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PASSAGES AND MAXIMA FOR A PARTICULAR
GAUSSIAN PROCESS!

By MosHE EIN-GAL AND ISRAEL BAR-DAvVID
Technion—Israel Institute of Technology

Expressions for first and last passage probabilities, conditioned on both
an initial and a subsequent value, for the Gaussian process with triangular
covariance and mean zero, are derived. We use these to bound the passage
probabilities of arbitrary functions, to derive formulas for the expectation
of passage and excursion times, to prove the uniqueness of the maximum
of the process in the interval [0, 1], and to find a formula for the joint prob-
ability density function of the maximum and its instant of occurrence.

1. Introduction. Letx(f) = x,, 0 < ¢ < s < 1 be the Gaussian random process
with mean zero and covariance

Ex()x(t + ) = 1 — ||, ] < 1
=0, [ > 1.

It was found by Slepian (1961) that x(7) has the following peculiar Markov-
like property (MLP): “let 0 < t, < #, < 1 be two instants in the unit interval.
Denote the open interval (#,, #,) by 4 and the set (0, #,) U (f,, 1) by B. Then,
given the values of x(t,) and x(t,), events defined on A are statistically independent
of events defined on B.” Jamison (1970) called it the reciprocal property and
showed that it was shared by a (rather small) class of other processes.

The “first passage” conditional probability Q,(T|x,) dT that, for ¢ > 0, x(¢)
first assumes the value q in the interval T < ¢ < T + dT given that x(0) = x,
has been found by Slepian:

M Qu(T| x,)

__lnod (D) — ),
T[22T2 — T)]} 2T(1 — T)

Xx*+a,0<T<1.

This problem was also studied by Mehr and McFadden (1965) and Shepp (1966),
who derived directly the integral of (1) over [0, T']. Shepp (1971) found a formula
valid for arbitrary T.

We consider the questions of passage of arbitrary functions and that of loca-
tion of the maximum of the process in the interval [0, 1].

In Section 2 we present several variants of (1) concerning first, last, or both
passage time probability density functions (pdf’s), conditioned on the initial,
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final, or both values of x(¢). Iterated use of a doubly conditioned version of (1)
is instrumental in writing out bounds on the probability of passing a given func-
tion in [0, 1]. We conclude Section 2 with formulas for the expected time to
and from the passage of a level and of the excursion above it. All results are
in doubly conditioned form. Either conditioning can, of course, be removed
by weighted integration along the respective variable.

As a first attempt to locate the maximum of this non-differentiable process
we derive in Section 3 the (doubly conditioned) probability of crossing a given
level only within a given subinterval of length ¢. We show that as ¢ — 0, this
probability is proportional to ¢? so that a corresponding density function cannot
be defined. On the other hand, using the reciprocal property we prove that the
maximum of x(7) in a closed interval within [0, 1] is unique. This enables the
derivation of the joint probability density of the maximum and its instant of
occurrence.

Among previous work on the location of the maximum is Heyde’s (1969) in
which the problem of the distribution of the maxima of processes with inde-
pendent increments is treated and the limiting distribution of the first maximum
is derived.

2. Passages. We denote by p(x,, -- -, x,) the joint pdf of x, = x(#,), i = 1,
2,...,n,0H< < -- < 8, £ 1, which is given by (Slepian, 1961)

@) p(x Xy - oo x,) = 202m) 22 — 1, + B)]7H T17 (2055 — 15017
X exp[——l— {——-——————(xl X e, (= ) x"“l)zﬂ.

2 22 —t,+ 1) 2(t; — t;)
We also use the notation p(u,, uy, « + -, u;|u;y,, - - -, u,) for the joint conditional
pdf, given the values u;, i=j+ 1, .-+, n,
3 Uiy Ugy =~y U | U, ,...,unzp(ul’um"’sun)
( ) P( v Jl ah ) P(ui+1s tt un)

where u; denote possibly permuted values of x,.

Let  and 7 denote, respectively, the first and the last passage times of the
level a within the time interval [0, 1]. In the sequel, passage pdf’s are indexed
by either 6, » or both, and are conditioned on either one, two, or more values
of x() at different instants. Thus, p,(+|x,) and p,(+]|x,) denote, respectively,
the pdf of 6 and 7 given x(s) = x,. Similarly, p,(+ | x,, x,) and p (+ | x,, x,) denote,
respectively, the pdf of § and 7, given x(r) = x, and x(s) = x,. Also py,(+, *|x,, x,)
denotes the joint pdf of § and » given r, and x,. Additional conditionings should
be self-explanatory.

We present the following preliminary results, valid for0 < < p=s< It

@ Pul@1%) = |25 plxy = a] x9) a %
®) Polr %) = |42 plx, = al ) a%x,
-7
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6) Po(0] %05 X,) = la —(; X0l p(xy = @] %0 %) 3 a X
() Pl % %) = | S22 plx, = a|xp, x,) 5 at X,
s—7
(8) Pon(0> 1| X5 X,) :
= [t iy =y = alxx); @t

Equation (4) is just (1) rewritten in our notation; (5) is a consequence of the
stationarity of the process and is obtained by inverting the direction of time.
To derive (6) we note that, due to the MLP, the conditional pdf of x, given
x(0) = X, x(6) = x, = a and that x(r) < a, 0 < ¢t < 6, namely p(x,| x,, x, = a,
x(f) < a, 0 <t < 0)isequal to p(x,| x,, x, = a). Then by Bayes’ rule p,(6 | x,, x,) =
P(X,| X0, X5 = @)py(0 | X,)/p(x,| X,) from which (6) follows, using (4) and (2). The
derivation of (7) is similar. Now choose an instant 8,0 < 0 < 8 < 7 < 5. Then
by the MLP,

Pol0] X0 Xg) = po(0| Xos X5 X,)
Pn(’y I xﬁ’ xs) = Pv(’] | xO’ xp’ X,)
and using (6) and (7) and again the MLP,

a— x,
0

a— x,
§—7

Ponl®s 1150 % ) =|

P(xp = a|xp, X;) - p(x, = a|x,, x,) .

Taking the expected value over x, and using again the MLP we obtain (8).

Of interest is also the event C,,(a): The level a has been crossed in the interval
[r,s], 0 =r<s=<1. Shepp (1966) found the formula for P,*(s|x,) = 1 —
Pr[Cq,| x,]. We derive, for further reference, the doubly conditioned probability

) Pr[Co(a) | X X,] = exP<— (@ = x°)s(“ - xs)) . (@—x)a—x)>0

=1, . (@a—x)(a—x)Z0.

To obtain (9), integrate over [0, s] either one of (6), (7) or (8). Integration is
eased by the observation that the integrals are convolutions and that Laplace
transforms can be used. The expectation of (9) restricted to x, < a gives, of
course, Shepp’s result. When not néeded for clarity, we shall drop the argu-
ment of C,,.

An application of (9) is to the passage of arbitrary functions. Let £y(4|x,, x,)
be the probability that x(r) < A(r), 0 < 7 < s, given x(0) < A(0) and x(s) < A(s),
where A(r) is a simple function: A(f)=a, 0<t, <t <t,<s<1,i=0,
L...;,N—1,6,=0,1y = 5. Let P (a|x,x,) =1 — P(C,(a)|x,, x,). From
(9) due to the stationarity of x(f) and assuming that x,, x, < a, £,(a|x,, x,) =
1 — exp[—(a — x,)(a@ — x,)/(r — g)]. Using repeatedly the MLP one can write
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by inspection

(10) P4 | X x,) = §270 -0 (e, ﬁOtl(aO | xo, x;) TTIS ptiti+](ai | Xi5 Xi41)
X p(x; | Xoy Xiyq) Ay dxgy « -, dxy_y

where a/ = min (a;_,, a;). Let By,(f | X, x,) be the probability that x(r) does not
pass an arbitrary function f(¢) in [0, s]. P2, (f) can be bounded from above,
and from below by P,,(A) where A(f) is a simple function, respectively, > f(1),
< f(1)-

The derivation of the following expectations is also eased by use of Laplace
transforms. They are, respectively, the mean time to first passage, the mean
time since the last passage, both conditioned, of course, on passage having oc-
curred, i.e. on the event C,,. N

— 2 — —
(1) E[O] %0 s Co] = Ha — xf(ms)? exp(® 0 erfe [a = x| -+ @ = x|

X [Pr (Cy, | Xp5 X,)]*
where Pr (C,, | x,, x,) is as above. Also E[s — 7| X, Xx,, C,,] is given by the same
expression with x, and x, interchanged. Use was made in the derivation of the
fact that p(@, C,,| x,, x,) equals p(8] x,, x,), as a consequence of the MLP.

The above can be used to derive expected excursion times. Denote by T,
the time spent by x(f) above a given level,say a, 0 <g<t<r<s=<1. We
derive a formula for E[T,,| x,, x,]-

Let C}, be the complementary event to C,,. Then
(12) E[TOS | xO’ xs] = E[TOs I xO’ xx’ COs] Pr (COS | xo5 xx)

+ E[Ty,| Xo5 Xq Ci.](1 — Pr (Co, | Xp5 X)) -
We have
(13)  E[Ty| %, %, Cb] =0, a> x, X,
=39, a < Xg Xy -
Also, adding and then removing additional conditionings,
(14) E[Ty, | X0 %55 Coo] = §8 §§ E[To, | Xo» X,5 Cos 0, 7] - Pﬁ»;(o’ 7| X0y Xp Cop) dl dy .

To evaluate E[T,| Xy, x,, C,,, 0, 7] we identify four possibilities and make use of
the MLP, recalling that the conditions § and 5 imply that x, = x, = a and that
crossings have occurred neither in (0, #) nor in (3, s). Thus

E[Ty,| xg, X,y Copy 0, 7] = 1 a= x, X,
=0+7 Xo=az=x
=s—n+7 %< asx,
=s—n4+0+7r A= X X,

where 7 is given by
7 =E[T,,,7|x,, =a,x, = al = %(7]— 9),
the last step being due to symmetry.
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Then E[T,,| Xy, x,, Cy,] is equal to

e, = 3E[n]|x,, x,] — 3E[0]xp, x,] az= x,, X,

(15) ey = 3E[n| %o, x,) + 3E[0 ] X0 x,] 5 X, Sasx
S§— €, X, = a=x

§—é, a= X, X,.

Using (11) in (15) and substituting, along with (13), in (12), yields for a > x,, x,,
the formula

(16)  E[Ty| % x] = % {Pr [Cau| Xo» x,] — 7t 19— %0 2-|s-* la — x,|

X exp(ﬁi‘;*f_oy erfc(la — X +|a = x,|>} .

2st

Similar formulae valid for the other relations between a, x, and x, can easily
be written out.

3. Maxima. Since x(f) has no derivative, one possible approach to the problem
of its maximum value, in a closed interval, is to investigate the crossing of a
given level within only a subinterval i.e. within a “horizontal window,” and
then let the window shrink to infinitesimal size. Let the (¢, r)-crossing at a, D ,(a),
be the event: x(¢), 0 < ¢ < s, has crossed the level a only within the subinterval
(¢,7),0 < ¢ < r < s < 1. Thenan e-maximum at g and at ais the event D, . (a),
considered only for (a — x)(a — x,) > 0. We show that, as ¢ — 0,

2 |(a— x)(a—

11)  Pr[Dy @) | %o g 9(s — 9)

)| p(x, = a| x,, x,)et .

By definition,

(18) Prob[D, ()| X x,] = §5 §7 Pay(0> ] X0 x,) dO dy .

Using the MLP, (2) and (6), we can perform one integration to obtain for (18)

S;pﬂ(” | Xos X,) erf (l—a‘j (’L - 'l—>i> dy,
A 2 \q 7
from which (17) follows, as » — g = ¢ — 0. Since the probability of the &-
maximum is proportional to ¢!, an associated pdf cannot be defined. This be-
havior is, however, explicable since if x(¢) is confined to within ¢ in time, at a
level a, its excursion should also be limited about a by implication. By (17) the
corresponding limitation is of the order of ¢t, which is reasonable considering
that x(¢) is the difference of two Wiener processes.

The above discussion motivates the investigation of the joint pdf of the value
m and of the instant of occurrence r of the maximum of x(¢) within [0, s]. We
first note that the pdf of m, conditioned on x, and x,, exists and is given by
minus the derivative of (9). However, due to the non-differentiability of x(),
the instant of occurrence r might not be well defined; we recall that with such
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processes there is an infinite number of expected level-crossings in any finite
interval (Rice (1944)). The following theorem, on additivity of measure in
function space, excludes the possibility of fuzziness about r: except for a set of
functions of zero measure, 7 is either to the left or to the right of any ¢, 0 < 7, < 1.

THEOREM. Let 0 <, <1, <s< 1, let 0 <t <5, a = x, x, and let
(19) G (1, t;) = {w: x(0, w) = x,, x(5, ®) = x,, x,(?) < a,

tg(tp ), a < x(t,w) < a+da, te(t, t,)}.
Then, as da'— 0,

Pr[G,(0, 1)] -+ Pr[G,(t, 5)] = Pr[G,(0, )] .

To prove the theorem we use again the notation

(20) ﬁqr(al X xr) =1-—"Pr [qu(a) | Xgs xr]
so that
(1) Pr [G,(0, 5)] = dBy(a| X, x,) -

We now impose the additional condition x(f) = x, and note that, as da — 0, by
the MLP,

(22) Pr[G,(0, t)| x,] = dB(a|x,, x,)P.(a| x,, x,)
(23) Pr[G,(t, 5)| x,] = By(a| x, x,) dP,j(a| x,, x,) .

Furthermore, using again the MLP
Pr[G,(0, 5)| x,] = dB,(a| Xy, x,, x,) = d{Py(a|x, x,5 x)Po(a] Xo, X, x,)}
= dPy(a| x, x,)P,(a] x,, x,) + Po(al x,, x,) dB(a] x,, x,)
= Pr[G,(0, #)| x,] + Pr[G,(¢, 5)|x,] .
The theorem follows by eliminating the conditioning on x,.
We proceed to derive the joint pdf of the maximum of x(¢), m and its unique

instant of occurrence = in [0, 5], s < 1, conditioned on the initial and final values,
which we denote by p(m, | x,, x,). We show that

08 Ameln ) = ) i =i,

m> XX, 0 <758,
and note that p(m, r | x,, x,) dmdr is proportional to (17), if indeed dm is propor-
tional to (dr)? by implication, as discussed in the context of (17).
Since ¢ can be taken to be the first maximum we obtain its joint pdf with m,
given x, and x,, from the time derivative of (19), namely

(25) Bom, 7|5 %) = L Pr[G(0, )| .

Using (22) we have
Pr[G,(0, )] = {™., B,(m|x,, x,) dBy(m|x0, x,)p(x,| X0 X;) dx,
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which can be calculated, using (20), (9), (3) and (2).

Pr[G,(0, )] = %_ exp{——;~ (m — x| (m—x) (% — xo)’}

2t 2(s — 1) 2s
@9 Al e
- [ - e+ o),

where G(0) = exp(«’) erfc (), u = (m — x,)/2(t7* — s~)tand v = (m — x,)/2 X
((s — ©)=* — s~")t. Formula (24) follows from (25) and (26).

The case of x, = x, = b is of interest. Integrating (24) we obtain for the dis-
tribution of the maximum

27 Fya,0) =Prob[mZ a,r < 0| x, = x, = 8],
b<a, 0051,
the following particular values: For any a > b,

Fy(a, 5/2) _
Fy(a,s)

[N

b

which agrees with the temporal symmetry of the statistics of x(r). For large
(@ — b)

_—_—-F"(a’o)——)—a—, a—b— oo
Fy(a, s) s ’

showing that the maxima are uniformly distributed between the two fixed values.
As the last observation, as & — b

Fy(a, 0)

1, 0<@ -
Fb(a,s)—>2 <l0<s

indicating that if x, = x, = @, then at no other point in (0, s) will x(¢) reach the
level @, in agreement with the theorem.

As another application of (24), an upper bound to £y,(f(f)| X, X,), a problem
that has been considered in Section 2, is given by

§6 de §22 p(m, 7| %o, x,) dm .

This is the probability that the maximum of x(7) be below f(¢); it is only a
bound because smaller peaks may protrude above it if f() is not constant.
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