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0. Summary. Under suitable assumptions, it is established that the rate of

convergence of the cdf (cumulative distribution function) of the simple linear
rank statistics

Ry,
S, = §V=ci<*zv_z>
v = 2= Cmi N+ 1

to the normal one is O(N~%+%) for any ¢ > 0. Here Cy,, ---, Cy, are known
constants, Ry, -, Ry, are the ranks of independent observations X, - - -,
Xyy, and ¢ is a score generating function defined in Section 1.

1. Introduction. Let X, i=1, ..., N be independent rvs distributed ac-
cording to the cdf F,(x) = F(x — Ady,;), i=1, ---, N. We assumed that F(x)
is absolutely continuous having the density function f(x) whose derivative f(x)
exists. Furthermore, F(x) is assumed to have the finite Fisher information,
that is,

(1.1) I(f) = (2 [/ (X)[f(x)]f(x) dx < oo .
A is an unknown parameter, and dy,, i = 1, - - ., N are known constants. Let

Ry, be the rank of X, among Xy, ---, Xy,. Setting u(x) =1 if x = 0, and
u(x) = 0 otherwise, we can write

(1.2) Ry, = 1 u(Xy — Xy;) » i=1,---,N.
Consider now the simple linear rank statistics
(1.3) Sy = 241 Criay(Ry:)

where Cy,, - - -, Cy, are known constants, and a,(i), i = 1, - . -, N are “scores”
generated by a function ¢(7) in the following manner:

1.4 ay(i) = < i ) 1<i<N.
(1.4) W) = o (555 <iz
Statistics of the type (1.3) play an important role in the theory of nonparametric
inference. For example, in the two sample problem where F;, = ... = F,, = F,
and ‘

Fppy=-=F, =G,
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for testing the hypothesis H,: F = G, many rank tests are based on the statistic

Sy’ = 21 ay(Ry:)

which is a special case of (1.3) whenCy, = -+ = Cy,, = land Cpppy = -+ - =
Cyy = 0. Itis well known (see e.g., Capon (1961)) that the statistics of the
form (1.3) for different score functions yield locally most powerful rank tests.
Under suitable assumptions on the C’s and the score generating function ¢,
Hajek (1962) [see also Hajek-Sidak (1967)] established the asymptotic normality
of Sy. However, the problem of determining the rate of convergence of the cdf
of Sy to the limiting normal distribution has remained open. This problem is
investigated in this paper for the case A = 0 as well as for A = 0. In both cases,
the rate of convergence is proved to be O(N-#+?) for > 0. For the case A = 0,
the result is valid for the ¢ functions having the bounded first derivative, and
for the case A = 0, it is necessary to assume the boundedness of the fourth
derivative of ¢.

Throughout the paper, we shall make the following assumptions on C’sand d’s.

(1.5) 2 Cp = 21dy; =0, 2L Chi=2hdy =1,
(1.6) max,; .y Cx; = O(N-'log N) , max,g;cy dy; = O(N~*log N) .
It may be noted that the assumption (1.5) can be made without any loss of
generality. Furthermore, it may be noted [cf. Hajek-Sidak (1967)] that if ¢ is
the difference of two non-decreasing, square integrable functions in (0, 1), then
Sy has asymptotically (0, ¢%) distribution under A = 0, and »(ES,, ¢*) or

7(A 2 Cridy, $G 0(D)9(t, ) dt, o%)
distribution under A = 0. Here

o= {1 )2 7o (1 — —f’(F_l(t))
= lo(e(r) —@)dr, ¢ =\e()dt, o f) = )

and 7(§, ¢°) stands for the normal distribution with mean ¢ and variance ¢*.

2. Rate of convergence for A = 0. The main result of this section is the
following theorem.

THEOREM 2.1. Let A = 0 and the first derivative of ¢(t) exist and be bounded in
(0, 1). Then, under the assumptions of Section 1, corresponding to any 6 > 0, there
exists a constant A(3) > 0, and a positive integer N, such that for all N > N;,
2.1) SUP—cocacen [Fiy(X) — P(x)] = AQ)NHD
where F(x) is the cdf of 6-S, and ©(x) is the standard normal cdf.

The proof of this theorem is based on the following two lemmas, the second
of which is a consequence of Theorem 6, Chapter 5 of Petrov (1972).

LEMMA 2.1. Under the assumptions of Theorem 2.1, corresponding to any positive
integer k, where 2k + 1 < N, there exists a constant B(k) > 0 and a positive integer
N, such that for all N > N,,

2.2 E(Sy — Ty)* < B(k)N-*
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where
(2.3) Ty = 2V, Co(F(X)) .
LeMMA 2.2. Under assumptions of Section 2 and Theorem 2.1, for any positive
integer N,
(2.4)  SUP_wcocw [Fy*(x) — @(x)| = A Ti (1) — @l dt - Tl [Col*
where A > 0 is a constant independent of N, and Fy* is the cdf of o~*T, under
A=0.
In what follows, we shall suppress the subscript N in C,, dy;, Ry,, etc. when-

ever there is no confusion.

Proor oF LEMMA 2.1. Set U; = F(X;),i =1,---, N. Denoting Y, = ay(R;) —
oU),i=1,..-,N, we get
(2:5) E[(Sy — Tw)"] = E{(X ¢ Y™}

= Z ﬂz!__clﬁ e CNPNE(Hgf:l Yi"i)
J2ARERY 2%

where the sum extends over the set 4 of vectors (p,, - - -, py) of integers such
that 0 < p, < 2,i=1,---,N, 2 ¥, p, = 2k.

Each point of 4 could have at most 2k positive components. Noting this fact,

we may decompose 4 into 2k disjoint parts such that the jth part consists of those
points which have just j positive components. Thus we may rewrite (2.5) as

E[(Sy — TN)%] = NN, ¢*EY M + ...

2k)!

(2.6) F Doy smctmtontrgett 1o
X Z,I;z,...,i,,n:l,dlfferent Cgll ce cg,,:,nE(Ygll Tt Ygx) o R
+ Zﬁ,m,zkﬂ,differenc Cip ot Gy, E(Y,-l T Yiz,,) .

In view of (1.5) and (1.6), it follows that

(2'7) ,Zé\i,..-,im=1,different Cg’ll e Cf;nl é K for. N > Nk

foranym =1, ...,2kand any p,, 0< p, < 2k, i=1,.---,m, 37, p; = 2k,

K > 0 is a constant dependent only on k. Actually, ifp, = 2fori=1, ..., m,

then

| 230 ip=1, digtorent €F1 + + + €fm < |T] 7oy (2001 |€]79) < maX, gy [e,**=m .

On the other hand, suppose that some of p,’s are equal to one, say p,, = 1.
Then in view of (1.5)

N Py ... CP
(2.8) 28 oee i =1, difforent Co1 Cim _
= > Plov. CPm—1(—C; — o0 — C
= 2uiy,+rig—1=1,difforent Ci} Cme(—Cyy Cipy)

so that we get m — 1 sums of similar type; each of them sums the products of
(m — 1) factors. Considering any of these sums, we may have again two cases:
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either all exponents are at least two, so that we are in the first case; or some of
them equal one and we may write an equality analogous to (2.8). We continue
in this way until after a finite number of steps (in which we decompose the
original expression into at most m! sums) we get only the sums with exponents
greater than or equal to two. Actually, the extreme case is the sum of the type

N 2k—1 — N 2k
Zzl ig=1,i1%1iy czl C - i=1 c"l ’

so that (2.7) is proved.
Further, using the generalized Cauchy-Schwarz inequality

(2.9) E|Ir, Z| < (T2 E|Z2]) M, n=2,3.--
we see that
(2.10) E|Yp:- .- Yim| < (T17= EIYEP)Y™ < (1150 B Y4
= (171 Elay(R)) — @(Uy)[*ri)i*
holds for any m = 1, . - -, 2k and any p,, 0 < p, < 2k, 37, p, = 2k. Finally,
the expression
2k)!
(2.11) R T
depends only on k.
Now, if ay(i) = ¢(i/(N + 1)), i = 1, - - -, N, where ¢ has a bounded derivative
we get the inequality
R 2kp »
@12)  Ea(R) — o(U)Fs < BOOE] R — U
which is varied forj =1, ..., mym =1, ..., 2k.

U, being fixed, R, is the sum of independent zero-one random variables (see
(1.2)) so that

(2.13) E(.NLJF_I _ Um) 7 < B(k)N-w; .

(2.6), (2.7), (2.10), (2.11), (2.12) and (2.13) then prove the lemma.
Proor orF THEOREM 2.1. Since for any ¢ > 0 and any N, we have
(2.14)  PloiS, < x} S P Ty < x + ¢} + Po~Sy — Ty| Z ¢}
and analogously
(2.15) P{o73Sy < x} = P{o7'Ty < x — e} — P{o7Y|Sy — Ty| = ¢},
it follows using Lemmas 2.1 and 2.2, that
(2.16)  SUP_acpca [Fy(x) — P < (c0) BN + ¢, T lewf’ + O()
holds for any ¢ > 0, any k and for N > N,.

For § > 0 being fixed, take k such that 2k 4+ 1 > 1/26 = 2k and put ¢ =
N-ta-vak+) - The theorem then follows from (2.13) and from the assumption

(1.6).
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3. Rate of convergence for A = 0. Without loss of generality, we assume
that A > 0. For convenience we shall use the following representation in this
section. Let X, i =1, ..., N be independent and identically distributed rvs
each having the cdf F(x) such that I(f) < oco. Let R}, be the rank of X,; + Ad,,,
that is

R?Vi = Z;Y:l u(Xm - XNj + A(dNi - Nj)) .

Consider now the statistics

RY.
S — £V=ci ( Ni )‘
AN 2 Chi N+ 1

The asymptotic distribution of S,, — S,, was investigated by Juretkovéa for
Wilcoxon scores in (1973a) and for general score function ¢ in (1973b). In the
case of general scores function ¢, it was assumed that the ¢ function has the
four bounded derivatives in (0, 1).

Suppose now that the vectors (cy,, - -+, ¢yy) and (dy,, - - -, dyyy) satisfy (1.5),
(1.6) and the following:

3.1) limy o, 2%, cyidy; = a*, 0< < oo,
(3.2) limy_, [max,g;cy (¢ di) (D1 ¢hudy) 1 = 0,

and

(3.3) 1My o [N e dy) (S ed2) ] =7 2 0.

Then, [cf. JureCkova (1973b)] for ¢ having four bounded derivatives in (0, 1),
the asymptotic distribution of

(3.4 Ay N (Say — Soy — Aay — A’y)

is (0, A’0®) where

(3.5) Ay = T idys + 3NHZYL eyidy)’

(3:6)  ay = X ewidy § ' (FX)) (%) dx = X ewdys §i () (t; [) dt
(3.7 by = % Zili eyedy: § " (F(x))f*(x) dx

and

p* = § [P (F)If(x) dx — (§ [¢'(F(x)Ff*(x) dx)* + 27(1 + 37)~*
(3-8) X [§8acy FO) — E(p))e"(F(x)p" (F(p)f*(x)f*(y) dx dy
+ §Vocy '(FX))e" (F))*(x)f*(y) dx dy
— o' (F())f (%) dx - § 9" (F(x))F(x)f*(x) dx .
Let Fy, denote the cdf of ¢-%(S,y, — Aay). Then we have the following
theorem. '

THEOREM 3.1. Suppose that ¢y, dy;, i =1, - - -, N satisfy (1.5), (1.6), (3.1)—
(3.3) and that the score-generating function has four bounded derivatives on (0, 1).
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Then
(3.9) SUp, |Fya(x) — @(x)| = O(N-++))
holds for any & > 0 and any fixed A.
Proor. We may write for any ¢ > 0 and for any x
(3.10) P{o7Y(S,y — Aa, — A%,) < x}
< P{o-'S,y < x + ¢}
+ P{o7YS,y — Soy — Day — A’y| = ¢}
and analogously
Plo~(S,y — Aay — A%y) < x}
= P{o7'S)y < x — €} — P{o7YSyy — Soy — Aay — A%y| = €} .
Then by Theorem 2.1,
(3.11)  sup, |Fys(x + 07'A%,) — O(x)|
< Cee+ Plo7Y S,y — Soy — Aay — A%hy| = ¢}
+ A(B)N-1+3
holds for any 6 > 0 and N > N,.

Let us consider the third member of the right-hand side of (3.11). We shall
use the following theorem:

THEOREM 3.2 (Petrov). Let H(x) be any cdf and ®(x) cdf of the normal (0, 1)
distribution.
Let
V= SUP_cocyco |H(x) — O(x)|
and let M, denote the set of distribution functions possessing the finite absolute mo-
ment of order p > 0. Then, if 0 < v < et and H(x) € M,, there exists a constant
C, depending on p only such that

1 \»/2
C,v (log T) 2,

(3.12) |H(x) — @(x)] = TF P

holds for all real x; here
A, = |} |x[” dH(x) — § |x|” dD(x)| .

For the proof, see Petrov (1972).

Let us denote by G, the cdf of A~24, p~%(S,y, — Soy — Aay — A’hy). On
account of the boundedness of ¢, G, has finite absolute moments of any order
for any fixed N and any fixed A. On the other hand, it follows from Theorem
2.1 of [6] (see (3.1)—(3.8) of the present paper) that lim,_ sup, |Gy.(x) —
®(x)| = 0 for any fixed A and that for N > N,

sup, [Gya(x) — @(x)] < et
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The assumptions of Theorem 3.2 are satisfied for any p = k = 1,2, - . -, so that
there exists a constant C,* to any k such that

(3.13) Gya(x) — @(x)] = C(1 + le")‘

holds for all x € (— o0, o).
We have

(3.14)  P{o7YSyy — Soy — Aay — A%y = e} = 2[1 — Gy,(A"p 704y 7%)]
so that (3.13) implies that
(3.15)  Plo7!Syy — Soy — Aay — A'by[ = e}
< 2[1 — DAYt 4, )] + 2CH1 + (Atp~0)dy~et]

holds for any ¢ > 0, any k = 1,2, ... and for N > N,.

. Letusfixd, d > 0and put e = 4, - N°2. Then in view of (3.15) and Lemma
2, Chapter VII of Feller (1957) we have that for any N > N, and sufficiently
large k '

(3.16)  sup |Fy(x + 07h%,) — D)| < C;/N-4+ 4 O(N-1+5).
Thus

SUP_aococoo [Fra(X) — @(x)|
(3.17) < sup, [Fya(x) — O(x + o-'A%,)|
+ sup, |@(x + ¢7'A%,) — O(x)|
< sup, |[Fyy(x — 07'A%y) — O(x)| + K - 07'A%,, .

(3.16) and (3.17) together with assumption (1.5) complete the proof of the
Theorem.
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