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CONTROLLED MARKOV CHAINS!

By HARRY KESTEN AND FRANK SPITZER
Cornell University

We propose a control problem in which we minimize the expected
hitting time of a fixed state in an arbitrary Markov chains with countable
state space. A Markovian optimal strategy exists in all cases, and the value
of this strategy is the unique solution of a nonlinear equation involving
the transition function of the Markov chain.

We are given a Markov chain with denumerable state space S. Let 0 denote
a fixed element of S, and S’ = S\{0}. We assume the transition probabilities
P(x, y) are such that 0 can be reached from every xe S, i.e., for each xe S,
P"(x, 0) > 0 for some n = 0. The control consists in being free to decide whe-
ther a transition shall take place or not; the object is to try to reach the point
0 in the shortest possible expected time. Thus a strategy is a rule describing to
which states y € § we are willing to go, from each x ¢ S.

DEFINITION 1. A strategy ¢ is a family of “go-sets” G(x), x = 0. Each G(x)
is a subset of S\{x}, containing 0. A transition from x to y will take place, pro-
vided y € G(x). All other transitions are excluded, and the process will then wait
at x one unit time, until the next transition is attempted. Let T < oo be the
time of the first visit to 0, under such a strategy. The value of the strategy o
is h(x) = E[T], x € S, with £,(0) = 0.

With each strategy o, there is associated a new Markov chain, with 0 as
absorbing state. Let Q, denote the transition function of this Markov chain,
restricted to S’. Then

Q,(x,y) = P(x, y) if yeG(x), y#Ex
(1) =0 if y¢G(x), y#x
= Y lsesvam P(X5 2) if y=x, x,yes.

Let 1 denote the constant (unity) function on §’. It follows from the definition
of h,, that

@) (I = Q))71(x) = T Qo 1(*) = Zieo B Miecrsen]
= Ea“[?'] = h,(x), xes.

REMARK 1. There exist strategies ¢ for which T < oo with probability one and
h,(x) < oo for all x € §. To exhibit such a strategy, choose G(x) as follows: for
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each x € S’ we may pick a minimal positive integer n, and a sequence x,, x,, - - -, x,,,
depending on x, such that

P(x, x,) P(x, X,) -+« P(x,,0) > 0.
Now let G(x) = {0, x,} if n > 1, and G(x) = {0} if P(x, 0) > 0. This strategy has
the desired property.
DEFINITION 2. A strategy ¢ is optimal if its value
3) hy(x) < h(x), forall ¢ andall xeS.

REMARK 2. In view of Remark 1 the value of an optimal strategy, if one
exists, must be everywhere finite. When there exist several optimal strategies, it
follows from (3) that they have the same value.

In fact the existence of an optimal strategy was proved by R. Strauch ([1]
Theorem 9.1) for a large class of dynamic programming problems, containing
the present one. If % is the value of an optimal strategy, then it seems plausible
that it should also be the value of the strategy with G(x) = {y: A(y) < A(x)},
which implies
) h(x) =1 + Zyes PO Y)Ax) A ()]s xes.
This motivates

DEFINITION 3. A real-valued (finite) nonnegative function on S’ is called
regular, if it satisfies (4).

LemMA 1. Let h be regular. Let ¢ be the strategy whose G(x) = {y: h(y) <
h(x)} U {0}, xe S". Then h is the value of o, i.e., h(x) = h(x), xe S".

ProoF. For ¢ the strategy in the Lemma, let Q = Q, denote the matrix as-
sociated with ¢ in (1). Then (1) and (4) imply that A(x) = 1 4+ Q, k(x), xe &',
and by iteration

h=+Q+Q + -+ + 091 + 0",

Since 4 is finite on §’, the sequence (/ + Q + --- 4+ Q") increases to a finite
limit, as n — co. Hence Q"1(x) tends to zero as n — oo, for each x ¢ §’. But

Q"h(x) = Tyes Q"X YIA(y) < Hx)Q™1(x),
since Q"*!(x, y) > 0 implies A(y) < h(x). Hence Q"t'4 — 0, so that
G) h(x) = L= QF1(x) , xes'.
It follows from (2) and (5) that 4 is the value of o. a0

THEOREM 1 [1]. There exists an optimal strategy. Its value (the common value
of all optimal strategies) is regular.

Proor. Let & be the class of all functions f: §' — [0, 4co].- Define the
operator U: & — & by

(6) Ux) = 1+ Dyes PO LA A SO xes'.
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Letf, =0, fi = Ufy, -+, furs = Uf,, = U""'f,. Since u < ve & implies that
Uu < Uv, we have f, /' f and also f = Uf by the monotone convergence theo-
rem. Let ¢ be any strategy and #, its value. Then

ha(x) 1 + ZyeG(z) P(x’ y)h,,(y) + ZueS’\G(z) P(x’ y)ha(x)
= 1+ e P(x, p)h(x) A B ()] = Uhy(x), xeS'.
It follows that
h,= Uh, = Uh, = --- = Uth, = Uf, = U"0 = f, , n=0.

Letting n — co gives h, > f. Choosing for ¢ a strategy with everywhere finite
value (which exists by Remark 1) we see that f is everywhere finite. To sum-
marize: We have shown that f is regular and that 4, > f for all strategies o.
The proof of Theorem 1 will therefore be complete if we exhibit a strategy
whose value is f. (By Remark 2 this will then be the common value of all op-
timal strategies). It suffices to define a strategy by G(x) = {y: f(¥) < f(x)} U {0},
xe §’. By Lemma 1 the value of this strategy is f. []

THEOREM 2. Suppose h is a regular function, and let o be the strategy with
G(x) = {y: h(y) < h(x)} U {0}, xe S’. Then o is an optimal strategy, and h is its
value.

This result will enable us to verify in practice that intuitively appealing can-
didates for optimal strategies are indeed optimal. It also has the theoretically
interesting

COROLLARY 1. There is one and only one regular function.

The proof of Theorem 2 will follow from the estimate

LEMMA 2. Suppose f and g are regular functions, and f < g. Then
() 9(x) < 2T xes'.

To complete the proof of Theorem 2, suppose that # is regular, and that ¢ is
the strategy in Theorem 2, defined in terms of 4. By Lemma 1, 4 is the value
of ¢. Let #* be the value of an optimal strategy o*. Then A* < h. To show

that ¢ is optimal it only remains to show that 2 < A*. Let Q be the matrix
associated with ¢* according to (1). Then

h(x) = 1+ F,es P(x, Y)AX) A A(Y)]
S 1+ Xyea PEAY) + Zyesia PO Y)A(x)

for any subset 4 C §’. Choosing 4 = G*(x)\{0}, where G*(x) is the go-set of
g*, we have
h(x) < 1 + Qh(x), : xes.

Iterating this inequality gives

®) AX)=SI+Q+Q+ - +0O)(x)+Q"MA(x), n=1, xef.
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Lemma 2 implies
Q"h(x) = Tiyes Q"X YIUY) = 2 Lyes Q"% YN*(N)F
= 2[R ()FQ () -
But Q"*'1 -0 as n— oo (as in the proof of Lemma 1). Therefore Q"4 — 0
as n — oo. Hence, using (5) and (8),
h(x) £ Ziio Q°1(x) = h*(x) xes. [
Proor oF LEMMA 2. Let us define f(0) =g(0) =0. Let S, ={x:xeS,
f(x)<nf2},n>1. ForallxeS,,
9(x) = 1+ Zyes P, ))9(x) A 9(9)]
= 14 Zyesu PO Y)I0) + 9() Zyess, P(%: )
= 1491 — P(x, S,)] + supyes, 9())P(x, S,) -
For each n let ¢(n) = sup,.s ¢(y). Then we have
1
9 s — , Snx=1.
©) 00 = pre sy o xeS,nz

Now we estimate the right-hand side in (9), which might be + o, if P(x, S,) = 0.
For xe S,,,\S,,

nt L> ) = 1+ 5,00 PO YL A O]

2 1+ Tyens, PO D) A SO Z 1+ Z[1 = P(x, S)],
which gives
(10) F(xis—) <

Combining (9) and (10) gives ¢(n + 1) < n + ¢(n), and since S, = {0}, we have
¢(1) = 0. Hence ¢(n + 1) < 317k = n(n 4 1)/2. Thus we have shown that
g(x) < n(n + 1)/2 on the set where f(x) < (n 4 1)/2. Since f(x) = 1 when
x = 0, this implies

n, xeS, \S,n=1.

9(x) = fEOL(x) + 3] = 2[f(0)F xes. [

Theorems 1 and 2 may be rephrased to produce a necessary and sufficient
condition for optimality of a given strategy.

THEOREM 3. A strategy ¢ with go-sets d(x), x # 0, and finite value function h is
optimal if and only if
(11) P(x,y) >0 and  yeG(x)=h(y) < h(x)

P(x,y) >0 and  y¢ G(x) = h(y) = h(x) .
ProorF. Since

h(x) =1 4+ X, eqm P V)AY) + Zyeam P(x p)A(x) xes§,
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it is clear that 4 is regular (satisfies (4)) if and only if (11) holds. If (11) holds,
then by Theorem 2, % is the value of an optimal strategy, so that ¢ is optimal.
Conversely, if (11) fails, then 4, is not regular, and so by Theorem 1, ¢ cannot
be optimal. []

Now we describe an algorithm which may be used to construct an optimal
strategy in certain cases, in particular whenever S is finite.

ALGORITHM. Let x, = 0, A(0) = 0.

Step 1. Choose x, € &', if possible, so as to minimize

i

(12) 1 | anddefine h(x)=_ L .
P(x, 0) P(x,, 0)
Step n. Assume that x,, x,, - - -, x,_, € §' have been chosen in steps 1, 2, - - -,

n — 1, and that A(x,), k(x,), - - -, #(x,_,) have been defined. Now choose x, e
S'\{x;, x,, - - -, x,_,}, if possible so as to minimize

1+ 235 PO x)h(x;)
i P(x, x;)
and define

(13) h(x,) = 1+ Z?;til P(x,, x:)h(x:)
o P(x,5 X;)
We shall say that the algorithm works, if at each step the desired minimum
is assumed, and if every element x € S is eventually chosen. Then the algorithm
will produce an ordering § = {0, x,, x,, - - -} of all of S and define a function

h: S — R. The basic property of % is given by

LeMMA 3. If the algorithm works, then h is non-decreasing in the ordering pro-
duced, i.e., 0 = h(0) < h(x)) < h(x,) < ---.

Proor. We proceed by induction, assuming 0 = A(x,) < A(x,)) S h(x)) <.+ =<
h(x,). (We denote 0 = x,.) It will follow that A(x,) < A(x,,,) if

_ 14 o P(x, x)h(x,)
¢nx)_ _h(xn);03 xﬁ{x,x,“',xn-
( Dieo P(x, xy) e }

Now we know from the nth step of the algorithm that

[+ 3 P(x, x)h(x)
h < i=0 d s s Xps o0ty Xppag e
(%) = ST P(x, x,) x & {Xp %, X1}

Hence
_ 1+ 2350 P(x, x;)h(x;) _ P x,)
#l) = 2o P(x, x;) h(:xn) l:l 2o P(x, xz)J
> L+ 2750 P(x, x)h(x;) 1+ 2755 P(x, x;)h(x;) [1 __ P(x,x,) ]
- 2o P(x, x;) 20 P(x, x,) 2ii=o P(x, x;)
= [1 + 215 P(x, x;)h(x,)]

1 _ 1 P(x, x,)
. [ZZLO P(x, x;) 2% P(x, x;) "I P(x, x;) 23320 P(x, xi)]
=0. 0
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THEOREM 4. If the algorithm works, then the function h defined by it in (12) and
(13) is the value of the optimal strategy whose go-sets are G(x,) = {0, x;, X5, + -+,
x,_1}» n = 1. Conversely, suppose that the Markov chain has an optimal value func-
tion h* with the property that the set {x : h*(x) < M} is finite for each M > 0. Then
the algorithm works. This is clearly the case when S is finite.

Proor. Suppose that the algorithm works and produces the ordering S =
{0, x;, x,, - --}. Take for ¢ the strategy with G(x,) = {0, x,, ---, x,_;}, n = 1.
Let #, be its value. Then, denoting T, the first hitting time of a set 4 C S,

(14) ho(xn) = Eaz"T(O} = Eaz”{T(o,:cl,m,zn_li + ho[XT(o,ml,...,,;”_l)]}
_ 14 25 P(x,, x0)h,(x:) , n>1.

:':01 P (xn’ xi) -
It follows from (12) and (13) that 4, is the function % produced by the algorithm.
Now Lemma 3 implies that # = h, satisfies condition (11) in Theorem 3. By
Theorem 3, therefore, ¢ is optimal.

Conversely, suppose the Markov chain has the property of the second part of
the Theorem. Suppose the algorithm does not work. Then suppose first it ter-
minates after a finite number of steps, in the sense that the desired minimum is
not assumed. Sosuppose x;, X,, - - -, X,_, have been chosen. Consider the strategy
o, withG(x) = {0, - -, x,_,} when x ¢ {0, x;, - - -, x,_,}, and G(x;) = {0, x,, - - -,
Xy} for k < n — 1. Its value is

B, (x) = 1+ 20350 P(xs x)h(x,) , x¢{0, x,,

cee, X, b
= P(x, x;) das

If the algorithm were to terminate at the nth step, then we would have, for
some 0 < M < oo, h,,n(x) < M for infinitely many xe S. But h,,“ exceeds the
value function of the optimal strategy, which contradicts the hypothesis con-
cerning #*. Thus the selection of the sequence {x,} does not terminate.

The only other way the strategy could fail to work is that 4 = {0, x,, x,,- - -} #
S. If so, consider the strategy ¢ with go-sets

G(x,) ={0, x;, - -+, x4} » n=1, and G(x) =4 when xg¢ 4.
Then (14) again holds and

B*(x,) < h(x,) = LT i i((a; :)cci))ha(xi)
= ny N

720 P(x, x)h,(x;)

1= P(x, x;) .

=0

é minweA 1 + Z:

Consequently, with ¢, as above, and x ¢ 4

lim, .. b, (x) = lim,_,, 1T 280 PO XA > jiy v ) = oo .
120 P(x, x;)

This however is impossible, since trivially #, (x)\,asn /forx ¢ 4,and &, (x)< oo
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whenever 3721 P(x, x;) > 0. (If A + S, then there exists some x e S\4 and
n < oo such that Y2-! P(x, x;) > 0 because 0 can be reached from any x € S.)
Thus A is all of S, and the algorithm works. []

Finally, a practical sufficient condition for optimality.
THEOREM 5. Suppose S = {0, x,, x,, - - -} and o is the strategy defined by G(x,) =
{0, x «-o, x,,},n = 1. Suppose that
(15) Sk P(x,, X)) = D P(X,0 %) =0, forall n=k>1, and
2% P(x,, x;)) > 0.
Then ¢ is an optimal strategy.
Proor. The value function 4 of ¢ is given by (14). In view of Theorem 3, ¢

will be optimal provided # is monotone in the given ordering of S. To simplify
the notation, let

d, = h(x)), d, = h(x,) — h(x,_;) , nx=2,
M,,= 2 Px,,x), 1<k<n, and M,,=0.
Then (14) reads

h(x,) = 1+ X [MX;H — M, Jh(x:) , n>=1.

n,n

Summation by parts yields the simple equation
(16) 1=, M,,d, n>1.
We have to show that d, > 0 for n > 1. We know d, = 1. Suppose now that
we haved, > 0,d, >0, -..,d, = 0. Then (15) and (16) imply

Mn+1,n+ldn+l =1- 2L Mn+l,idi =1- 2 Mn,idi =0.
Since M, ,, .., > Owehaved,,, = 0, which completes the proof by induction. []

ExaMPLE 1. Let S = Z, the integers. Suppose ¢ is a symmetric probability
density on Z, such that p(k) = pu(k + 1) for all k = 1, and p(0) < 1. Let
P(i, j) = p(i — j) = p(j — i), i,j € Z. Then an optimal strategy for control of
this random walk toward 0 is defined by

G(m) = {k: [k <[}, ne Z\{0} .

Proor. By symmetry the problem is the same as control toward 0 of the
Markov chain on N = {0, 1, 2, - - -} whose transition function is

P(i, j) = p(i) for j =0,

= p(i —J) + p@ +J) for j#0.

We have simply identified the states i and —i of the original random walk. The
proposed strategy is then to go from k only to the set {0, 1, ---, k — 1}. Now

M, = S5 B(n, i) = Stiche (i) nzkzl.
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Hence
Moo — M, =pn+k)y—pn—k+1)<£0, M, >0,
n=>k>1.
It follows from Theorem 5 that the strategy is optimal.
ExAMPLE 2. LetS=N=1{0,1,2,...},0< p, < 1forn >0, and
P(n,n 4 1) = p,, P(n,0)=1—p,, n=0.

If p, N\, as n " then the uncontrolled strategy is optimal, i.e., G(n) = {0, n + 1},
n=1. Butif p, / as n 7, then the optimal strategy has all G(n) = {0}, i.e.,
the process waits for the first transition to 0.

PROOF. Suppose p, \ as n 7. Then the process without control has

h(n)=E"T(0): 1 +Pn +P1|Pn+1+ ce < 0,
as a simple calculation shows. Hence A(n) = h(n + 1) for all n = 1. By Theo-
rem 3, his regular and the uncontrolled strategy is optimal. In this case it may
happen that lim p, = p., > 0. Then

lim, ... i) = — I <o,
—p

o

and we have an example of an optimal strategy which cannot be obtained by
the algorithm of Theorem 4.

If p, /" as n /, then the strategy with G(n) = {0}, n = 1, has the value func-
tion A(n) = (1 —p,)", n=1. Nowh /asn oo, so that again £ is regular
and, by Theorem 3, the strategy is optimal.

ExaMPLE 3. Let S = Z,, the N-dimensional integers, and let
1 .
P X, =  — if |x — =1.
(x5 y) 3N Ix — |

Then the optimal strategy o for control toward the origin is that of only allowing
transitions which diminish the distance to 0. Thus G(x) = {y: 0 < [y| < |x]},
x # 0. When N =1 this follows from Example 1. For N > 2, let & be the
value function for this strategy. By Theorem 3 it suffices to prove that

(17) h(x + e,) — h(x) = EaHe"T(o) —EfTy =0

for arbitrary x = 0 and arbitrary unit vectors e, in the positive direction of the
kth coordinate. To prove (17) consider two particles, one starting at x -+ e,
the other at x, both using the same strategy. We couple their motions, by
making them use the same random transition mechanism. Thus they both
undergo the same displacements, unless a displacement is permitted to the first
particle and not to the second. This can happen if the first particle is at unit
distance from the coordinate plane x, = 0, while the second is already in it. The
result will be that the first particle “catches up” with the first and they hit 0
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together. In any case the first particle cannot hit 0 before the second, and
therefore (17) holds.
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