to be at most
(22)  O(—4,) + p{(1 = )Y + (8, — 0,)! W, S b, — A[2¢, Vi, j}.
First, forall 4 = 0
exp (t4)D(—A,) = exp (t4)(1 — D(4,))

= exp (14%)A4,7'p(4,)

= (A,2n) " exp {tA? — A*/8¢c,%0,.,) -
The last expression tends to zero as 4 — co uniformly in # for sufficiently smal

values of ¢ since ¢,’,,, is bounded as n — oo. Result (1.10) will therefor:

follow if we show that exp (r4%) x {second term in 2.2} tends to zero as 4 —
uniformly in n.
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Define V; = {(1 — d,)Y,; + (3, — 5L(n))—éW1}(1 — Opwm)tj=1,2--- L(n).Be-
cause of the independence of Y,;’s and W,’s, the second term in (2.2) is equal to

(2.3) {p(max,g;crm V; = E "

where E, = (1 — 8,,,,)"4b, — A/2c,). We know that EV; = 0; EV;> =1 and
EV.V, = (6, — 0,,)/(1 — 0,,) for j # k. Consider the joint normal variables
& ... &, With zero mean, unit variance and equal correlation d,. By Slepian’s
Lemma ([8] Lemma 1) (2.3) is at most

(2.4) {p(max,g;c;m & = E,)I™ .
Define
(2.5) Q(4, n) = exp (tA){p(max,g;c; ., & = E,))™.

We now show that given » > 0, there exist v, and A4, (both depending on 5

alone) such that for all n = v, and 4 = 4,
Q(4,n) < 7.

The result will follow by observing that Q(4, n) — 0 as 4 — co for every fixed
n. We use two distinct comparisons to bound (2.4). The first comparison is used
to bound Q(4, n) for 0 < 4 < 2(1 — p)b,c,, the second for 4 > 2(1 — p)b,c,
(cf. (2.19)).

We first state a result of Berman [1] that is used repeatedly.

LemMA (Berman (1964)). Let {y,, n = 1} and {{,, n > 1} be stationary Gaussian
sequences satisfying EX, = E{, = 0; Ex,*=E{*=1; Ey,.,x, = p, and EC,,,{; = 0.
For every real number a and every positive integer n,

(2.6) |p{max,g; g, 1 < a} — p{max,g,g, §; < a}
= Zicileil(n — H2r)7H (1 — p)texp {—a*[1 + o} -
Using this result, (2.4) is at most
(2.7)  A{P*M(E,) + L (0 L(n) — DI — 6y)*2m) exp (= E,/(1 + d))}
The sum in (2.7) is bounded above by
(2.8) (1 — 8)74Lx(n) exp (= E,}/(1 + 3,)) -
Let0 < 4 < 2(1 — p)b,c, for p, 0 < p < 1 to be chosen later. Then E, < pb,
and (2.8) is less than
h(n) = (1 — 6,)7L%(n) exp (—p*b,*/(1 4 8))) .
Using the definitions of b, and L(n), we see that h(n)=0((In n)e*/1+30p=2-r+e2/a+)),
Thus for 0 < 4 < 2(1 — p)b,c,, (2.7) is bounded above by
(2.9) {@E(E,) + h(m)}™ = @™E(E )T 4 A(m)@=H(E, )" .
Recall that —In ®(x) ~ ¢(x)/x as x— oo. Since 4 < 2(1 — p)b,c,, b, —
A[2c, — oo as n — oo and
(2.10) QLM(E,) = ®H(pb,) = exp {L(n) In D(0b,)}
= exp {—c'L(n)¢(pb,)/pb,}
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for some ¢’ > 1 and n large. By definition of b, and L(n), —c’L(n)¢(pb,)/pb, =
o(n=*") as n — oo. If we select p? > 7, the right hand side of (2.10) tends to 1.
Thus for sufficiently largen n (independent of A), the expression in the brackets
of (2.9) is less than or equal to {1 + 2k(n)}. We may choose p and 7, p*> 7
such that {1 4 2h(n)}™ — 1 as n — oo. (For example select 7 < (1 — 4,)/4 and
pr=1—(1—0d)/4—(1—8)8. Thenp> rand 20*/(1 + ) —7) > 1 — 1
so {1 + 2h(n)}™ — e* =1 since m = O(n*"7) as n — co0.) We can find v, such
that foralln > v;and 0 < 4 < 2(1 — p)b,c,, (2.9) is no bigger than 2Q™2"(E, ).
Define

(2.11) f(4, n) = 2 exp (t4)D™L™(E,)

so that Q(4, n) < f(A4, n) forall n = v,and 0 < 4 < 2(1 — p)b,c,. To find the
uniform rate at which f(A4, n) — 0 as 4 — co, we consider

(2.12) EdZ f(A, n) = 2 exp (tA)D"E®-YE,)

mL(n)

<) -

P(E)}
The last factor in (2.12) is bounded by

(2.13) 2A — mL(n) exp {Abn(l — A/4bn(,‘n) _ bn25L<"’ }
2n 2cn(1 5L(n)) (1 - aL(n))

T, exp {b(1 + p)fdc, — b0}

< 2t4 —

forall 0 < 4 < 2(1 — p)b,c,. The derivative of the right-hand side of (2.13)

with respect to A is

mL(n)
2n

2t —

L a l'cf’)b,, exp {b,(1 + p)Adfdc, — b0} -

n

For all 4 = 0 and ¢ sufficiently small, this is negative since 4,%,,, is bounded
as n— oo. Thus the right-hand side of (2.13) is at most —mL(n)/2n. Substi-
tuting in (2.12) we get

mL(n)

d _— 2 mL(n)—1 .
Hf(A,n) < —2exp (14D (E,) o

< _ _’"_Lnﬂ)_f(A, n) < f(A, n)

for large n since mL(n)/n — % as n — oo. Therefore for all n > v, (independent
of A)yand 0 < 4 < 2(1 — p)b,c,,

L, A, < 1.

Integrating both sides w.r.t. 4 we get

f(4', n) < f(0, nje=*
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foralln = v,and 0 < A" < 2(1 — p)b,c,. But
0, 1) = 207 (b, (1 — 3,,)7) < 2
so for all n = max (v, v,)and 0 < 4 < 2(1 — p)b,c,,
(2.14) O(A, n) < f(A, n) < 2e4.
Going back to (2.4), we see that another upper bound for (2.4) is
(P& < B = O(E,).

Define
(2.15) 9(A, n) = exp (t4)O™(E,) .
We will show that the derivative w.r.t. 4 of g(4, n) is negative forall 4 > 4b,c,
and that the maximum of g(A4, n) for 2(1 — p)b,c, < A < 4b,c¢, tends to zero
as n— oo. First
(2.16) % (A, n) = exp (14%)D"Y(E,)
X 2AD(E,) — mo(E,)[2¢,(1 — 6.} -
Now for all 4 > 4b,c, (hence (4/2¢c,) — b, > 0),
AD(E,) = A{l — O(—E,)}

< Al — 610) (E)/((A]2¢,) — b,)

=1 = 0.)e(E)/(3¢,7" — b,47)

< 4cn(1 - aL(n))égo(En) *
Substituting in (2.16) we get for all 4 > 4b,¢,,

04 n) < (1= 0,)0e,0,(E,) exp (1A)D"(E,)
X {8t — m[2¢,X(1 — 0.}

and this is negative for small ¢.
Next, if we set

An) = max {g(4, n) — 2(1 — p)b,c, < A< 4b,c,},
then

@217)  Hn) < exp (1(4b,c,) )b, — (1 — p)bI(1 — 3r)?)
< exp {641(In nYJO™(pb, /(1 — 3,.,))") -

By Cramér ([2], page 374), there exists a ¢/, 0 < ¢” < 1 such that for all n
large, the right-hand side of (2.17) is bounded by

exp {641(In n)* — ’'my(0'b,)/0'b,} where o' = p(1 — d,.,,)7}.
By definition of 4, this expression is no bigger than

(2.18) exp {641(In n)? — (const.)(m/b,)n=*"} .
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We select p and 7, such that (2.18) tends to zero as n — oo. (If y = (1 — 4,)/4
and p* =1 — (1 — 4,)/4 — (1 — 8,)*/8 we have
1 — 7 — P2/1 - aL(n) >1 - (1 - 51)/4 - (1 - 5L(n))—1(l - (1,_ 51)/4)
+ (1 = 0.,)7(1 —6,)"/8

which is positive for n large since d,,,, — 0 as n — oo and then (2.18) tends to
Zero as n — oo0.)
Now by definitions of Q, f and g (cf. (2.5), (2.11), (2.15)) we have

(2.19 (A, n) < 2e 4 Vn > max(v,v,) and 0= A4 <21 — p)b,e,
< Hn) vA>21—p)b,ec,.

Hence given » > 0, choose A, so large that 2e~* < » for all A = A4,and choose
vo > max (v,v,) so large that Z{n) < » Vn = v,. Then (2.19) gives

o4, m) <7

for all n > v, (independent of 4) and A4 > A, (independent of n).
The observation that Q(A4, n) — 0 as A — oo for every fixed n is clear since

Q(A, n) < exp (tA)O™(E, ,) = exp (141 — O(—E, )"

where E, , = E, = (b, — A/2¢,)(1 — d,,,)7t. Let A be so large that (4/2¢,) —
b, > 1; then the above expression is at most

exp (AN (—E, (1 — 8,)™" < exp {o? — 2 (4]2e, — b}

and it tends to zero as A — oo for ¢ sufficiently small. Thus there exists a,, such
that for all 4 > a,, Q(4, n) < 5. Let a* = max,,, a,; then

Q(4,n) <9 VA= a* and for all n.
This completes the proof of Lemma 1.

ProoF oF THEOREM 1. We will prove that (1.2) implies

(2.20) limsup,_,., 2¢,(M, — ¢,)/Inlnn = +1 a.s.
and
(2.21) liminf,_, 2¢, (M, — ¢,)/Inln = —1 a.s.

We first consider the lim sup. According to Lemma 2, fore >0
P2c, (M, —c,)/Inlnn>1—¢ i.o)=1.

In other words
lim sup,_., 2¢,(M, — ¢,)/Inlnn =1 a.s.

With no conditions on the covariance sequence, Theorem 2.1 of [7] shows that
limsup,_, 2¢,(M, — ¢,)/lnlnn <1 as.

Hence (2.20) is proved.
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To prove (2.21), we first show that

lim inf,_. 2¢,(M, — ¢,)/Inlnn = —1 a.s.

n—+00

By Lemmas 3.3 and 3.4 of [7], it is sufficient to show that the inequalities
(2.22) M,

n(e,m)

=< a(n(e, m), €) m=1,2,...

hold only finitely often with probability one Ve > 0, where n(e, m) = [e"] and
a(n, ¢) = ¢, — <% + e>ln Innfc, = b, —elnlnnjc, .

We look at

(2'23) Z:=1 P{Mnu,m) a(n(e’ m)’ 8)}

=
é my, + Z:o P{Mn(e,m) = a(n(e’ m)’ E)} *

By Lemma 1, if (1.2) holds then for some ¢ > 0 we can choose m, so large that
the right-hand side of (2.23) is at most

my + Yim exp {—re’(InIn n(e m))’} < m, + 3.5 exp {—t*(In em)’} .
The above sum is finite for all ¢ > 0 and (2.22) follows by the Borel-Cantelli
Lemma. To complete the proof of Theorem 1 we need to show that for all .

e>0
P(M, < ¢, — (1 —¢)nlnn/(2c,) i0.)=1,

or
P(M, < b, + ¢Ilnlnn/(2¢c,) finitely often) = 0.

The last probability is

P(U'n n;e='n {Mk > bk + elnln k/ck})
< 10 PN (M, > by + e Inlnkje,})
= Y, lim, , P(N, {M, > b, + elnln k/c,})
=y, lim, , P(M, > b, + ¢lnln Njc,) .
By (2.6)
P(M, > b, + ¢lnln N/cy)
< P(M,* > by + ¢lnln Njc)
v rl(N = J) exp — (by + ¢Inln nNjcy)*
B = T I
where M, * is maximum of N independent standard normal variables. The first
term in the right-hand side above tends to zero as N — oo by Theorem 3.1 of

[1] and the second term tends to zero as N — co by arguments similar to those
in Lemma 3.1 of [1]. This completes the proof of Theorem 1.

PrROOF OF THEOREM 2. We assume that
(2.24) r, is non-increasing ;

(2.25) r.dnnflnlnn —oco as n— oo
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and we will show that
(2.26) liminf, (M, — c,)c,/Inlnn = —co a.s.

Define 4,(K) = {(M, — ¢,)c, < —KInlnn}. To show that P(4,(K)i.0.) =1
it will be sufficient to show that lim,_,, P(4,°(K)) = 0 VK.

Let {Z,, n > 1} be a sequence of independent, Gaussian variables with zero
mean and unit variance. Let M,* = max,_,., Z, and let U be a standard normal
variable independent of {Z,, n > 1}. The covariance matrix of {(1 — r,){Z, +
r,tU, 1 < i < n} is dominated above by the covariance matrix of x, --- x,, for
all n since {r,} is non-increasing. Hence by Slepian’s Lemma ([8) Lemma 1),
we have for all K and n,

P(A4,5(K)) < Ple,(1 — 1,M,* + 1,iU — ¢,) = —KlnIn n)
= P((1 = r)te(M* —c,) = ¢,)r,(1 + (1 — r,))~
—Klnlnn — ¢,r,tU)
< P((1 — 1) (M —¢,) = ¢,'r,/4 — Klnlnn)
+ (1 — @(c,r,b/4)).
Clearly the second term in the right-hand side above tends to zero as n — oco.
Condition (2.25) implies that the first term tends to zero by a classical result
that

(2.27) limsup, .. (M,* —c,)c,/Inlnn =1 a.s.
((2.27) is also special case of Theorem 1). Theorem 2 is proved.

Proor or THEOREM 3. We will show that if (1.8) holds then for ¢ sufficiently
small,

(2.28) lim,__ exp (1Y,) = exp (1X)

where Y, = ¢, (M, — b,). The random variable X is defined in the statement
of Theorem 3.

Under the condition (1.8) we know that Y, converge in distribution to X ([1],
Theorem 3.1). (2.28) follows if for small ¢

(2.29) §1z124 €Xp (tx) dF,(x) — 0 as A— oo,

uniformly in n where F,(x) = P(c, (M, — b,) < x), x € (— o0, o).
First we prove that the integral for x > 4 in (2.29) tends to zero without
restricting the covariance sequence at all. For any t < 1, write

§7 exp (1x) dF,(x) = —§5 exp (tx) d(1 — F,(x))
(2.30) = exp (tA)P(M, > b, + Alc,)
+ 1§ exp (tx)P(M,, > b, + x/c,)dx .

The first term in (2.30) tends to zero as 4 — oo uniformly in n since for
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all4 >0
exp (tA)P(M,, > b, + Afc,)
= exp (t4)P(at least one of x, -.. x, > b, + x/c,)
exp (td) - n - (1 — Q(b, + Ale,))
exp (t4) - n - p(b, + Ale,)[(b, + Afe,)
u(by + Afe,)Texp (1 — byfc,)A — A[2¢,) .
(Recall that b,/c, — 1 as n — o0.)
For the second term in (2.30), set ¢/ = (1 + r)/2. Then t < ¢ < 1 and by

the preceding discussion for a given § > 0, there exists A,(¢') such that for all
X = At

[ IA 1A

exp (¢'x)P(M, > b, 4+ x/c,) < 0
or
exp (tx)P(M, > b, + x/c,) < dexp(—(t — £)x).

§2exp (tx)P(M, > b, + x[c,)dx < o(t' — 1)~ exp (—(t' — t)A)
for all 4 > A4y(t"). The right-hand side above tends to zero as 4 — oo uniformly
in n and one part of (2.29) is proved.
Now we consider
{4 exp (tx) dF,(x) = exp (—tA)P(M, < b, — AJc,)
— t§5exp(—tx)P(M, < b, — x/c,)dx .

Thus

We will be done if we show that for all 1 > 0 the following expression tends to
zero as A — oo uniformly in n

(2.31) exp (tA)P(M, < b, — Alc,) + t §5exp (tx) - P(M, < b, — x/c,)dx .
Forany ¢, >0 .
exp (tx)P(M, < b, — AJc,) = exp (—t,x(x — t/ty))
X exp (t,x)P(M, < b, — x/c,) .
Suppose (1.8) holds so that Lemma 1 is valid for all + < #,. Then there exists
Ay > t[t,+ 1 such that for all x > A4,and for all n, exp (1,x*) (M, < b,—x/c,) < 1 so
exp (tx)P(M,, < b, — x/c,) < exp (f,x) .
The expression in (2.31) is at most exp (—t,4) + (t/t,) exp (—t,A) for all 4 =
A,. This completes the proof of Theorem 3.
Proor oF CorROLLARY 1. By Theorem 3, EY, = ¢, (EM, — b,) — EX and
EY, = ¢,E(M, — b,)* — EX*as n — co. Thus
02( Yn) = EYn2 - (EY'n)2
=c¢,{EM,* — 2b,EM, + b,* — (EM,)* + 2b,EM, — b,7}
= ¢, 0(M,) .
But ¢%M,) — ¢*(X) as n — oo and the result follows since ¢*(X) = (z*/6) — 1
by Cramér ([2], page 376).
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ProoF oF CoROLLARY 2. That
b, *E(M,*) = 1 + O(1/In n) as n— oo
for all k > 1 will be proved by induction. By Theorem 3 we have, as n — oo,
EM, = b, + (E(X)/c,) + o(1/c,)
E(M,)) = b,* + (26,E(X)/c,) + o(1) + EX*|(2Inn).

Hence the result is true for k = 1 and k = 2. Let it be true for all k <L
Consider

and

EM, — b))+ = E(M,+Y) 4 S (1}-1)(_bn)jE(an+1—j) .

j=1

By Theorem 3, the left-hand side above is equal to

(E(X"* /e, + o(1]e,'*Y) as n— oo .
Therefore as n — oo,
E(M,) = — 255 ()= b,) E(M,*1=9) + (E(X*Y)[e,'*Y) + o(1/c,!*Y)
or
(B [B,1+) = — 31458 (7= DAE(M, =) b, 141=3)

+ (E(X"*)/(c, b,)'*") + o(1/e,'*) .
By the induction hypothesis the right-hand side above is equal to
—(1 + O(1/In n)) 3385 (*5')(—1)7 + O(1/(In ny!+1) .

But — 37, (—1)7 = 1 and the result follows.
We also note that Corollary 2 implies that
E|M,|*/b,* =1 + O(1/In n) as n— oo
since

EIM,|* < E(M,*) + 2k {3 x*'P(M, < —x)dx
< E(MF) + 2k {5 x*'®(—x) dx
= E(M,*) + constant.

3. Discussion. REMARK 1. The existence of covariance sequences satisfying
(1.2) or (1.6) can be seen by observing that 1/In |x| and In In |x|/In |x| are non-
negative, even and convex on [K, oo), for some constant K. To satisfy Polya’s
criterion we only need to choose the constant K properly and extend the func-
tions on [0, K) by a suitable straight line. Such functions are then covariance
functions of real valued, stationary, Gaussian processes {X,(s), s > 0}. Restrict-
ing these processes to the integers will provide examples of Gaussian sequences
satisfying required conditions.

REMARK 2. The assumption of stationarity is not crucial in the proofs of
Theorems 1 and 3. For a nonstationary sequence {X,, n > 1}, let EX, = 0;
EX,)=1andr,, = E(X,X,). The assumption (1.8) e.g. can be replaced by

(@) SUppup’mn. #+ 1, and
(b) rpplnfm — n|—0as|m — n| — oo uniformly in m and n.
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