The Annals of Probability
1975, Vol. 3, No. 1, 89-99

FINITELY ADDITIVE CONDITIONAL PROBABILITIES,
CONGLOMERABILITY AND DISINTEGRATIONS!

By LEsTER E. DUBINS
University of California, Berkeley

For any finitely additive probability measure to be disintegrable, that
is, to be an average with respect to some marginal distribution of a system
of finitely additive conditional probabilities, it suffices, and is plainly nec-
essary, that the measure be conglomerative, that is, that there be a condi-
tional expectation such that the expectation of no random variable can be
negative if that random variable’s conditional expectation given each of
the marginal events is nonnegative.

With respect to some margins, that is, partitions, there are finitely ad-
ditive probability measures that are so far from being disintegrable that
they cannot be approximated in the total variation norm by those that are.
Those partitions which have this property are determined.

Many partially defined conditional probabilities, and in particular, all
disintegrations, or, equivalently, strategies, are restrictions of full condi-
tional probabilities Q = Q(A | B) defined for all pairs of events 4 and B with
B non-null.

0. Introduction. The three sections of this note treat three aspects of general,
that is, of finitely additive, probability measures, and, having no logical inter-
dependencies, the sections can be read in any order.

Section 1 demonstrates the equivalence of two properties, that, surprisingly,
not all probability measures possess. Nonconglomerability, according to its dis-
coverer, de Finetti, [4] ([5] page 98), obtains if an event can have a probability
larger than the supremum of its conditional probability given each of a mutually
exclusive and exhaustive set of events. And a probability measure is disinte-
grable along a particular margin if it is the average with respect to its marginal
distribution of some system of conditional probabilities. As Section 1 explicates
and demonstrates, disintegrability is equivalent to a closely related notion of
conglomerability.

Section 2 shows that there exists a finitely additive probability measure (on a
product space) that not only admits of no disintegration (with respect to one of
the coordinate axes) but which cannot be approximated in total variation norm
by those that do.

A function defined for all pairs of events 4 and B with B non-null, Q(A4/B),
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the conditional probability of 4 given B, and satisfying certain simple, natural
axiorus, is called a full conditional probability. The main purpose of Section 3
is to show that disintegrations of probability measures can always be extended
to be full conditional probabilities. That section also establishes by standard
analysis, and in slightly greater generality, the basic results obtained by Krauss
[6], by nonstandard analysis, that all probability measures, and certain other
partially defined conditional probabilities, can be extended to be full conditional
probabilities.

1. Conglomerative measures are strategic. Throughout this section, Q des-
ignates a fixed, nonempty set; = a partition of Q, that is, a class of nonemply,
pairwise-disjoint subsets of Q whose set-theoretic union is Q; a random variable
X is a bounded, real-valued function on Q; and an expectation E is a nonnegative,
linear functional defined on the space of random variables which satisfies
1) inf X < E(X) <sup X,
where inf X and sup X are the infimum and the supremum of the values that X
assumes.

I adopt the useful suggestion of de Finetti ([5] page xviii) that the same symbol
that designates an event also designates the indicator of that event, namely the
function that is 1 on the event and 0 off the event.

A n-strategy o is a function of two variables X and k, where X ranges over
the space of random variables and /4 ranges over the elements of x, such that,
for each h, o(.|h) is an expectation for which ¢(k|k) = 1. (This usage of
“strategy” is not quite the one adopted in [2].)

For each S C =, let the same letter “S” also designate the union of all he S
(as well as the indicator of this event). With these useful conventions, the z-
marginal of an expectation E is that probability measure y defined for S C =, by
7(S) = E(S)-

The two properties, conglomerability and disintegrability, that a pair (E, x)
may possess can now be defined.

If there is a w-strategy o such that, for all bounded X,

2) o(X|k) =0 forall hen implies E(X)=0,
then E is w-conglomerative.

If for some z-strategy o and all bounded X,
() E(X) = § o(X| k) dy(h) ,
then E is rn-disintegrable, or n-strategit, and ¢ is a n-disintegration or a n-strategy
for E.

As is evident, if (3) holds then so does (2). Somewhat surprisingly, the con-
verse also obtains.

THEOREM 1. A necessary and sufficient condition for E to be n-disintegrable is

that E be n-conglomerative. More precisely, for any z-strategy a, (3) holds for all
bounded X if, and only if, (2) does.
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PrROOF. Suppose that (2) holds for all bounded X. Then, as is easily verified,
for all bounded X and all real numbers u,

“ g X|h)Zu forall hex
implies E(X) < u.
Now let § C #. As will be shown, (4) can be strengthened to:
(5) o(X|h)<u  forall heS
implies E(XS) < uy(S).
For, let X" be X on S and « on §°. Plainly,
(6) » o(X'|h)Zu forall herm.
Hence, by (4),
u = E(X') = E(X'S) + E(X'S%)
©) = E(XS) + E(u(1 — 9))
= E(XS) 4+ u — uy(S) .
So (5) is established.
Now let ¢ > 0. For each integer j, let S; be the set of 4 e z such that
@) (J = De = o(X|h) <Je,
and calculate thus,
§s; o(X | Ry dy(h) = ( — D)er(S;)
) = Jer(S;) — er(S;)
= E(XS;) — ¢1(S;) »
where the last inequality holds by (5) and (8).
Sum over the finite number of j for which §; is nonempty, note ¢ is arbitrary,
and conclude:
(10) § o(X| k) dr(h) = E(X)
If X is replaced by — X, the inequality reverse to (10) is seen to hold, which,
together with (10), implies (3).

For simplicity of exposition, Theorem 1 and the relevant definitions were
formulated without measurability restraints. However, the theorem, with the
analogous proof, holds also if formulated relative to measurability with respect
to a distinguished field, not necessarily a sigma-field, of subsets of Q.

If conglomerability is defined in terms of inequalities on the conditional prob-
abilities of events only, as in [4] and [5], then, for some non-nonatomic prob-
ability spaces, the notion is technically weaker than that of this note. Moreover,
according to de Finetti ([5] page 99), conglomerability is equivalent to countable
additivity. Since there certainly are z-disintegrable expectations that are not
countably additive, the observations of this note would seem to come into con-
flict with his, unless the notion of conglomerability I explicate is, in some essential
way, not exactly the one intended by him.
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2. Approximability in norm by strategic or disintegrable measures. An F-
gamble is a finitely additive probability measure defined on all subsets of the
nonempty set F. In this section only, a strategy ¢ is a pair (g,, 9,) where:

(i) o, is an F, gamble and

(ii) o0, is a mapping that assigns to each i ¢ F, an F,-gamble, o,(i). If H desig-
nates F, x F,, then the strategy ¢ determines an H-gamble, or, equivalently an
H-expectation, here ambiguously, but harmlessly, also designated by 4, and de-
fined for all bounded, real-valued functions g on H, thus,

(11) o9 = §[§ 9(t, J) dow(j|$)] doy(i) -

An H-gamble, probability measure, or expectation, that thus arises from a
strategy is strategic.

A first question that arises is the existence on H of nonstrategic probability
measures. As is evident, if F, is a finite set, every probability measure on H is
strategic. If it is F, that is assumed finite, and F, infinite, then there are prob-
ability measures on H that are not strategic. For an example: let F, contain two
elements, + and —; let F, be the positive integers, and let x4 be a probability
measure whose marginal on F, assigns probability § to + and probability } to
—; let the conditional distribution of F, given + assign positive probability to
each positive integer; and let the conditional distribution of F, given — be a
diffuse gamble, that is, one that assigns to every finite subset of F, the probability
0. The proof that 4 is not strategic is easily furnished and is, in any event,
implicit in the discussion on page 205 of [5].

The question then arises as to whether every H-gamble can be approximated
by a strategic gamble. That is, given an H-gamble x and an ¢ > 0, is there a
strategic gamble ¢ such that, for every subset 4 of H

(12) : 14(4) — a(A)] < e?

If F, is a finite set, the answer is in the affirmative, as Proposition 1 below
implies. So even if F, is denumerable and the marginal distribution of x on
F, is countably additive, » can be approximated arbitrarily well by strategic
gambles.

It is the main purpose of this section to demonstrate that there exist finitely
additive probabilities on H which cannot be approached by strategic ones.

If  and v are such that, for every ¢ > 0, there is a set A4 of p-probability
exceeding 1 — ¢ but of v-probability less than e, then y is singular with respect
to v, in which event v is singular with respect to y, and then one writes p | v.

THEOREM 2. Let J be the set of positive integers. Then there exists a finitely
additive probability measure on J x J which is singular with respect to every strategic
measure on J x J.

Proor oF THEOREM. A probability measure on J is remote if every finite set
has probability 0 and if every set that does not have probability 0 has probability 1.
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Let a and 8 be remote probability measures, and define the H-gamble 4 for
bounded, real-valued functions g on J x J, thus,

(13) rg = §[§ 9(5, j) da())] dB(j) -

Of course, the 1 measure of a rectangle 4 x B is the product of a(4) with
B(B). There is a measure £ that agrees with  on rectangles which is never-
theless quite different from y and to which attention is called mainly to avoid
confusion. Under 2 for each first coordinate i, the second coordinate is dis-
tributed according to 8 whereas, under g, for each second coordinate j, the first
coordinate is distributed according to @. According to the definition of strategic
above, j is strategic whereas, as will be seen, p is not. Under £, with probability
1, the second coordinate exceeds the first, whereas, under g, the first coordinate
almost certainly exceeds the second. The appearance of paradox to which pairs
such as 1 and £ give rise has been noted by de Finetti and P. Lévy. For refer-
ences see [5] page 98.

LEMMA 1. p is remote on J x J.

LEMMA 2. If G is the graph of a function g on J into J, then p(G) = 0.
ProoOF OoF LEMMA 2.

(14) 1(G) = § «(Gj) dp(j),

where Gj is the set of i such that g(i) = j. Since the sets Gj are pairwise disjoint,
2 «(Gj) < 1, from which it plainly follows that a(Gj) converges to 0. Since
every finite set of integers has B-probability 0, the right-hand side of (14) is
zero. []

Let T be that subset of J x J consisting of all (7, j) such that j < i.
LEmMmA 3.
wT)=1.
Proor. For each j, the set Tj of all i such that (i, j) e T contains all but a
finite number of i. Therefore, a(7j) = 1. As is evident,
w(T) = § a(T)) dB(j)
(15) = § 14dp())
=1.
If o is a strategy such that, for all i, ,(i)(Ti) = 1, where Ti is the i-section of
T, that is, the set of j such that (i, /) e T, then o is a strategy that lives on T.

Plainly, if ¢ is a strategy that lives on 7, then ¢(T) = 1. The converse does not
quite hold. However, one has:

LEMMA 4. If ¢ is a strategy which determines a measure ¢ on H for which
6(T) = 1, then, among the strategies that determine &, there is one that lives on T.

PRrOOF. Suppose ¢ is a strategy for which 6(T) = 1. Let s, = o,, and let a,’(i)
agree with o,(i) for all j < i, but let ¢,(i) assign to i the sum of what o,(7) assigns
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to 7 and to the half infinite interval (i, co). Asis easily verified, the two strategies
o and ¢’ determine the same measure. []

LEMMA 5. Fora p which satisfies ¢(T) = 1 to be singular with respect to all
strategic measures, it suffices that it be singular with respect to all strategic measures
that live on T.

Proor oF LEMMA 5. Verify that every strategic measure is a convex combina-
tion of a strategic measure that assigns to T probability 1 with one that assigns
to T probability 0. Plainly, it suffices that ¢ be singular with respect to the first,
so, in view of Lemma 4, the proof is complete.

LEMMA 6. The measure y defined by (13) is singular with respect to every strategy
o that lives on T.

PrOOF. Let ¢ be a strategy that lives on 7. Since for each i, the i-section of
T consists of the i integers 1, .- -, i, which is a finite set, o,(7) is a discrete prob-
ability measure that lives on (1, --., ). For each p, 0 < p < 1, let g(i) = g,())
be the p-percentile of the probability measure ¢,(i), that is g,(i) is the smallest
integer [ such that

(16) sl <j<slzp.

For each p, the graph G(p) of g, has p-probability 0, as Lemma 2 implies.
Now choose a large positive integer N, and let p, = k/N, as k ranges through
the k + 1 integers 0 to N. The area strictly between G(p,) and G(p,,,) plainly
has g-probability at most 1/N. Moreover, since x is remote, as Lemma 1 states,
for every partition of H into a finite number of sets, one of these sets has pu-
probability 1. Since the complement of T and each graph G(p,) has p-probability
0, for some n, 0 < n < N, the area strictly between G(p,) and G(p,,,) has p-
probability one. This proves Lemma 6.

Together, Lemmas 5 and 6 plainly imply Theorem 2.

Let Z be the set of all strategic probability measures on J x J and let X’ be
the set of all probabilities on J x J that are singular with respect to every element
of . Asis evident, £ c X, and, according to Theorem 2, %’ is nonempty.
Every probability measure on J x J can be expressed in one and only one way
as a convex combination of an element of £’ and an element of Z”, as is implied
by Theorems 1 and 3 in [1]. Perhaps the elements of X”, as well as those of X,
have a nice characterization. ‘

Of course, the phenomena reported in this note do not require that H be the
Cartesian product of the integers with itself. Obviously, H could be the Cartesian
product of any two sets. When H is a product space, the vertical sections de-
termine a partition = of H. But, as in Section 1, the notions of marginal, con-
ditional distribution, and strategy are meaningful relative to any partition = of
any set H. A partition = is simple if, for some integer n, each of all but a finite
number of its elements has cardinality at most n.
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For any finitely additive, signed measure x defined for subsets of H, p is of
bounded variation if

(17) sup (4 C H)(|(A)] + |#(A))) < oo,

in which event this sup is called the (total variation) norm of x and designated
by -

Henceforth, measures of bounded variation, and these only, are designated
by the term measure.

PROPOSITION 1. If a partition x is simple, then the n-strategic measures are norm-
dense. That is, for each probability P on H, there is, foreach ¢ >0, a n-strategy
o such that

(18) [P(A) — § o(A| h) dy(h)| < e

forall A C H, where y is the n-marginal of P.
A set A is a w-selection if, for each he =, A N h contains at most one point.

LeMMA 7. Let A be a subset of H, n a partition of H, and P a measure on H.
Then, for each ¢ > 0, there is a function f, defined on © (or defined on H and -
measurable) such that 0 < f < 1, f(h) = 0if hn A= @, f(h) = 1if hn A = h,
and

(19) —e < P(ANS) — §fdP < ¢
for every S C w (or n-measurable set S).
ProoF. Easy in view of a finitely additive Radon-Nikodym theorem [3].

PROOF OF PROPOSITION 1. Suppose that every element of « has cardinality at
most n. An application of the axiom of choice yields n pairwise-disjoint sets
A,, -+, A, whose union is H and such that 2 n 4, contains at most one point,
1 <i<n Apply Lemma 7 to find, for each ¢ > 0, nonnegative z-functions
S oo fusuchthat 31 f; =1, f(h) = 0if hn A, = @, fh) = 1ifhn A4, = b,
and

(20) _751_ < P(A;nS)— §sfidP < %

for every subset S of = and each i. For all 4 ¢ H and each ke =, define
o(A| k) = X fi(h) where the sum is taken over those i for which the intersection
ANANh+ Q.

Verify that ¢ is a z-strategy, and that (18) holds. This completes the proof
when every element of z has cardinality at most n. The easy modifications
necessary to handle the case in which there are a finite number of exceptional
elements of = of cardinality greater than n are omitted.

The observations of this section can be summarized as saying that the follow-
ing three conditions are equivalent.
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(i) = is simple;
(ii) every probability measure on H is in the norm closure of the set of z-
strategic measures;
(iii) there exists no probability measure orthogonal to every =-strategic
measure.

Moreover, since 7-conglomerative measures are none other than the z-strategic
ones, as was explained in Section 1, this section can be viewed as a contribution
to the study of conglomerability.

3. Extensions of some partially defined conditional probabilities. A proba-
bility measure on a Boolean algebra . with unit Q is a finitely additive, non-
negative, function, normalized so as to assume the value 1 on Q.

If 27 is a subalgebra of a Boolean algebra .o, then P is a conditional proba-
bility on (&7, ), and (7, 57, P) is a conditional probability space, if P is a
function whose domain is % x S#° (5#° is 5# without the null element of
S¥’), satisfying:

(21) P(.|H) isa probability measure on &, foreach HeZ#°;
(22) PH|H) =1 forall HezsF°;

(23) P(A|C) = P(A|B)P(B|C) whenever AcCc BcC C,
Ae sz, Be#°, CeZ° .

In the presence of (21) and (22), condition (23) is equivalent to

(23a) P(AB|C) = P(B|C)P(A|BC)  forall 4,B,C,
with Ae %, Be ., Ce 5%, BCeZ#7°.

A conditional probability P on (%7, 5#°) is full (on &) if = A

LEMMA 8. Let .7° be the set of nonzero elements of a Boolean algebra 57,
and let P be defined on a subset & of %7 x 7°. Then these two conditions are
equivalent:

(@) There is a full conditional probability on .7 which agrees with P on .
(b) For every finite Boolean subalgebra & of .57, there is a full conditional
probability on . which agrees with P on the intersection of Z with & x & °.

ProoF OoF LEMMA 8. Obviously (a) — (b). So assume (b). Let Q- be the set
of all mappings M of % x .%° into the closed unit interval which, restricted to
& x & °, is aconditional probability which agrees with Pon 2 n (& x & °).
Plainly, Q. is compact in the usual product topology and as (b) implies, Q-
is nonempty. Since the family of Q_ plainly possesses the finite intersection
property, the intersection of all the Q- is nonempty, which establishes ().

THEOREM 3. For every conditional probability space (.87, 5, P), there is an ex-
tension Q of P which is a full conditional probability on 7.
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ProOF. When % is finite, define a sequence H,, - - -, H, of nonzero elements
of 5#” which are disjoint and whose union is Q, thus, H, is the least element
of 57 such that

(24) P(H) = P(H,|Q) = 1.

If H = Q, letn = 1. If H, # Q, let H, be the least element of 57 included in
H° such that

(25) P(H,|H?) = 1.

In general, if H,, -.., H, have been defined and their union is Q, let n = i.

Otherwise, let H,,, be the least element of 5# such that

(26) P(Hpy |(Hy V - VH)Y) =1,

For nonzero Be %7, let i = i(B) be the smallest integer such that BH, # 0
and define

(27) Q(A|B) = P(AB|H,)/P(B|H;)) if PB|H)>0,
_ |4BH,|

if P(B|H)=0,
e (8] H)

where |E| is the number of atoms comprising E.

To see that Q has the requisite properties, first verify easily that, for each
nonzero B e %7, Q(-|B) is a probability measure on . and that Q(B, B) = 1.
To check that Q(A|H) = P(A| H) for nonzero H e 5%, suppose that HH, = 0
for j < iand HH, + 0. Then P(HH,|H; > 0, so

Q(A|H) = P(AH| H,)[P(H| H,)
(28) = P(H|H)P(A| HH,)|P(H | H,)
= P(4|HH,))
= P(A|H),
where the last equality can be seen to hold for all 4.
What must now be seen is that

(29) (4] C) = (4| B)Q(B|C)
wherever 4 C B C C and B is not null.

Plainly, i(C) < i(B). If i(C) < i(B), then B is disjoint from H,,, which im-
plies that Q(B| C), and a fortiori, Q(A| C) = 0, so (29) holds. It may be assumed
henceforth, therefore, that i(C) = i(B) = i. Now if P(B|H;) > 0, certainly
P(C|H,)) > 0, and (29) is trivially checked. If P(B|H,) =0 = P(C|H,), then
again (29) holds. In the remaining case, P(B|H,) = 0 and P(C|H;) > 0. Then
Q(B|C), and, a fortiori, Q(A|C) are zero.

PRrROOF OF THEOREM 3 FOR GENERAL .%7. Let & be a finite subalgebra of .97,
Plainly, 57, = & n 5# isasubalgebra of &, and P, restricted to & x 577°,
is a conditional probability. Since & is finite, there exists a full conditional
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probability &~ which agrees with P on & x S5#,°, which is the intersection of
Z = & x 5¢° with & x F °. So (b) of Lemma 8 holds. This completes
the proof of Theorem 3.

If 57 is the trivial 2-element algebra consisting of the null and universal
elements, 0 and Q, Theorem 3 becomes a result of Krauss’, namely

CoroLLARY 1 (Krauss). Every probability measure on a Boolean algebra can be
extended to a full conditional probability.

THEOREM 4. Let 7, B, 5¢ be Boolean algebras with 7 D 8 D S# and let
P be a conditional probability on (B, 5¢°). Then there is a full conditional prob-
ability on .87 which is an extension of P.

ProoOF. Suppose first that 57 has only a finite number of atoms, say 4, - - -, A,.
For each i, the probability measure P(. | 4,) defined on <% can be extended to
some probability measure Q(- | ;) defined on .o,

For each H ¢ 57, define
(30) Q(A|H) = 33, Q(A| h)P(h;| H) .

As is not difficult to verify, Q(4 | H) is a conditional probability on (.7, 5¢)
which extends P. In view of Theorem 3, Q can further be extended to be a full
conditional probability on o7

Now drop the assumption that 57 is finite, and let & be a finite subalgebra
of &7, Then P_, the restriction of P to (&£ n &, 5 n # ), can be extended
to a full conditional probability on .5. An application of Lemma 8 in which
Z = & x 5#°, now completes the proof of Theorem 4.

By specializing %7, <7, and 2# in various ways, special cases of interest are
obtained. In particular, if % = &%, Theorem 4 reduces to Theorem 3. If
P = 57, one obtains: ‘

CoroLLARY 2 (Krauss). A full conditional probability on a subalgebra of a
Boolean algebra o7 can be extended to be a full conditional probability on .57

Henceforth, let %7 be the field of all subsets of a set Q. A partition = is a set
of nonempty, disjoint subsets of Q whose union is Q. A strategy ¢ on (57, w)
is a pair of functions (g,, o,) where g, is the marginal of ¢ on = and ¢, is a con-
ditional probability given m. (This usage of “strategy” differs slightly from that
of Sections 1 and 2 and that of [3].) More precisely: o, is a function defined on
7 x  such that, for each ke x, o(+| k) is a gamble defined on & for which
o(h|k) = 1. And the marginal ¢, is a probability measure defined on the field
of subsets of z. -

A m-measurable set is a subset of Q which is a union of elements of z. Thus,
to each subset S of 7, the union of all 2¢ S is m-measurable and can and will
also be designated by “S,” for every m-measurable set is of this form for some
unique S C 7. Hence, o, determines (and is determined by) a unique probability
measure on the 7-measurable sets which will also be designated by “g,.”
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THEOREM 5. For each strategy o on (.87, x), there is a full conditional probability
on S which is an extension of o.

Proor. In accordance with Corollary 1, g, can be extended to be a full con-
ditional probability on =, here also designated by a,. Thus, for each nonempty
subset S of 7, g,(+ | S) is a probability measure defined on 27, the set of subsets
of =.

For each 4  Q and nonempty S e 27, the function whose value at ke is
0,(A | k) can be integrated with respect to the measure gy(dk | S), obtaining

(31) P(A|S) = § 0,(A| K)o (dh]|S) .

If S is interpreted as ranging over #, the field of z-measurable subsets of Q,
P is easily seen to be a conditional probability on (%7, #) which extends ¢. In
view of Theorem 3, P can be further extended to be a full conditional probability
on .%7. This completes the proof of Theorem 5.
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