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LIMIT THEOREMS FOR DISCONTINUOUS RANDOM EVOLUTIONS
WITH APPLICATIONS TO INITIAL VALUE PROBLEMS
AND TO MARKOV PROCESSES ON N LINES

By ROBERT P. KERTZ
Georgia Institute of Technology

Let X(#); t = 0 be a stationary continuous-time Markov chain with
state space {1,2, ---, N} and jump times #;,2;, ---. Let To(t); 20,1 <
a = N, be semi-groups and [T;x(4); © =0, 1 <j+#k < N, operators de-
fined on Banach space B. Under suitable conditions on these operators,
including commutativity, and an appropriate time change in ¢ >0 on
X(), we give limiting behavior for the discontinuous random evolutions
Tx0)(t®) IIx o x 1ty (€T xiey)(82 — £°) -+ Txqe,p(f — £,5) as e — 0. By con-
sidering the ‘expectation semi-group’ of the discontinuous random evolu-
tions, we prove a type of singular perturbation theorem and give formulas
for the asymptotic solution. These results rely on a limit theorem for the
joint distribution of the occupation-time and number-of-jump random vari-
ables of the chain X(+). We prove this theorem and with ‘random evolu-
tion’ techniques use it to give new proofs of limit theorems for Markov
processes on N lines. Analogous results are obtained when the controlling
process is a discrete-time finite-state Markov chain.

0. Introduction. Research on the ‘random evolution’ of a set of semi-groups,
with switching among semi-groups controlled by a finite-state, continuous-time
Markov chain, has been surveyed by Griego-Hersh [6], and more recently by
Pinsky [23]. Pinsky has given representation theorems for multiplicative oper-
ator functionals (MOF) in the case of a finite state Markov chain in terms of
‘random evolutions’ of semi-groups T;(f), 1 < j < N, ¢t = 0, and jump operators
II;x» 1 £J, kK < N[22]. Limit theorems for the MOF’s without introduction of
the jump operators, i.e., in the continuous case, have been proved by Griego—
Hersh [6] and by Hersh-Pinsky [8] under the assumption of commutativity of
the operators. In this paper we extend these results to MOF’s with jump oper-
ators in their representation, i.e., in the more general discontinuous case. Our
method of proof is based on a limit theorem for the joint distribution of the
‘occupation-time’ and ‘number-of-jumps’ random variables for a continuous-
time, finite-state Markov chain.

Griego-Hersh have shown that perturbation theorems for systems of partial
differential equations follow from the limit theorems for the MOF’s when the
analytic semi-groups associated with the continuous MOF’s are considered [6].
In Section 2 we obtain from our limit theorems for discontinuous MOF’s new
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perturbation theorems for various initial value problems. One of the perturbation
theorems is stated as follows.
We consider the initial value problem

a €
(1) S = T+ 7 K Pt — )
us 0)=f,eB I1<sa<Ne>0.

Here B is a Banach space. For each 1 <j, k < N, ¥, and ®,, and ¥, (u),
are respectively generators of a strongly continuous group and semi-groups of
bounded, linear operators on B which are mutually commutative; these operators
satisfy W, (c) = eW,;, + @, + o(’) as ¢ > 0. For 1 <j#k <N, Py(u) is
defined by P; () = exp(¥,,(x)), u = 0. The numbers q,,, 1 < a, 8 < N, are
real constants with ¢,, >0 for 1 <a# B8 <N, }_,49,, =0, and with p,,
1 £ @ < N, the numbers satisfying >}7_, p,9,, = 0, 27_, p, = 1. If we assume
also that TT2, exp(tp; ¥;;) ITicjsesy €Xp(20; 9. ¥ ;i) = I, the identity operator,
then it follows that u(r) = lim,_,u,5(¢) exists, is independent of a, and is the
unique B-valued solution of
ou

= {Z5api®i + Dicivrsn Pi9in Pt

2) + U Zisikumensy Dikomn Tin T mal¥
U0) = Yicasn Pafa

where (d;; ,.,) is a certain N* x N? nonnegative definite matrix.

Our Markov chain limit theorem, together with ‘random evolution’
techniques, is also used in Section 3 to give new proofs of a limit theorem of
Fukushima-Hitsuda for a Markov process on N-lines [5]. Limit theorems for
discrete-time, finite state Markov chains and MOF’s being ‘controlled’ by these
chains are given in Section 4. In this context the ‘random evolution’ approach
is used to give a new interpretation to a limit theorem of Keilson-Wishart [12],
[13] in Section 5.

In other papers the author proves limit theorems for discontinuous MOF’s
without the assumption of commutativity of the operators [16] [17]. Applica-
tions are given there to a model for the approximation, by certain jump Markov
processes, to Brownian motion with inertia and to a model in storage theory.
Discontinuous MOF’s controlled by more general processes are also studied
there. Limit theorems and applications for continuous MOF’s with possibly
non-commutative operators and more general controlling processes have ap-
peared in several places [7], [14], [18], [20].

&—0

1. Throughout Sections 1-3 of this paper we use the following notation and
assumptions. Q = (9,,), 1 < a, 8 < N, is a matrix satisfying the conditions
that ¢,, > Ofor 1 < a + B < N, and 31, 9,, = 0. We assume Q has zero as
asimple eigenvalue. Hence Q hasa unique left eigenvectorp = (p,), ] < a < N,
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with pQ = Oand }7_, p, = 1. {X(#); t = O} is a stationary Markov chain taking
values in {1, 2, .. ., N}, having generator Q, and having transition probabilities
{Pa(t);t =20}, 1 <a, < N.Forl £ @+ 8 < Nandn > 0, wedefine N, ,(x) =
number of transitions from state « to state 8 during (0, u] by the Markov chain
{X(1); £ = OF; Noy(#) = Xogosu Lixiomr=asxw=p+ FOr each sample path X(.), we
let 7;* = epoch of the jth transition, and N(r) = number of transitions until
time f = 3, ;.cn Nju(f). Forl < a < Nand u = 0, we define y,(4) = amount
of time before time u during which the Markov chain {X(f); t > 0} is in state
a@; 7,(1) = Lebesgue measure of {s; X(s) = a and 0 < s < u}. P,{.}denotes the
probability measure defined on the sample paths X(+), given that X(0) = j; E{+}
denotes integration with respect to P{.}.
The numbers {6,,}, {p;,}, 1 <j +# k < N,and {v,;}, {w;}, 1 £j < N, 2, 4,, and
¢ are complex numbers with 4, and 1, constant. Q(z) = Qs 4,5 45 (v;), (W)),
(51)s (050)} = (9:()), 1 £ j, k < N, denotes the N x N matrix which has entries
given by
9i(t) = 5 + JZv;p + w; for 1<j=k<N
= 9 Xp(W0up + Lpup’)  for 1 <j+k<N.

We define numbers b,,, 1 < j, k < oo, d, and d, by A(r, ¢) = det (Q(p) — 7) =
Liie= b yipt, di = by/(—by), and dy = (by, + by, d; + b,d)")[(—by). The num-
bers 7,(¢), 1 £ j < N, denote the eigenvalues of Q(z). In the appendix we give
algebraic formulas for the coefficients b,,, by, by, by, by; and d, in terms of (p;),
(95)> (¥3)s (W;)s (@1)s (03)> 4, and 2,; we use these to identify parameters in the
limit and perturbation theorems. In the appendix we also give results on the
behavior of the eigenvalues z;(¢), 1 < j < N, for the matrix Q(z), which we
require in the proof of Theorem 2. We also use Theorem 1 due to Pinsky (see
[23] Section 1.3). To state this theorem we introduce the following notation.
We let f = (f;)isjsw€B = B,x - - xBy, where B; = B, 1 <j < N, isa Banach
space with any norm such that ||f,[| — 0 as ||f; || — O for every 1 <j < N.
{T;(9);t = 0},1 <j < N, are strongly continuous semi-groups of bounded, linear
operators on B with generators 4;, 1 < j < N;{S,,}, 1 <j # k < N, are bounded,
linear operators defined on B. We define the ‘random evolution’ {M(¢); t > 0} by

M(t) = wa)(tl*)sxmxul*) TX(tl*)(tz* — %) .- SX(t?V(t)-l)X(t}‘v(t))Txu}v(t))(t — )
and define the ‘expectation semi-group’ {T(f); ¢ = 0} associated with M(¢), on B,
by (T()f); = E{M(1)fx)}, t 2 0.

TueoreM 1. (i) {T(?); t = O} is a strongly continuous semi-group of bounded,
linear operators on B, and »
(if) w(®) = T(Hf, t = 0, solves the Cauchy problem

0
(3) auta = Aaua + Zﬁ*a qaﬂ(saﬁuﬁ - ua)

u0) =fe X, Z,,-
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2. We give a direct proof of a limit theorem for the joint distribution of
occupation-time and number-of-jumps random variables of the Markov chain,
together with the Markov chain itself. We consider two scalings concurrently.
To prove convergence results for expectation semi-groups of random evolutions,
we use this theorem with 2, =0, 2, = i1 as a weak-of-law-of-large-numbers
result (Theorem 3) and with 2, = 2, = i2 as a type of central limit theorem
(Theorem 4). In Theorem 5 we use this result with 2, = i1, 4, = —2*/2 to prove
the central limit theorem for Markov processes on N lines. This theorem can be
proved in more general settings by using techniques of Hitsuda and Shimizu [10],
or Pyke and Schaufele [24]. Of special interest in the direct approach are ex-
plicit formulas for limiting parameters and the application made of Theorem 1.

THEOREM 2.

lim, s E{exp[A( 21 25675/ (1¢") + Digjensn 05neN3u(t/e%)
4) + (DT Wi (1) + Tiginnsy 0 Nu(t/e))]; X(2/e) = B}
= psexp(4,mt + (d°4,%t/2))
forl < a < N, where
(1) = 1) — p;t
Niw(®) = Ni(?) — it -
(5) m= 23aPi%; + Disisksy P95 O -
(6) 0" = Tiginmnsy it,mn it Dmn
with 9, = 0y, for j # k and 9, = v; for j = k and (d;, ,..), an N* x N* real-
valued, nonnegative definite matrix.
Proor. From Theorem 1 we have the representation
Efexp[A( 27 0567/ (1¢7) + Dicivrsw 0516NG(t/e?)
+ (250 w7 (HE) + Digiersn P Nu(t/e)]; X(t/e*) = B}
= [exp(1Q(e)/e")]a exp(— A wt/e)

whete ® = 0L, p;0; + Tigjursw Pidin0s- We can write O(e)/e? = (P)(J)(P)*
where J¢ is the Jordan form of the matrix Q(e)/e?, and let 7i(e) = eigenvalue of
Q(¢)/¢* found in the jth row of J:. It is known that if y;, 1 < j < N, denote
the eigenvalues of Q, then 7, = 0 and Re (7;) < 0 for all j = 1 (see [21] page
104). From this fact, together with Lemma A.4, we have that lim,_, Re (7,(c)) =
—oo for j # 1. From Lemma A.5, we obtain e,(c) = d,e + d,e* + O(¢%) as
¢ — 0; we can write 7,(¢) = (4, 0/e) + (,m + (6°2,2/2)) + O(c) as ¢ — 0, where
d, = 40 from Lemma A.2 and ¢?, defined by ¢* = —2(d, — A,m)[(—4,)?, is
independent of 2, and 2, and is non-negative.

Since J* is in Jordan form and y,(¢) is a simple eigenvalue of Q(c)/s?, we have
{exp(tJ9)},1 = exp(tri(c)) and for j = 1 or k = 1, either {exp(#/°)};, = 0 or
{exp(¥J°)};,1 = {exp(fr.(¢))} - {polynomial in 7,(c)}. Thus lim,_, {exp(t9)};.0 ¥
exp(—4,wife) = exp{i,mt + (6*21[2)} if j =k =1 and = 0ifj = 1 or k = 1.



1050 ROBERT P. KERTZ

The first column of P¢ is a right eigenvector associated with the eigenvalue
71(¢), and has limit as ¢ — 0 given by a right null vector of 0, ¢ (1, ..., 1),
for some scalar g. The first row of (P¢)~! is a left eigenvector associated with
the eigenvalue 7,(¢), and has limit as ¢ — 0 given by a left null vector of Q, r- p,
for some scalar rand p satisfying 3;7_, p, = 1. It follows that lim,_, (P*), ,(P*);} =
9TPs = Pp-

Thus we have lim,_, exp{tQ(¢c)/c?},,, exp(— A, 0t[e) = lim, o 31 cp wsx(P)aym X
(eXP (%)), a(P)7ls €Xp(— A4, 0t[e) = p,exp{d,mt + (a’2,’t/2)} and (4) is proved.

By setting 2, = i, with 2 possibly complex valued, and 2, = 0 in (4), we have
{Disiznsy O Nip(t) + 20, v,;7,/ (1)}t~ converges in distribution as # — oo to a
Gaussian distributed random variable with mean zero and variance ¢®. The
moment generating functions and all moments converge (see [1] page 164) and
thus for any {0,,},<;vi<ns (Vihsi<ws it follows that

o* = limy_., (1/0{ Xsgjnr,mensy 05k Omn COV (Ni(1)s Nppo(1))
+ Disimsn ViV COV (75(0) 1n(1) + Tizsmensy ViOma COV (75(8), Nopa(2))
+ Zisiskmsn s Vn COV (Nu(2), 7a(1)} -

By correct choice of the parameters {¢;} and {v,}, the following limits are

seen to exist: lim,_., (COV (Nyy(t), Npn(t)}/ts lim, .. {COV (,(1), 7(1)}/1, and
lim, __, {Cov (7,(£) N,.(£))}/t. Thus (6) holds with

iy me = lim,_ {Cov (N;u(8), N ()Yt if j#k, m£n
() = lim,_. {Cov (r,(0, T}t~ if j=k,  m=n
= lim,_., {Cov (N;(#), 7u())}/? it j#k, m=n

= lim,_. {Cov (7,(!), N..())})t  if j=k, m#n.

@ik, ma)isi,bmmsy = (Sa,p)1sa,psy2 1S @ limiting covariance matrix and thus is non-
negative definite. []

ReEMARK 1. From the proof of Theorem 2 and Lemma A.5, we have
o® = —2r. Hence from Lemmas A.1 and A.2, we see that the coefficients
(4, mn1si.kmnsy Of 0% are functions of the entries of the matrix Q.

One can check by computation that we can write ¢* in the following form

(®) o' = 2/ LI 5.0 Zick 550005 0 + Zivriermmen Dt Qitmm(— 1) 0n'0 5

+ Z 905 9w = 17 G w100 Omic + (3) Zirr 95605, 05}
where v,/ = v; — », @ as in Theorem 2; and other notation is given in Lemma
A.l.

REMARK 2. The integrals v;, = {3 (pj(t) — pp) dt, 1 < j, k < N, converge
by exponential convergence of the integrands p;(#) — p, to zero (see [2] page
236). In [16] the author shows that the quantities v, 1 < j, Kk < N, and p,,
1 < a < N, together determine the Markov chain. With the aid of Lemmas
A.6 and A.7 we have ¢> = 2p . (w - k) where p = (P;hi<jsv ADA W = (Wi)i<s ksn
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and & = (h;),c;<y are defined respectively by w;, = v; for j = k and = ¢,,0,,
forj+kand h; = 10, v;iV + Dickrmsn Yik Tem Oim-

The following two theorems are extensions of perturbation theorems of Hersh—~
Pinsky [8]. In the proofs we represent the solutions of the Cauchy problems as
expectation semi-groups of discontinuous random evolutions and then prove
limit relations from Theorem 1 for these expectations.

THEOREM 3. We let B denote a Banach space and assume that the following hold:

(i) Foreachl <j,k < N,u =0, W, (u) and ¥ ;, are operators respectively with
domain 2, , and 2, in B satisfying W . (¢)f = ¥, f + O(c)ase — 0 forfin Z C
N (D N D), where 2 is a dense subset of B. W, (u) and W, generate re-
spectively the strongly-continuous semi-groups {exp (f¥ ;,(u)); t = 0} and {exp (¥ ;,);
t = 0} of bounded, linear operators on B.

(ii) The operators T (t) = exp(tc~'W;;(¢)), ¢, t = 0, and P (u) = exp(¥;, (1)),
u = 0, are all mutually commutative, and the families of operators exp(t¥;,) t = 0,
1 g}, k < N, are mutually commutative.

(iii) Q =(9ap)s 1 = a, BN, is an N x N matrix with q,, = 0 for a # B,
with Y3 1 9., = 0, and with zero as a simple eigenvalue. p = (p,), 1 < a < N,
is the unique left eigenvector of Q satisfying 3 ¥_p, = 1,p, = 0.

Suppose (w;i(t)), 1 < j < N, in B" satisfies

ow ¢
9) ;;J = e—ﬂlfjj(e)wjf + 6 Nainns Gin(Pin(e)Wt — W)
w;(0) = f; 1<j<N,e>0,t=0,f; in B.

Then w(t) = lim,_, w () exists, is independent of j and is the unique B-valued
solution of

d
(10) —5‘—:— = (X5 + Tizivrsw Pidin Tir)W

w(0) = Xpifi
Proor. From Theorem 1, together with assumptions (i) and (ii), we obtain
that the solution (w,(¢)), 1 < a < N, t = 0, of (9) has the form
Wo'(1) = E{T%0(et.*)Pxoyxiem(€) T em(e(B* — 6%)) - - -
fo(tfv(t/m(t — e ) ko)
= E Ty (ers(t[e)) - - - Tiv(er(t[e))(Prale))™ 24 - -
(Py v =a(€))"™ N1 4 0}
= Eo[ILisssn expler(1/e)¥ 55+ 7i(1[e)o (¢)}
X ILisisrsn eXP{eN;u(t/e)¥ ;1 + Ni(t/e)o ()} fxcesn] -
We apply Lemma A.8 and Theorem 2 with 4, = 0 and 4, = iy to obtain

wi(t) = lim,_o 2001 §§2v2 Tlissesn €XP {50 Wi} fs AHL (2, (Xma))
= Jlisisw Xp{tP; ¥} Tlisizasy XP{P;i 952 ¥ in} 20 Psfs-
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Hence, by using that the exp(¢¥;,) are commuting semi-groups, we obtain that
w(7) satisfies (10) (see Theorem 1 of [28]). By evaluation at ¢+ = 0 the initial
conditions are satisfied; uniqueness follows by use of resolvents as in Theorem
1.3 of [3]. O

THEOREM 4. We let B denote a Banach space and assume that the following hold:
(i) Foreach1 <j, k < N,u =0, ¥, (u), ¥,,, and ®;, are operators respec-

tively with domain D, ., 2\, and D) in B satisfying ¥, (e)f = ¥, f + O, f +
0(¢*) as ¢ -0 for fin Z C N(Z{H N Z,,) where Z is a dense subset of B.
¥, and ®;, and ¥, (u), are respectively generators of a strongly continuous group
{exp(t¥;,}; — o0 < t < oo} and semi-groups exp(t®;,) and exp (t¥;,(u)), t = 0 of
bounded linear operators on B.

(ii) The operators T (t) = exp(te~*¥;,(¢)), ¢, t = 0, and P (u) = exp(¥ ;. (v)),
u = 0, are all mutually commutative, and the families of operators exp(t¥;,) and
exp(t®;,), t 2 0, 1 < j, k < N, are mutually commutative.

(iii) Q = (q,,) and p = (p,) are given as in Theorem 3.

(iv) TI3 €xp(1p; ¥ ,5) Tacsvnan €XP(1p; 93 ¥ss) = L, the identity operator for
t=>0.

Suppose (u;s(t)), 1 < j < N, in BY satisfies

(a)

a K
= Wyt + 67 Daes Gaa(Pan(e)y’ — 1)

us 0) = f; 1<j<N,e>0,f; in B.

Then u’(t) = lim,_, u /() exists, is independent of j, and is the unique B-valued
solution of

(b) aa—': = V®y 4 VOu
u(0) = Xiapif;
where
(11) Ve = Bapi®i + Disisrsy Pi9iPin
(12) VY = (3) Zisskomnsy Liemn it Tmn

with (d;;, ..) the coefficients defined in (7).
REMARK. By assumptions (i) and (ii), the operator V® 4 V'» generates on B
a strongly continuous semi-group, exp(#(V® 4 VV)), t = 0.

Proor. From Theorem 1 and assumptions (i), (ii), and (iv), we have that
the solution (#,5(?)), 1 < a £ N, t = 0, of (1) has the form

ul(t) = Ea[TEX(O)(eztl*)PX(O)X(tl")(e) te Txm'v(g/ez))(t — &) xwm]
= E[TLisisv exp{er,'(1/e")¥;;} exp{e’y (1/e")@;;} exp{r (#e*)o (<)
X Ilisjersy eXp{eNG(1/e)¥ .} exp{e? Ny (16D 5.}
X exXp{N (/)0 ()} f xiwren] -
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From Lemma A.8 and Theorem 2 with 1, = 1, = i1 we obtain

u(r) = lim,_o 353, § - - §powe TTassesn €XP {5 @i}
X Iissesn ©XP{Yin ks H(ts -+ o5 Xjs <+ 23 Yjioy =+, B)
= Ilisisw XP{P; 1P} Iisinrsn XP (P 9511 P i}
X § e §awr Iisinsn %P (Vi Wind X1 Pofs dF(t, (Vir)) -

From this representation of #°(f) we have that u°(¢) is independent of @. Here
F(1, z) is the distribution function of a Gaussian random variable with mean
zero and covariance matrix #(dy, ,.,), 1 <Jj, k,m,n < N. F(t, z) is the funda-
mental solution with pole at z = 0 of the Cauchy problem for the parabolic
equation

aF

- (t’ z) = (3) XZisikmmnsy Dikymn ———— PRI n az

(tz).

We use this and integration by parts as in Theorem 5 of [6], together with
Theorem 1 of [28] to obtain that u%(7) satisfies du/dt = (V® + V®)u where V®
and V™ are the two operators in (11) and (12) respectively.

The initial condition #°(0) = 3%, p, f; is satisfied, since the Gaussian kernel
at t = 0 is just the o-function at the mean zero. Uniqueness follows by use of
resolvents as in Theorem 1.3 of [3]. []

REMARK. Suppose we have {[[;, (#);# =0}, 1 <j =+ k <N, a family of
bounded, linear operators on B and [[% and []® operators satisfying

L @)f =f + ¢ 1SS + S TIE S + o))
ase—0forfeZ c N (AR N 21 (e) with & dense in B. Assume
also that In (J],, (¢)) can be defined (e.g., if ||TT,, () — 1]| < 1 as ¢ — 0, this
holds) and generates a semi-group on B. Then ¥, = [J% and ®,, = [[% —
(D(I5%)* and Pjy(u) = exp{ln (I1;; ()} = exp{e TIR + <TII1% — GATERY] +
o(¢)}. Theorem 4 holds with V® = 3% p. <I>] + Disiersn P59l 115 —
@I}

3. In this section we apply Theorem 2 and some of the techniques used in
the proof of Theorems 3 and 4 to give a new proof of a limit theorem for the
Markov processes on N-lines studied by Fukushima and Hitsuda and others ([5],
[14]). This theorem and these processes also arise as a special case of work of
Schil on Markov renewal processes with auxiliary paths [27]. For the facts
used in this section pertaining to infinitely divisible processes, see Itd [11].

We let {X(¢); ¢ = 0}, {£,*}, n < 1, and N(¢) be respectively the Markov chain,
jump times for this Markov Chain, and number of jumps up to time ¢ for the
Markov chain, as given in Section 1. B, denotes the space of complex-valued
functions on the real numbers R which are bounded and measurable with re-
spect to the Borel g-algebra on R. We define {T,(¢); = 0}, 1 < « < N, on B, by

(13) T(Of(x) = S f(x + u)p,(t, du)
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where {p,(7); t = 0} is the transition function of an infinitely divisible process
with characteristic function

§z e p.(t, du) = exp(t¥,(2))
where ¥, is a Lévy exponent:
V() = ime2 — (Ho2 + §ple — 1 — (i2x/(1 + x"))}M,(dx) .
We define {],,}, | < a +# g < N, by
(14) [Las f(x) = §of(x + w)pay(du) feB

where {p,,(du)}, 1 < a # B < N, are probability measures on R. The random
evolution M(f), t = 0, is given by

(15) M(t) = TX(O)(tl*) HX(O)X(tl‘) TX(tl‘)(tz* - tl*) oo TX(t?vm)(t - t?\;(t)) .
Let {Y(#); t = 0} be the stochastic process with state space R satisfying
(16) E(e|X(s), 0 < 5 < 1} = (M()e}],,

{(X(9), Y(?)); t = 0} is then a Markov process. {Y(?); ¢t = 0} evolves in the fol-
lowing way:

(i) between jump times of X(s), the process Y(s) evolves like an infinitely
divisible process with Lévy exponent ¥, on R; and

(ii) at jump times £,* of X(s), the Y(s) process stops evolving like an infi-
nitely divisible process with exponent W, ._,; then it ‘jumps’ to a new position
Yn € R according to the probability distribution Prob{y, e 4| X(?); t < t,*} =
Pxcty_p.xem(Y(8,*—), A); and then starting at y,, the Y(s) process evolves like
an infinitely divisible process with exponent ¥, ., for a length of time up to
the next jump time ¢},, of the X{(s) process, and so on. For the Fukushima-
Hitsuda formulation of this process, see [5].

We assume ¥, (1) and p/,(2) = § e'**p,,(du) are both in C®. Let {Z,(t); t = 0}
be an infinitely divisible process on R with Lévy exponent ¥,;(1). Let X, ,bea
random variable on R with probability distribution p,,(du) for 1 < a = g < N.

THEOREM 5. As t — oo, (Y(t) — mi)t~% converges in distribution to a random
variable which has a Gaussian distribution with mean zero and variance o¢® + 7?,
N(O, 0® + %). Here the parameter m = Y, ¥_p.m; 4+ Dlicisnsy P9 M With
m; = E{Z,(1)} and mj, = E{X;,}; and the parameters ¢* and t* have the repre-
sentations:.

(17) o= 2iisiksmynsy Dik,mn Dt Tmn
with 9, = m; if j = k and n;, = my, if j + k; and
(18) o= NPV + Xasieksn PidinVik

withv; = V(Z;(1)) = variance of Z,(1) and v;, = V(X},). The coefficients (d;; ,,)
1 <j,k,myn < N, are those in the representations of o* given in (6), (8), and
Remark 2 after Theorem 2.
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Proor. We have from (13)-(16) that
E{expiZ[(Y(t) — mt)t~#]}
= E{M(t) exp(idt=ty))|,_, exp(—iimtt)}
= Elexp[ X7 V(A )y (1) 4 Zgjensy (10 p5u(A-4))Ny(1)] exp(—idmit)} .
We use W;/(0) = im;, ¥;"(0) = —v;, pji(0) = im;,, and pp'(0) — (pj(0)) =
—v,,, in the expansions for ¥;(2) and p),(2) to obtain that as t — co
V() = (idm,14) — (Z,126) + O((Ae~HYY)
In (pR(ar74)) = (im17t) — (B;,/21) + O((Ar7H)) .
By an application of Theorem 2 with 4, = i1 and 1, = —4?/2, it follows that
lim, _,,, E[expia{(Y(t) — mt)t—#}]
= lim,_, E[expid{ 3.3, mi(r;'(17Y) + Digiwnsy mu(Niu(0)171)}
X exp — (X2 L7 v, (/1) + Dissersn Va(Ni()/D}]
= exp(—A¥(a* + 7%)/2)
where ¢ and * are given in (17) and (18) respectively. []
ReMARK. These techniques can also be used to show that as ¢t — oo, Y()/t

converges in distribution to the constant random variable = m.

4. In Sections 4 and 5 we use the following notation and assumptions. P =
(Pap)s | = a, B < N, is a matrix satisfying the conditions that p,, = 0 for | < a,
B < Nand }};_,p,, = 1. We assume P has one as a simple eigenvalue. Hence
P has a unique left eigenvector p = (p,), |l £ a < N, with p.P=p and
r pe=1. Let Z+t ={1,2, ...}. {X(n); ne Z* U {0}} is a stationary Markov
chain taking valuesin {1, 2, ..., N} and having transition matrix P. For 1 < a,
B < Nandu e Z*, we define N, (4)=number of transitions from state « to state 3
before and including time u in {X(n); n € Z* U {0}}; Nopy(#) = 23425 L x(ny=a, x(nt1y=p)°
For 1 < a < Nand u e Z*, we define y,(#) = amount of time before and includ-
ing time u during which {X(n); n € Z*} is in state a;

Ta(u) = Z:=1 I(X(n):a) = Ziv=1 Naa(u) .

We suppose B and B are Banach spaces as given in Section 1 and let {S;,},
1 < j, k £ N, be bounded, linear operators defined on B. We define the ‘random
evolution’ {M(n); n € Z*} by

(19) M(n) = SxoxaySrwxa *** Sxm-vxm

and the ‘expectation semi-group’ {T(n); n € Z+}, associated with M(n), on B by
(T(n)f); = E{M(n)fy.,}, n € Z*. With this notation the following theorem be-
comes immediate from material in [23]. (We let M(0) = 7 and T(0) =I).

THEOREM 6. (i) {T(n); ne Z* U {0}} is a discrete semi-group of bounded, linear
operators on B, and
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(ii) u(n) = T(n)f, ne Z+ U {0} solves the initial value problem
(20) uin + 1) = Ao pinSith(n)
u0) =feB.

We use the following theorem in proving limit results for the discrete-time
expectation semi-groups in Theorems 8, 9, and 10.

THEOREM 7.

lim,_,,, E,{exp[4; Xli<a,psw oap(Nt'xﬂ(k)/ki) + 23 Diga,psw Vas(Nag(k)/k)1 X(k) = b}
= exp{(4°/2)(* — my’) + A,m,}p,

where

@1 N2sK) = Noy(h) — pupask
@) Mo = Do Pasles

(23) My = T PuPesVes

(24) 0" — Mg’ = Flicaprisn CaproOuslis

with (C,p,,;) an N* x N* real-valued, nonnegative definite matrix.

Proor. The proof follows along the lines of Theorem 2. Using Theorem 6,
we see that it suffices to show

lim,_, exp(—2,m,k*)(p*'(k7t)),,, = exp((2.*/2)(a* — m,®) + A,m,)p,
where for 1 < a, 8 < N,
(P(P‘))a,p = Pap exXp {llpoaﬁ + Zzll‘zvap} .

We write p(¢) = T-(¢)J(¢)T(¢r) where J() is the Jordan form of p(y) and let
(7(#))1<jsv be the eigenvalues of p(x). Using eigenvalue expansion arguments
similar to those used in Theorem 2, we obtain

lim,_,, exp(—4,myk¥)J® (k=) = lim, _,, exp(—4,m,k¥)J{&)(k=t)
= lim,_,, exp(—24,m,kt)y*(k~?)
= exp((1"(0) — (1'(0))")/2) -

Finally we use that ¢* = —2[(7,"(0)/2) — 2,m,]/—4,® is non-positive and real-
valued, that 7,’(0)k = 2,m,, and that lim,__, T;3(k~})T, ,(k~t) = p, to obtain

lim, ., exp(—2,m,k¥)(p*'(k™4))e,s = exp{(4/2)(0* — my’) + 2,m,}p, .

Since this convergence holds for 2, complex, we can represent ¢* — m,’ as in
(24) with ¢, 5 1 £a,B,7,0 < N, defined by

(25) Cap,rs = limy_., {(1/k) Cov (N,4(k), N,,(k))}
and obtain that ¢ — m,’ is an N? x N? nonnegative definite matrix. []

REMARK 3. From results analogous to Lemmas A.1 and A.2, we can conclude
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that the coefficients c,, , are functions of the entries of matrix P and that ¢*
has the representation

(26) " = /DI PN ik PitPik 00k + Dnemiwe (— 1) 5Dy Pt 0450 01)
— My( X jmtm PiePiemm(—1)05) + 3me* (X jer Pii i)}

where notation is analogous to that of Lemma A.1, with matrix Q replaced by
matrix P.

REMARK 4. The parameters (c,, ;) and ¢ — m,* have been characterized in
terms of (p,), (P.s), and (z,,), the fundamental matrix of the Markov chain, by
Kemeney-Snell (see [15] page 145). Another useful representation of ¢* — m,*
in terms of (p,), (P.s)s and 5., = 25_, (psy — p,) is given in Romanovsky (see
[26] page 194). (See also Frechet [4], and Kielson and Wishart [12], [13]).

The following two theorems are discrete-time analogues to perturbation Theo-
rems 3 and 4. The techniques of proof here are analogous to those used in the
previous theorems. From Theorem 6 the solutions have ‘expectation semi-group’
representations. Convergence of the expectations follows from Theorem 7 and
Lemma A.8.

THEOREM 8. We let B denote a Banach space and assume that the following hold:

(i) Foreachl < j,k < N,u =0, ¥, (u) and ¥, are operators respectively with
domain 2, , and 7, in B satisfying ¥, (e)f = ¥, f + o(c)ase >0 forfe Z C
N (Zu 0 D), where Z is a dense subset of B. W, and ¥, (u) are respectively
generators of strongly continuous semi-group exp(t¥;,) and exp(t¥;,(u)), t = 0, of
bounded, linear operators on B.

(ii) Forl < j, k < N, P;(u) = exp(¥;,(u)) are mutually commutative operators
on B; the operators exp(t¥;,), 1 < j, k < N, are also mutually commutative.

(ili) P = (pap)s 1 £ a, B< N, isan N x N matrixwithp,, > 0, 330 p,, = 1,
and with one as a simple eigenvalue. p = (p,), 1 < a < N, is the unique left
eigenvector of P satisfying 310_p, =1, p, = 0.

Suppose w(n) = (w;ii(n)), l £ j < N,ne Z*, t 2 0, in B satisfies

(27) win + 1) = 33, pu Pa(t/n)w(n)
wi0) =1, 1<jSNfeB.

Then w(t) = lim,_,, w;*(n) exists, is independent of j, and is the unique B-valued
solution of
ow

(28) o = (Zisiksn PiPir L)W

w(0) = Ziapif;-
THEOREM 9. We let B denote a Banach space and assume that the following hold:
(i) Foreachl1 <j, k < N,uz=0, ¥, (u), ¥, and ®,, are operators respec-
tively with domain =, ,, 2, and ) in B satisfying ¥, (e)f = W, f +
0, f+o(?)ase »0forfe T C N(ZY N D), where Z is a dense subset

(
J
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of B. ¥,,, and ®;, and ¥ (u), are respectively generators of a strongly continuous
group {exp(t¥,;,); —oo < t < oo} and semi-groups exp(t®@;,) and exp (t¥;,(u)),
t = 0 of bounded, linear operators on B.

(ii) Forl £j,k < N, P;(u) = exp(¥;,(u)) are mutually commutative operators
on B; the operators exp(t¥;,) and exp (t®@;,) are also mutually commutative.

(ili) P = (pup)» | < @, B < N, isan N x N matrix withp,, = 0, 310, poy = 1,
and with one as a simple eigenvalue. p = (p,), 1 < a < N, is the unique left
eigenvector of P satisfying 2 ¥_p, =1,p, 2 0. (Citoma)s 1 =J, k,myn < N, is
given in (25).

(iv) Tlisjrsy €Xp(;P5 ¥ ;i) = 1, the identity operator, for t = 0.

Suppose u(n) = (u;{(n)), 1 £j < N,ne Z+, t = 0, in BY satisfies

(29) uin + 1) = PP iu((1n))u(n)
u;(0) = f; 1<j=N.feB.

Then u(t) = lim,_,, u,(n) exists, is independent of j, and is the unique B-valued
solution of
(30) 94 _ yoy 4 yoy
ot
u(0) = Xiapifi
where
V® = Yisinsn PiPin Qi

1) — 1
VO =4 Ficikmmsy Cikomn Sk Tmn -

5. We use Theorem 7 and discrete-time ‘random evolution’ techniques as
found in the proof of Theorems 8 and 9 to obtain a new proof of the Central
Limit Theorem of Keilson-Wishart [12] for a discrete time Markov process defined
on N-lines. We deal with the temporally homogeneous Markov process {(X(n),
Y(n)), ne Z*+ u {0}} with state space E x R, where E = {1,2, ..., N}and R =
real numbers. The vector of probability measures F(y, n) = (Fi(y, n)hgisn
has entries F,(y, n) = Prob {X(n) = k, Y(n) < y} which satisfy F,(y,n + 1) =

¥ V2 Fi(y — z, n)dB;,(z). Here B = (B;(2)), 1 £j, k < N, is the matrix
increment distribution whose elements B;(z) 1 <j, k £ N are nonnegative,
monotonically increasing functions satisfying Y ¥_, B;(+o0) =1,1 <j < N;
§~. 2°dB;,(z) < o, 1 < j, k £ N; and B(+ o) is irreducible and aperiodic. For
1 < a, B £ N, we denote p,, = B,,(+o0) and b,,(2) = {=,, e"** dB,,(z) and let
£,, be the random variable giving the increment change in going from state
to state 8. The relation of §,, to B, ,(2) is given by B,,(dy) = Pr (a — B; §,,€dy)
and W, ,(2) = E[exp(idé,)] = boy(2)/pus

We define operators {]],;} | < a, § < N on B, = space of complex-valued,
bounded, measurable functions on R by [[,.,f(x) = (zf(x + 2)P(§,, € dz) and
define a ‘random evolution’ {M(n), n € Z*} by

M(n) = [1xoxw Hxwxe * Hxa-nxm -
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Then the process {Y(n)} satisfies
Efexp(iAY(n))| X(m), 0 < m < n} = {M(n)e*"}|,_, .

TueoreM 10. (Y(k) — mk)[k? converges in distribution to N(0, s + s,°) as
k — oo. Here N(0, s + s,%) denotes a Gaussian-distributed random variable with
mean zero and variance s + sy,

m = ZlSa,ﬁsN Papaﬁ E[Eap]
s12 = Za,p Papaﬁ Var (Eap)
522 = Za,ﬁ,r,d cap,rd E(Eaﬂ)E(éré)

where ¢,y 5, | < a, B, 7,0 < N, are the parameters defined in (25).
ProorF. Denoting m,,(1) = E[§,,] and m,,(2) = E[&},], we have
lim,_,,, E[expiA{Y(k) — mk)[kt}]
= lim, o, E[TT1ga,psw (War(Ak~H)) V2t ] exp (—imkt)
= lim,_,, E[eXp Yica,psn 10 (Wap(AkH))N,y(k)] exp(—idmk?)
= lim, .. E{eXP Ylica,psn 1Ak moy(1) — 32% 71 (Mo (2) — (moy(1))7)
+ O(|2k~H)}Neg(k)}
= lim, ., E{expil[ 2.,p Mas(1)(Nop(K)/KH)]
X eXp — 32 Lap (Map(2) — (maf(1)))(Nep(k)/K)]}
= exp(—3(s + 87)) .
In the last equality we have used Theorem 7 with 4, = i1, 4, = —34% 0, =
mg,(1), and v,, = m,,(2) — (m,,(1))*. O

REMARK. By using the representation for 5, = ¢* — m,’ referred to in Remark
4 and p,,m, (1) = § zdB,,(z) and p,,m,,(2) = § z* dB,,(z), we obtain the form
of 5, 4 s, given in Keilson and Wishart [13].

APPENDIX
We use the notation given at the beginning of Section 1.

LEMMA A.l. We have the following representations for the coefficients by,, by,
by, by, and by, in A(y, p): ‘
by, = (_1) ZIJY=1 q:i,j
by = Yiisj<rsn sk
by = (— AN Disjersy Li¥i + Disivrkemmeisy (— 1 Cinomm G305}
by = 4{ 21195,V + Dasizrsy 95,6905}
by, = A{ 2171 95,5 + Dasiresy .69 O}
+ AM(3) Disizrsy Giadintin + Dasicrsy 9iinn?;V%
+ Disirkprmmeisy (— 1) Gk mm % Vn 02
+ 2 (=) i Gni Dm0 O}
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where

3 = summation over 1 < h,m,j, k < N satisfying h +j, k = m, h+ m,
andj + k, h +j < m+ k, and h + j = m + k is taken just once;
q’;, = determinant of the matrix obtained from deleting the jth row and the kth
column from the matrix Q;
qls.zs = determinant of the matrix obtained from deleting the rows numbered a
and y and the columns numbered B and 6 from the matrix Q;
v=j+ kifeitherm<jandm < korm>jandm >k
=j+k—1ifeitherm<jandm >k orm>jand m < k;
p=k+mifeitherh < mandj < korh>mandj >k
=k+m—1ifeitherh<mandj>korh>mandj<k.

Proor. We use partial differentiation of A(y, ¢). For example,

b, = coefficient of g* in A(y, p) = <_1_) o A7, 1) 0
2 3/12 7=0,u=0
LEMMA A.2. The following representation for the coefficient d, holds:
(A1) dy = W27 PV + Disivnsn Pi9inbin} -

ProoF. It isknown that p, = ¢/ ,/312, ¢} ;, independent of 8, for 1 < a < N
(see [7]). Then by Lemma A.1, it follows thatd, = by/(—by) = A4{217-1 95,7, +
Tisivrsn $iudin0i}/ D31 45,5 and that (A.1) holds. []

LEMMA A.3. Given {f,},s, analytic functions. Let e > 0. Suppose f, — f uni-
formly on {z; |a — z| < r} and that f has p zeros in {z; |a — z| < r — ¢} and no zeros
on|a — z| = r — ¢. Then there exists N such that for each n > N, f, has p zeros
in{z;|la — z| < r — ¢}

PrOOF. Since f, — f uniformly on {z; |a — z| < r}, we have thatf,’ — f” uni-
formly on {z; |a — z| < r — ¢}, and thus f,’/f — f'/f uniformly on {z; |a — z| =
r — ¢}. It follows that

(I/Z”i) S(z;|a—z|=r—e)fn’/fn dz — (1/27”) S(z;lw—il=r—5)f'/fdz ’

and by [9] page 252, we conclude that there exists N such that the number of
zeros of f, in {z; |a — z| < r — ¢} equals the number of zeros of fin {z; |a — z| <
r—e} ifn>N. ]

LEMMA A.4. Denote the distinct eigenvalues of Qbyr, =0, 74 s 1'm Withy;
of algebraic multiplicity c;. Denote the eigenvalues of Q(z) by t,(¢)s 1<k N
Let N; be a neighborhood containing y;, 1 < j < m, with N; 0 N; = forj +i.

Then there is an ¢ > 0 such that if |p| < ¢, then c; of the eigenvalues {z,(1)},
1 < k < N, lie in the neighborhood N, for 1 < j < m.

Proor. We apply Lemma A.3 and use that for each p complex, the function
7 — A(r, p2) = det (Q(¢) — 7) is analytic, and that A(y, ) — A(7, 0) uniformly
in 7 on a large disc as ¢ — 0.



DISCONTINUOUS RANDOM EVOLUTIONS 1061

In particular, denote by r,() that eigenvalue of Q(x) which is near y = 0
as ¢ — 0.

LemMMA A.5. We have the representation t,(y) = r(®) = X %, d, ¢ as an an-
alytic function, in a neighborhood N of y = 0, with the following properties:

() A(r(¢), ) = 0 in the neighborhood N;
(i) 7(0) = 0;
(i) d, = by/(—by) = 7'(0) is purely imaginary if and only if 2, is purely
imaginary; and
(iv) d, = (byy + by, d, + byyd,?)/(—by;) = 1"(0)/2 and the number r, defined by
(A.2) r=(d, — ,m))(—27
is real-valued, independent of 4, and 4,, and non-positive with m given by (5).

Proor.  Consider A(y, #) = det (Q(r) — 1) = X, . burip.  Now, by =
det Q(0) = O since zero is an eigenvalue of Q, and b,, = 0 since zero is a simple
eigenvalue of Q. From Theorem 9.4.4 of [9] page 269, there exist the unique
function y(¢) = ¥5., d, ¢ analytic in a neighborhood N of 12 = 0 such that @)
and (ii) hold, and d, = by/(—by) = 7'(0) and d, = {by, + by, d, + byyd;?}/(—by,) =
7"(0)/2.

Lemmas A.1 and A.2 give that d, is purely imaginary if and only if 2, is

purely imaginary and that r = (d, — 2,m)/(—4,) is real-valued and independent
of 2, and 24,.

We show that r is non-positive. We note that r = 7,”(0)/2, where 7x(p) is
the analytic function obtained as above for the special case of Q(y) in which
4, =0, 2, = i. It suffices to show that Re (r,(z,)) < O for each real number
#,; since then, if p = g, + ip,, with g in the neighborhood N, of zero,

HWW=MWMW=®M@%@}
= <L> FARe (4 (1))}
2 dp,?

In the inequality we have used that Re (7,(x,)) < 0 and that Re (7«(#,)) achieves
its maximum at g, = 0.

Assume p is real-valued. Let x = (x,) be a right eigenvector for 7+(#) = 740
i.e.,

#=0

<0.

Hp=0

2ipra 9ap OXP(i100p)X; + GoaX, + ipV, X, — 7,X, = 0 foreach 1 <a<N.
Then we have

Xo(Gua + i1V, — Tx) = _Zﬂ$a UPT) exp(iﬂaa,e)xp .

Thus, [x,||qee + i, — 74| < |qaa| max, |x,|. If k is chosen so that max, |x

n

x|, then |g,, + ipv, — 7,| < |g,4]. Hence 7,(¢) lies within a circle with center
qr + ipv, and radius |g,,|- This implies that Re (r«(1) < 0 or 7. (p) = ipw,.

I =
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The techniques in this portion of the proof are found in Gersgorin’s theorem
(see [19] page 226). [
Let I, denote the indicator random variable for the set A.

LEMMA A.6. The following representations hold:

(A.3) E{§T 5 Uixipr=ar Lixiry=py A0 A1} = §§ §§ papas(r — p) dp dr;

(A.4) E{§§ 21t pmoctpran Lxit-p=izipm=p lxm=o 41}
=3¢ Vi PiquPr(r — 0) dp dr;
(A.5) E{Z(t,,,*;o«m*sr) o Lixpy=ar Lzt 1=, 21t ptr=k> 40}

= §0 0 paPai(r — P)q e dp dr;
(A°6) E{Z(ta*;o«,*sm Z(t,,*;o<t,,*5t,~) I(X(t:,_p=j,xu,,*)=k>I(X(t:_1)=y,xu,*)=z)}
= §0 §8 PidirPu(r — 0)q,. dpo dr .
Proor. We give the proof of (A.5). The proofs of (A.3), (A.4), and (A.6)
are completed similarly.

E{ Yt prio<tpesty S0 Lixormer Lixity—v=jixct =t 40}
= lim, o, E{3] s0cnmsry $6 " Lixiormar Lixecs -1y/am= g xcoam=p) 4P}
= lim, ., ¥ wocosmsr) §6877 P{X(0) = &, X((b — 1)/2") =],
X(b[2") = k} dp
= lim, o, 3 pi0conmnsr) §6' 0" P{X(0) = a}pa,{((6 — 1)/2") — p}
X {5 + o(1)}(1/2") dp

= V0§ Papas(r — 0)qu dp dr . a
LemMMA A.7. We have the following representation for the limits given in (7):
(A7) limy.... {CoV (74T, 7a(THYT = 2p;¥sm
(A‘8) limT—m {COV (TJ(T)’ Nﬂm(T))}/T = Pi¥inGmn + PmmaVni

(A.9)  limy o {CoV (N;(T)s Nua(THHT = pi4ix¥imGmn + PmGmn¥nidin
where the constants v;,, 1 < j, k < N, are defined in Remark 2.
Proor. We give the proof of (A.8). The representations (A.7) and (A.9) are
proved similarly.
limy_ {Cov (7(T), NaaTOYT
= lim,_, (I/T)[E{Sg' Z(t,,*;o«,,*sr) I(X(p)=j)I(X(t;_1)=m,xu,,*)=n) dp}
— PiPndmT’]
= limg_, (1/T) §7 3 Prma(Pus(r — 0) — p;) do dr
+ limy o, (1/T) §5° 57 pipim(0 — 1) — Pm)dmn do dr
= Pn9mn¥ni T PiVinGmn -

Here we have used Lemma A.6 and results proved using the techniques of proof



DISCONTINUOUS RANDOM EVOLUTIONS 1063

of Lemma A.6. We have also used convergence of p,,(#) — p, to zero at an
exponential rate to obtain finiteness of the integrals §¢° (p,,(#) — p,) du for
l<a, < N. [

Hersh-Pinsky proved the following lemma in [23], page 39. We have used
it in the proof of Theorems 3, 4, 8, and 9.

LeMMA A.8. Let {P,}, n = 1, be a sequence of probability measures on RY which
converge weakly to a limit P. Assume that, for some k, > 0,

lim sup, ., § e¥'*1dP,(z) < co .

Then for any strongly continuous B-valued function f(z) with || f(z)|| < Me**, k < k,,
the Bochner integral § f(z) dP,(z) converges strongly to § f(z) dP(z).
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