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SERIES OF RANDOM PROCESSES WITHOUT DISCONTINUITIES
OF THE SECOND KIND

By OrLAv KALLENBERG
University of Goteborg

For series of independent random processes in the space D[0, 1] endow-
ed with the Skorohod topology, convergence in distribution is shown to
imply almost sure convergence. Under mild conditions, such as e.g. when
the limiting process has no jumps of fixed size and location, the latter
convergence is uniform. As an application, we discuss a representation by
Ferguson and Klass of processes with independent increments.

0. Introduction. It is a well-known fact (see e.g. [7] page 251) that a series of
independent random variables converges in distribution if and only if it is almost
surely (a.s.) convergent. For series of random elements in Banach spaces and
topological groups, results of the same type have been established by Tortrat
(1965), 1t8, Nisio (1968) and others. The purpose of the present paper is to prove
extensions to series of random processes without discontinuities of the second
kind. Applications are given in Section 2 below to a representation by Ferguson
and Klass (1972) of processes with independent increments, and in [5], Theorem
2.1, to the canonical representation of processes on [0, 1] with interchangeable
increments.

1. Main results. We shall restrict our attention to processes in D[0, 1], since
the extensions to D[0, co) and D(— oo, oo) are immediate from results in [6].
Let us therefore assume throughout this section that X, X,, - - - are independent
random elements in D[0, 1] in the sense of [1], and define S, = X, + .- + X,,
neN. For functions x in D[0, 1] we put ||x|| = sup, |x(#)|, and we define the
moduli of continuity w, = w(x, «) and w,’ = w'(x, +) as in [1], pages 109-110.
It will further be convenient to write x{r} = x(f) — x(¢—) for the jump size of
xatte[0, 1]. Convergence in probability will be denoted by — , and we shall
write =, and —, for equality and convergence in distribution respectively, in
D[0, 1] always with respect to the Skorohod (/,) topology [1]. Finally, we write
1, for the indicator of the set 4.

THEOREM 1. In D[0, 1] endowed with the Skorohod topology, convergence a.s.
and in distribution of S, are equivalent.

This theorem can not be strengthened to the effect that Skorohod sense con-
vergence in distribution imply a.s. uniform convergence, since this is clearly
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not even true for nonrandom S,. To see this, we may take X, to be the indicator
of the set [} 4 1/(n + 1), 4 + 1/n). However, we shall be able to prove the
(perhaps surprising) fact that the convergence in Theorem 1 is a.s. uniform,
provided we exclude situations which are close to this simple example:

THEOREM 2. If S, converges in distribution with respect to the Skorohod topology
in D[0, 1], then S,, is a.s. uniformly convergent if and only if there does not exist any
nonrandom sub-sequence N' C N and real numbersh >0 andt,t,,t,' (0, 1),ne N,
such that t, — t, t,! — t, X, {t,} =, h, X,{t,)} >p —h as n — oo through N'.

It is sometimes possible to decide from the properties of the limiting process

whether the convergence is uniform:

THEOREM 3. Let S be a fixed process in D[0, 1]. The following statements are
equivalent:

(i) Every sequence {S,} such that S, —, S in the Skorohod topology is a.s. uni-

formly convergent.
(if) S has no jump in (0, 1) of nonrandom size and location.

Our proof of Theorem 1 is based on that of Theorem 2, which is therefore
given first.

Proor or THEOREM 2. The necessity of our condition follows from the fact
that ||S, — S|} — 0 implies |[X,|| — 0. Conversely, suppose that S, —, S in the
Skorohod topology, and that our condition is fulfilled. Call a jump of modulus
> ¢ an e-jump, and introduce for ¢, > 0 and T C [0, 1] the D[0, 1]-sets

Ji(e, T) = {x: x has an e-jumpin T},
Jo(¢, 0, T) = {x: x has two e-jumps in T, < § apart},
Jy'(e, 0, T) = {x: x has two e-jumps < & apart, one of which lies in T},
Ji(e, 0) = Jy(e, 9, [0, 1]) .
The main difficulty consists in proving that
(1) lim,_, lim sup,, , ... P{S,, — S, € Jy(s, 6)} = 0, e>0.

Anticipating the proof of (1), let ¢, » > 0 be arbitrary, and choose § > 0 and
ny € N such that

@ P(S, — S, e e, D)} < 7, m,n >y,
3) PW/(S,,0) 2 ¢} <7, nen,

which is possible by (1) and by [1], page 125. Let us further choose a partition-
ing0=1¢<t< - <t,=1suchthat §{t} =0as.,i=1,...,p— 1, and

:4) ti_ti—léa’ i:l,'--,P.

Fori =0, ..., p we then have S,(#;) —, S(z;) by [1], page 124, and hence, by the
slassical result for series of random variables ([7] page 251), S,.(t,) — S.(t,) —»O0,
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m, n — oo, so for some n,/ > n,,

) P(Su(t) — S,(t) S 6,i=0, .-, p} 21 —5, mn>n.
By (2), (3) and (5), we have with probability > 1 — 4y for fixed m, n > n,’

(6) Sn — S, & Jy(c, 0)

(7) W(S,,8) <e, W(S,0) <e¢,

®) |Su(t) — St < e i=0,1,...,p.

Consider an elementary event such that (6)—(8) are satisfied. For any
ie{l, .-, p}, there exist by (4) and (7) some u, v € (¢,_,, t;] such that

©)  wgltnu<e, wglu,t]<e, wglt,v)<e, ws [V, 1] <e.

If u # v, itis seen from (6) that either |(S, — S,){#}| < ¢ or |(S,, — S){V}| < e,
and in the first of these cases (the second is symmetric), we obtain from (9)

We—sltic1r V) < S, Wsm-s,;['v’ L] < Se,

which is also true if ¥ = v. Hence by (8) ||S,, — S,|| < 6e. This proves that

P{||S,, — S,|| > 6e} < 4y for m, n > ny/, and so ||S,, — S,|| =0 as m, n — co.

By considering some a.s. convergent sub-sequence, it follows easily that ||S' —

S,|| — 5 O for some random element S’ in D[0, 1]. To see that this is also true

in the sense of a.s. convergence, let n — oo and then m — oo in the elementary

inequality

Pi{max S, — 2e) < P{”Sn - Sm” > 6} R
mamcesn 19 = Sull > 26 = 4 Bl — Sl > o)

mneN, m<n,

from [4], page 38, to conclude that sup,,, ||S, — Si|| —»»0 and hence
SUPism [|S" — Si|| =5 0 as m — oo. It follows that, for any ¢ > 0,

Pllim sup, ... ||S" — S,|| > €} = P M {sUPism [IS" — Sil| > ¢}
= lim,, _, P{sup,., ||S" — S,|| > ¢} =0,
and since ¢ is arbitrary, we get limsup,_., ||S" — S, || = O a.s. as desired.
Turning to the proof of (1), let us assume that (1) is false. Then there exist

some ¢, 7 > 0 and some 6, > 0 and m,, n,e N, k ¢ N, such that §, — 0, n, >
m, — oo and

P{Smk_snke‘lﬂ(e’ 61:)}277’ kGN.
Let ¢’ < ¢/100, say, and choose § > 0‘such that
PWw'(S,, 8) = '} < 7/4, neN.

Then
P{Smk — 8, € e, 0,), w’(S,,,k, 0) < ¢, W(S,,,9) < €'} = 9/2, keN.

Hence there exists for each ¢, k € N some interval T, , of the form {(i — 1)2-7,
i277),i=1, ...,29 such that

P(Sp, — S, €6 04 Ty ), W(S,,. 0) < &, W(S, , 8) < &} = 72701,
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For ¢ = 1, one of the two possible intervals, say T,’, must occur infinitely often,
say for k e N/. Proceeding recursively, we can construct a decreasing sequence
{T '} of intervals and a corresponding sequence {N,’} of N-subsequences, such that
T, =T, keN,/,qeN. Expanding each T’ symmetrically to an interval T, of
length 2-9%, and defining N, = {k ¢ N,/: 6, < 2771, we get for k e N, geN,
(10) P(S,, — Su, €J4(e; 04y T,), W(S,,, 0) < €', W'(S,
In particular, we have by independence and tightness
P{S,, € ()2, T2 < P(S,, ¢ Ji(¢[2, T,), S, — S, €Ja(e; 0, T,)}

= P{S,, € Ji(e[2, 04, Ty)} < P{W(S,,, 8;) > ¢/2} —> 0

as k — oo through N, so

1 = limsup, .. P{S, € J;(¢/2, T,)} < P{Se Jy(¢/3, T,)} .

8) < ¢} = p2-e-1.

k’

Since this holds for every g e N, it follows that |S{u}| > ¢/3 a.s., where {u} =
N, T,, and hence for any open interval G containing u,

(11) P{S, e Ji(¢/3, G)} > 1, n—oo.

From (11) we shall draw the (apparently much stronger) conclusion that, for
some nonrandom u, € [0, 1], ne N, with u, — u,

(12) PS, ()] > ¢3} > 1, n— oo
To this end, let 7/ > 0 be arbitrary, and choose the G in (11) so small that
(13) PW(S,, |G) = ¢} < 7', neN.
By (11), we may then choose (another) n, € N such that

(14) P{S,eli(¢/3,G)} =1 — 7', n>n,.

Let us now consider any fixed n > n, and any open interval G’ satisfying u ¢ G'CG.
By (11), we may then choose m > n such that

(15) P(S,.eJi(¢/3,GN} =1 — 7.

Using (13) and (15), we get

P{S, e Ji(¢/3, G\G")} < P(S, € Ji(¢/3, G\G'), S,, € Ji(¢/3, G"), W'(S,, |G|) < ¢’} + 27’

é P{Sm - Sn € Jl(e/4’ G\G,)} + 20’ 4
and also, by independence,
P{S, — S, € )[4, G\G)P{S, € J,(/3, G'))
< P(S,. — S, eJi(¢/4, G\G'), S, € Ji(¢/3, G'), S, € Jy(¢/3, G),
W(Sns |Gl) < &, W(S,, [G]) < &'} + 39 = 3y,

since the last event is contradictory. From these two inequalities it follows by
elimination of P{S, — S, € Jy(¢/4, G\G’)} that

P(S, € Ji(e[3, GIPIS, € Ji(e[3, G\G)} — 271 < 37,
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and hence

(16)  P{S,eJi(s[3, G")} A P{S, e Jy(¢[3, G\G")} = 27" + () <",

where by definition 7" = 37’ + (37)}. On the other hand, we have by (14)
P{S, e Ji(s/3, G')} + P{S, e Ji(¢/3, G\G")} = P{S, e Ji(¢/3, )} = 1 — 7',

and so, by combination, -

(17) P{S, e Ji(¢/3,G")} V P{S, e Jy(¢/3,G\G")} = 1 — 39 — 3yt =1 —x".

Varying the endpoints of G’ continuously over G, it is easily seen from (16) and

(17), that for some u, € G, n > n,,

(18) PS, 1) > ¢f3} 2 1 — 29", n>ny.

Since 7’ and G can be chosen arbitrarily small (subject to the restriction (13)),
we may assume that u, — » and that the probability in (18) tends to 1, which
completes the proof of (12). If u, = u for all sufficiently large n, it would follow
from (10) and (12) that, for fixed ¢ € N with 2=¢+! < ¢ and for ke N,

72797 S P{Sp, — Suy, € Di(es T\[H)), W(Sn,, 9) < &5 W(S,,, 0) < €'}
< P(S,., € 1(e[2, T\(u)), W(Sn,, 0) < €'}
+ P{S,, € Li(¢/2, T \{#}), W'(S,,, ) < ¢}
< P8, ()] < ¢} + P(IS,, {4} < &} -0, k— oo,
which is impossible. Hence u,_, # u, for infinitely many n, say for n e N, and
moreover, u € (0, 1), as is easily seen from the tightness of {S,}.
Next consider any closed set F C R, let ¢’, 7 > 0 be arbitrary, and choose
a neighborhood G of u satisfying (13). For any S-continuity points s, f € G with
0<s<u<t=1,weget by (12) and (13), writing F,,, = {x e R: inf . |x —
=2,
lim sup, _,,, P{S,{#,} € F} < limsup, _, P{S,(f) — S,.(5) € Fy.'} + 7'
< P(S(t) — S() e Fa} + 7'
and letting s, ¢t — u and then ¢/, ' — 0, the last member tends to P{S{x} € F}. By
[1], page 11, this proves that S, {u,} —, S{#}, and hence for the corresponding

characteristic functions, ¢, — ¢. By (12) and the tightness of {S,}, it follows
easily that

(19) Sn—l{un—l} + Xn{un—l} = Sn{un—l} —p 0 ’ ne N’ ’
(20) Sn{un} - Xn{”n} = Sn—l{un} —p 0 ’ ne N
By independence, (19) implies |¢,_,| — 1, ne N’, and so |p| = 1, which means
that S{#} = h + 0 is nonrandom. But then S,{u,} —, &, so by (19) and (20)

Xfu,_} —p —h, Xfu,}—ph, - neN.
This contradicts the hypothesis of the theorem, so (1) must be true, and the
proof is completed.
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Proor oF THEOREM 3. Suppose that § satisfies (ii), and let S, —,S. Then
proceed as above up to the point where we conclude that S{u} = & is nonrandom.
This contradiction of (ii) proves (1), and it follows that S, is a.s. uniformly
convergent. The converse is easily proved by modifying the counterexample
following Theorem 1.

Proor oF THEOREM 1. Suppose that S, —,S. Let ¢ e (0, §) be arbitrary and
letu,, - - -, u, be the (finitely many) values of ¢ ¢ (0, 1) for which the hypothesis
of Theorem 2 is violated with A > ¢. For fixed je{l, ---, p} and any open set
G containing u;, we get

lim,_, lim sup,, .. P{Sm — S, € Jy(, 3, G)} = 1.

Proceeding as in the proof of Theorem 2, we obtain |S{u}| > ¢/3 a.s. for some
u e G, and since G was arbitrary, we may assume that u = u;. Furthermore,
S{u;} = h; is nonrandom, and for some u,; € (0, 1), ne N, with u,; —u;, we
have S,{u,;} —ph;. Let us define

S, =8, + 2. h; l[uj,um.) , neN,
X1' = Sl' s Xn, = Sn' —_— S:‘_l = Xn -+ Z’;=1 hil[“n—l,j’unj) N n = 2, 3, ey
where 1;,, = —1,, for t = s. Then X/, X/, - .. are independent processes in
D[0, 1] with partial sums S, S,’, ---. For any ¢’,d > 0, we easily obtain

Pw'(S,', 0) = &'} = 251 P{ISu{uas} — kil = €/}
+ P{W'(S,, 0 + 2 max; |u,; — u;|) = ¢'/5},
and since {S,} is tight, it follows by Theorem 15.2 in [1] that
lim,_, lim sup, _., P{w'(S,’, §) = ¢’} < lim,_, lim sup,_., P{w'(S,, 0) = ¢'/5} =0,
¢ >0,

proving tightness of {S,’}. Moreover, for any ¢ ¢ {u,, - - -, u,}, we have S,/() =
S,(#) for all but finitely many ne N, so S,, —, S by Theorem 15.1 in [1]. Next
verify that S,'{u;} —p h; as n — oo, by considering separately the n-values with
u,; = u; and those with u,; + u;. If the hypothesis of Theorem 2, with {X,’} in
place of {X,}, were violated for some ¢ € (0, 1) and & > ¢, then clearly ¢ = u; for
some j, and we would get S,'{u,;} —, k; as before for some u;,; — u; with u;,; +# u;
infinitely often, contradicting the tightness of {S,’}. Therefore the hypothesis
must hold for {X,'}, except possibly for h-values < ¢. Arguing as in the proof
of Theorem 2, we may conclude successively that

lim,_, lim sup,, , ... P{S,’ — S,’ € Jy(3¢, )} = 0,
momooo P{||Sw’ — S,/|| > 18¢} =0,
(21) lim,, ., P{sup,., ||S," — S,/|| > 36¢} = 0.

lim

For arbitrary » > 0, let 6 > 0 be so small that the intervals I; = [u; — 9,
u; +96),j=1, ..., p, are disjoint and contained in [0, 1], and such that also

(22) P(W/(S,, 3) = ¢/6} < 7, neN.
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Then choose m € N so large that

(23) |unj_uj|§56’ ngm,j:l,...’p’
and such that with probability > 1 — 7,

24) |Su s} — Bl < ¢/6, =1, eeep,
(25) IS, — S,/|| < 37¢, n>m,

the latter being possible by (21). By (22), the relations (24), (25) and
(26) w(S,’, 0) < ¢/6

hold simultaneously with probability > 1 — 25. Consider an elementary event
satisfying (24)—(26), and define

S”H = Sn’ — Z?=l hj 1[“’_’1] = Sn el Z?=l hj 1[“nj’1] Py ne N.'

For j =1, ---,p, it follows from (24), (26) and the relation |4;| > ¢/3 that
w(S,", I;) < ¢/2, and hence by (25), for any s, 1e I; and n > m,

1S,7(s) — S,/ ()] < |SR""(s) — S,/ (D) + |S."(t) — S,”(t)] < ¢/2 + 37e < 38e.
For n = m we next define the continuous mapping 4, from [0, 1] onto itself by

28 20=0, 2,()=1, Au;)=t,;, AUy EO) =u; +4,
j = la e Py

and the requirement that 2, be linear on the intervals between these 3p 4 2
points. By (25) and (27) we get

29) [1Sm 0 A — S0 .|l = IS0 © Ay — S,/ 0 4,]| < 38¢,
since for ¢ outside all the 7,
S 0 Aalt) = S, 0 (1) = S,"(1) — S,"(1) = S,/(1) — S,/ -
Furthermore, we have by (23) and (28), for any n > m,
0 — &b
0

sup, | log A1) = 4:()

\Y, ‘log

= —log (1l —¢) < 2¢,

so by [1], page 113,
(30) sup,...

tog 2=4:7(0 = 222,76

< 4e, n>m.

Definitig the metric 4, in D[0, 1] as in [1], page 113, it follows from (29) and
(30) that d(S,,, S,) < 38¢ for n > m, so we have in fact proved that

P{Supn>m do(sm’ Sn) > 386} é 2” *
Since » was arbitrary, we get

P{lim sup,, , ... d(S,,, S,) > 76¢} = lim,_,, P{sup,, ,>; d(Sn, S,) > 76¢}
< 2lim,_,, P{sup,.; dy(S,, S;) > 38} =0,
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and since even ¢ was arbitrary, it follows that dy(S,,, S,) — 0 a.s. as m, n — co.
The space D[0, 1] being complete in d,, this completes the proof.

2. On a representation of independent increment processes. Let X be a sepa-
rable infinitely divisible process on [0, 1] with independent increments, and
suppose that X is right continuous except possibly at the fixed jumps (cf. [7]
page 540). It has been shown by Ferguson and Klass (1972) that the jump part
of X is distributed as the sum of certain suitably centered one-jump processes,
the sum being interpreted in the sense of pointwise a.s. convergence. The authors
conjecture that the convergence holds with probability one, simultaneously on
the whole interval. Indeed, we shall show that the convergence is a.s. uniform.
Furthermore, it will be shown that, if X has no fixed jumps, the series may be
chosen so as to represent X with probability one.

As in [2] it suffices to consider the component of X corresponding to the
positive jumps, so let us assume that

31 log Eex® — {o (e“" —1— li”z )x,(dz), ueR, te[0,1],

+ 2
where {4,} has the properties stated (for {N,}) in [2]. By the relations
A[0, 1) x dz) = 4,_(dz), A[0, 1] x dz) = 4,,(dz),

we may define a measure 2 on the space T x (0, co), where T is obtained from
[0, 1] by counting the fixed discontinuity points of X twice. (Hence, each fixed
discontinuity point s € [0, 1] splits into two points in T which we denote by s and
s+4.) Now consider a Poisson process on T x (0, o) with intensity 2, and denote
its unit atom positions by (z;, 8;), where we assume that 8, > 8, = --- > Oand
that the order among atoms with the same 8, is determined at random. Further-
more, define the centering functions c;, j € N, as in [2], page 1641, or roughly by
(32) ei(r) = §zi1 5 j_ 5 Ad2) re[o,1],
where the z; are determined, if possible, by 2[z;, c0) = j, and otherwise by a
suitable linear interpolation. Put 1, = 1, _and interpret 1 (s — (s+)) as 0.

PRroOPOSITION. The series

Y(t) = 25 {8 1(t — 75) — ¢;(0} tef0,1],
is a.s. uniformly convergent with the same finite-dimensional distributions as X. If
X is continuous in probability, we may choose the B; and t; as the jump sizes and
positions, and then X = Y a.s.

Proor. To prove the first assertion, it suffices by the arguments in [2] to prove
the a.s. uniform convergence of the sequence {V'™} defined there. Since X has
at most countably many fixed jumps, we may replace X in the proof by a process
in D[0, 2] obtained by separating the left- and right-hand jumps by intervals of
length 274, j e N, so we can assume from the beginning that X lies in D[0, 1].
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Clearly, X has no jumps of fixed size and location, so it suffices by Theorem 3
to prove that V™ — y® —, X — Y@, But this is equivalent to proving that,
after a suitable truncation of 2, V'™ —, X. We may therefore assume that 1 has
bounded support, in which case all moments exist and the denominator 1 + z*
in (31) and (32) may be replaced by 1. Now convergence of the finite-dimensional
distributions is a standard fact ([7] page 300), and since

F(f) = Var X(t) = | 2°4,(d?)

is bounded and non-decreasing, the tightness of {V™} follows by [1], page 133,
from the fact that, for any r < s < 1,

E(Va(”) —_ Vr("))ﬁ(Vt(”) — Va(‘n))ﬁ — E(Vs(") —_ Vr(ﬂ))2E(Vt(‘n) _ Va(n))z
= Var (V" — V,"™)Var (V," — V,™)
= {F(s) — F(NHF(r) — F(s)} -
To prove the second assertion, note that the point process on [0, 1] x (0, oo),
whose atom positions are determined by the jump positions and sizes of X, is
actually a Poisson process with intensity 2 ([7] page 550). To see that X = Y

a.s., it suffices by right continuity to show that X, = Y, a.s. for each fixed
te[0, 1]. But this follows from the fact that ¥, — X{(¢) in L,.

REMARK. The fact that the processes V™ of [2] are a.s. uniformly convergent
is essentially a classical result, due to It6 (1942). The above proof is given merely
to illustrate the usefulness of our general theorems.
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