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THE MULTIVARIATE CENTRAL LIMIT THEOREM
FOR REGULAR CONVEX SETS

By T. K. MATTHES!
University of Oregon

Let Xi, Xz, --- be i.i.d. random vectors in Ry. Let P, denote the
probability measure induced by the normalized sum and let Q» denote the
multivariate Edgeworth signed measure with terms through n-t. If Cis a
member of a class of convex bodies whose boundaries are sufficiently
smooth and possess positive Gaussian curvatures, and X; has fourth
moments, it is shown that P,(C) — Qn(C) = O(rn—*/(k+1)) where the bound
is uniform. If, moreover, X; has a nonlattice distribution, the difference
is o (n—k/+1),

1. Introduction and main results. Let X, e R, i=1,2,...; k> 1 be a
sequence of independent identically distributed random vectors which, for
convenience, are normalized to have zero means and covariance matrix identity.
Let P, denote the probability measure on the Borel subsets of R* induced by
Z,=n"t3 7, X,. There is a continuing interest in the rate of convergence of
P, to the normal probability measure @.

Beginning with the distribution function F, of Z,, Bergstrom (1945) showed
sup, |F,(x) — ®(x)| < cn~* where ¢ depends on k and the third moments. As-
suming E(]X;|*+?) < oo, Bhattacharya (1968) strengthened this to sup{|P,(C) —
PO(C)|: Ce €} < cn~}, where € is the class of convex subsets of R*. Bhatta-
charya (1971) studied the weak convergence of P, and has several theorems for
convex sets. Suppose X; has a strongly nonlattice distribution; i.e., its char-
acteristic function satisfies Cramér’s condition: lim sup,, .. |¢(f)] < 1. Then he
showed sup{|P,(C) — @, (C)|: Ce €} = o(n¢~2) if E(|X,]) < oo for s > 3,
where Q,, denotes the multivariate Edgeworth “approximate measure” with
terms up to n=-P72,

At the other extreme R. R. Rao (1961) considers the lattlce case. He has an
expansion of P,(B) for any Borel set, with error O(n~“-»7%). The usefulness
of Rao’s expansion would appear to be limited by its complexity. However,
Yarnold (1972) applies Rao’s expansion in case B is convex, and in particular,
applies it to the distribution of the chi square goodness of fit test statistic. The
approximation with error O(n~") leads to the interesting and difficult lattice point
problem of finding the number of lattice points in an ellipsoid.

Inasmuch as these Edgeworth type expansions quickly become unmanageable
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504 T. K. MATTHES

as more terms are included, one is motivated to seek the weakest conditions
under which P, is approximated by Q,;. In this regard Esseen (1945) showed that
[P (C) — @(C)| < cB,in~**+b for all centered spheres, where , denotes the
sum of the 4th moments of the components of X;. Consequently, not much is
gained for large k by adding the term of apparent order n~* that arises in the
lattice case, at least for such spheres.

Our theorems below extend Esseen’s results uniformly to a class of smooth
positively curved convex bodies, with error still O(n=**+V), and o (n=**+) if
the distribution is nonlattice.

Suppose the boundary of C is continuously twice differentiable. Let x,e dC
and introduce a local Euclidean coordinate system in II, the tangent plane at
x,. Consider the distance of x € dC to its projection in II as a function of the
projection point. In the Taylor series approximation to the distance the eigen-
values &, ,, - - -, £,_; Of the matrix associated with the quadratic terms are the
principal curvatures at x,. The Gaussian curvature K(x,) is defined as the pro-
duct of the «,’s.

Suppose in addition C is bounded and K(x) > 0, x € 9C. Then there is a one to
one continuous correspondence between x € dC and unit outer normals ¢, given by
x = grad H(1), |t| = 1. Here H is the support function of C: H(f) = sup,., (x - ).
If H is twice differentiable, the matrix of its second order partial derivatives at
|t = 1 has k — 1 nonzero eigenvalues, R,, R,, - - -, R,_, which are the principal
radii of curvature at the corresponding x € 9C. Hence, one may compute K(x)
in terms of the support function. Only elementary facts concerning the dif-
ferential geometry of convex bodies are assumed here. A standard reference is
[4].

Define (M) to be the class of convex bodies C C R* with the following
properties:

(i) 0 < K(x) < M, xedC and
(if) the support function of C has partial derivatives up to order [(k + 7)/2]

which are absolutely bounded by M on |f| = 1.
It follows that the principal radii of curvatures are uniformly bounded away
from zero and infinity over the class. In particular, the Gaussian curvatures
have the same property.

Our principal results are the following theorems. Throughout Q,(C) = Q,,(C)
and y = k/(k + 1). ‘

THEOREM 1. There exists a constant c(k, M) depending only on k and M such
that for all normalized distributions
(1.1)  sup{|P,(C) — Q.(C)|: Ce &(M)} < c(k, M)B}n-7, n=12,...

The distribution of X, is said to be nonlattice if |¢(f)] < 1, t # 0; that is, if
each nonzero linear combination of coordinates has a one-dimensional nonlattice
distribution.
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THEOREM 2. Suppose 8, < oo and X, has a normalized nonlattice distribution.
Then

(1.2) lim, ., n" sup{|P,(C) — Q,(C)|: Ce €M)} =0.

It is desirable to escape the restriction that the breadths of the convex set are
bounded, as is entailed for C ¢ (M), owing to the bounded radii of curvatures.
Define the subclass (M, p) = {C € €(M): C contains a sphere about the origin
of radius p}. For C e &M, p) consider the dilation 1C = {ix: x € C}.

THEOREM 3. There exists a constant c(k, M, p) such that
(1.3) [P, (AC) — Q,(2C)| Z ek, M, p)BFn 7, 0< A< o0; n=12,...
whenever C ¢ €(M, p) and X, is normalized.

The proofs of these theorems are given in Sections 2-4, in each case preceded
by preparatory lemmas. Lemma 6 in Section 4 has independent interest inasmuch
as the difference in (1.3) is more precisely bounded as a function of 2 and
0 = ,B}n‘*.

2. Proof of Theorem 1. The proof follows broadly along lines developed by
Esseen in the multivariate case. Let ¢, denote the characteristic function of
P, and put

2.1 e *(f) = {1 + E(it - X,)’/(6n*)} exp (—|e[*[2) .

The inverse Fourier transform of ¢, * is dQ,/dx. Denote the Fourier transform
of the indicator function /., by I,; the uniform distribution on {x e R*: |x| < ¢}
by U,; and the characteristic function of U, by u. Then U, has characteristic
function u(et). Here and henceforth |x| is Euclidean norm, (¢ - x) is inner
product and ||x|| is sup norm. Integration is over R* unless indicated. In this
section ¢ will denote any constant depending on k but not 8, or E(M).

Inasmuch as ¢, - I, may not be integrable, I, is smoothed by convolution.
Let C* denote a Euclidean ¢ neighborhood of C, ¢ > 0 and where possible, C-
is that set such that (C—¢)* = C. Choosing ¢, > 0 strictly less than the minimum
(positive) principal radii of curvature that applies to &(M), C—¢ is defined
provided ¢ < ¢,. Define the convolutions

(2.2) G (x) = Iy x Uy(x), le] < e -
LEMMA 1. There exists c(k) such that
IP,(C) — 0,(C)] < max [{ G, d(P, — Q)] + (1 + fin~)e
whenever C e €(M); 0 < ¢ < ¢ and all n, B,. (The maximum refers to the choice
of sign.) -
ProOF. G, has range [0, 1] and if ¢ >0, G,(x) =1, xeC; =0, x¢C*

Hence

2.3) § GLd(P, — 0,) = Po(C) — 0u(C) — oy |dQ.] .
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Now,
(2.4) |20 | < o1 + pn) exp(—1x73)

and

SCZE—C d(I) é ce,
as Rao and Bhattacharya have shown (cf. [3]). This leads to an upper bound
for P,(C) — Q,(C). A similar argument with G_, yields a lower bound and
proves the lemma. []

Herz (1962) has studied the precise asymptotic behavior of the Fourier trans-
form of a convex body with smooth positively curved boundary. Under the
conditions we are assuming, an immediate consequence of his theorem is

2:3) 1lo()] < K-H|=#+07 4 O(|e]=*+07) |t = o0,

where K is the minimum Gaussian curvature over 9dC and the error term
depends on the bound on the derivatives of H(r) to order [(k + 7)/2].

LEMMA 2. There exist constants B,, B, depending on k and M such that
(2.6) [lo € ()] < B(t) = min{B,|f|~**", By}, lel <&
uniformly for C ¢ €(M).

Proor. It is required that Herz’s theorem holds uniformly. Now, the
support function of C¢ is H(f) + ¢|t|]. These clearly have uniformly bounded
derivatives on || = 1. Moreover, in view of the way ¢, was chosen, the principal
radii of curvatures for C¢, —¢, < ¢ < 0 remain bounded below; the Gaussian
curvatures are bounded both ways. It is more difficult to establish that under
these conditions the error term in (2.5) is also uniform for Ce &(M), |¢| < &
(cf. Lemma 4 of [8]). Finally, |I,¢| is always bounded by the measure of Cv,
which in turn is bounded in terms of the maximum possible radii of curvature.
The lemma follows. []

When C is a sphere I, is related to a Bessel function. Esseen obtained the
bounds (2.5) in that case from asymptotic properties of Bessel functions. Denote
the cube

R, ={(ty, -+, 4):0=t; =T, each j}

and let R, + a be its translation by a.

LEMMA 3. Assume B, < oo and X, is normalized. For T >0,

(2.7) e(T, ¢) = sup, sup, n** {5 ., || dt < oo}
(2.8) for T<cBt, eT, ¢)<c,
independent of ¢.

Proor. Esseen ([7]) page 100) bounds the integrals in question in (2.8) if
instead R, is replaced by any sphere of radius essentially 8,~%. Since any R,
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may be covered by finitely many such spheres and R, + a is covered by their
translations, the finiteness in (2.7) follows. [T

Recall that ||#]| is supnorm. The following lemma is also true with Euclidean
norm. Define the function

(2.9) uy(t) = min{|z]-*+v72 1}

LEMMA 4. For eache >0, T > 0,
(2:10)  §uuoate BOU(ED|@W(1)] dt < cBie(T, g)(nAT) e b0,
where B, and e(T, ¢) are given in (2.6), (2.7).

ProoF. Making a change of variables, the integral in (2.10) becomes
(2.11) I'=n"”§ 15 B(n*tyuy(ndet)| | dt .

Let {z: ][] > T} = Us.1 4. be a covering of the domain of integration by
cubes of side 7' which are disjoint except perhaps at boundary points and let
Im € A, maximize [ntt|~*+1/%y (nier) over A4,,. From Lemma 3,

(2.12) §a, lo|"dt < (T, p)n=* .
One obtains from (2.6) and (2.12)
(2.13) I < Bie(T, ¢) Yinoy (n|t,])~ %+ 2y (nket,,)

= Bye(T, p)(niT) *e~=bA Y= (s, )AA,

where we have put s, = niet,, W(s) = |s|~*+V/y(s) and A4 = (nteT)*. One
easily verifies that on any of the cubes K = n*eA,,, max, W(s) < ¢ min, W(s).
The sum in (2.13) may then be bounded by c times the integral of W, which is
convergent for k > 1. [T

PrOOF OF THEOREM 1. The function G, defined in (2.2) has Fourier transform

9.6) = Loe(tyuer) ,
and by Lemma 2

(2.14) 19:(8)] = cB(t)uy(et) , 0<exe.
Since g, is integrable it is immediate that

(2.15) § G d(P, — Q,) = Q)" § g(—1)(pn — ¢a*) dt .

Put Ty = k18,71 If ||f]| < niT,, it follows (e.g., Esseen [7] page 99)

(2.16) |2(1) — @ * (O] = eBIn~(|1]* + [1]°) exp(—[¢*/3) .

The integral on the right side of (2.15) is now bounded by means of (2.14), as
the sum I, + I, 4+ I, where

(2.17) 5y = §jui>atr, BOU(D) @y — ¢,*| dt < cB, i1,
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by (2.6), (2.16);
(2.18) Iy = § > nir, BO)us(e?)| ¢, *| dt
= eBy(1 + ‘B}n‘*)O((n!’To)“”) >

$iie1>ntr, B(OU(e1) |0, dt
cB,(BAn t)ke- k=12

(2.19) I,

l

IA

from Lemmas 3 and 4. Incorporating these bounds with Lemma 1 and putting
0 = Bint, we obtain for ¢ < ¢,

(2:20) 1PA(C) — Cu(C)] < cf{4(0) + B,0” + By(1 + 6)0(6~)},

where
Ay0) = minméso {B,0Fc—*-D2 (1 + )¢} .

It is straightforward to show

(2.21) Ay(0) £ c max{B»*+bg%, B, fke,m kDAY

Now, k > 1 implies 1 < 2y < 2. Together (2.20) and (2.21) imply

(2.22) [P(C) — Q,(C)| < cBY*+vgPr 0<1.
However, the trivial bound |P,(C) — Q,(C)| < ¢(1 + @) ensues from (2.4) so
that for a possibly larger choice of ¢, (2.22) holds for all #. The proof of

theorem is completed by noting the uniformity of the bound in C e (M), n
and 8,. [

The following makes more explicit how the constant in Theorem 1 relates
to 2(M). Let K, = inf{K(x): xe dC, Ce & (M)}.

COROLLARY. There exists c(k) such that
sup{|P.(C) — Q,(C)|: Ce (M)} £ c(k)K, "V *+DB3rn-1
whenever nf,~% — co and X, is normalized.

Proor. The condition means that ntT, — co in Lemma 4. Therefore, one
needs the bound B(#) only for |f| — co. In this situation the effect of the error
term in (2.5) becomes negligible and one may take B, = K,~t in (2.6) The
corollary follows from (2.22). [T

3. The nonlattice case. In this section we are dealing with a given nonlattice
distribution; that is, |¢(7)] < 1 for all ¢ = 0. This definition of nonlattice distri-
bution appears to be due to Stone (1965). It should be pointed out that when
k > 1 there exist distributions which are neither nonlattice in this sense, nor
lattice.

In contrast to (2.7) define

(3.0) e(T) = lim sup,,_,, sup,.  n*”* $rpta o™ dt .

The principal technical result needed is



CLT FOR REGULAR CONVEX SETS 509

LemMA 5. If X, has a normalized nonlattice distribution and B, < oo, then
(3.1) e(T) = o(T"), T—co.
Proor. There are three cases to consider.

Case i. X, has a continuous component. By considering X, — X, we may
suppose without loss of generality that ¢ = 2,¢, + 2,00, where 4, >0, ¢ = 0
is the characteristic function of a continuous distribution, and 2, + 4, = 1.
|¢] < 1. Then for any 6 > 0,

(3.2) T § ppva $rdt < 0, T— oo,

uniformly in a.

Partition R, + a into cubes of side 1, say, and let k, be the number of these
cubes K for which max, ., ¢,(f) > 1 —¢. If go;(to) > 1 — ¢ for some ¢, € K then
() = (1 — e — c|t — t,|)* where ¢ bounds |grad ¢,|. In view of (3.2) a Cheby-
shev argument shows that k, = o(T*), T — co.

Bounding the integral of |¢|* on such cubes as in Lemma 3 and observing
that on the remaining cubes |p| < 1 — 4,¢ < 1, one obtains

(3.3) Cpra lo1" df < kpe(l, p)n*" 4 (1 — P T*,

uniformly in @. Multiplying by n*”? and letting n — co yields (3.1) in this case.

In the remaining cases X, is discrete nonlattice and, by symmetrizing, we
may suppose its distribution is symmetric and has an atom at zero. Inasmuch
as any nonsingular linear transformation preserves the nonlattice character, it

suffices to suppose in addition that X; has atoms at x = (x,'?, ..., x,\9), j =
1,2, ..., where
(3.4) xP=0;1=5igk, 0<j<k.

Such a reduction is possible because X, cannot be degenerate in a subspace.
We then have

3.5) o(t) = Do piCOS(xP - 8); py>0.

Case ii. All coordinates x,” are rational. Put 2, = >;™,p; and define the
characteristic functions

(3.6) On(t) = 17 p;cos (x4 - 1)[4,, m=1,2,..;

(not to be confused with ¢, in Section 1).
For each m let ¢, + 0 be a point with smallest sup norm for which ¢,(z,) = 1.
(|¢n(?)] = 1 only when ¢, (f) = 1 since p, > 0.) It is impossible that {z,}_, has
a limit point. For were there a limit point ¢, + 0, then ¢(z,) = 1 since ¢,, — ¢
uniformly, contradicting the nonlattice assumption. Nor could ¢z, =0 be a
limit point since then appropriate multiples of #, would have a nonzero limit
point.

For arbitrary T > 0 choose m such that ||7,|]| > T + 2. Let &= {t: ¢,(¢) = 1}
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and

3.7 NZ)={ueR:3te &, ||t —u|| < 1}.

Because ¢, (7, + ) = ¢,(¢) whenever 7, &, it is clear that for this choice of
m any set R, + a contains at most one element of <. Moreover, in Case ii
¢ is periodic in each variable, so that sup{|e,(?)|: g N(Z )} =1—-¢e< 1. In
the same way as (3.3) was obtained

(3-8) Sapralpl”dt < 1 e(1, )n=*2 4 (1 — 2,)*T",

and again (3.1) follows.

Case iii. At least one coordinate, say x,**?, is irrational.

For arbitrary ¢ > 0 cover R* by cubes of side ¢ and to each cube let cor-
respond that vertex with maximum coordinates. Then

(3.9) MaX,g;gp [X0 - 1 — X9 4] < de

whenever ||t — 1,|| < ¢, where d = k* max,g; ., |x?|. For xeRlet {x} = x —
[x] denote the fractional part. If K is one of the above cubes with designated
vertex #,, an easy calculation shows there exists » > 0 such that

(3.10) d+ De < {x9 . 27} < 1 — (d + 1)e,
some j=1,2,..-, k41
implies
(3.11) max,. g |e()} <1 —7.
Define the k + 1 linear forms L;m) = (¢/2x)x? - m, j=1,2,---,k + 1;
me Z*. Equivalent to (3.10) when the vertex is given by 7, = me is
(3.10y @+ De< {L;(m)} <1 — (d+ 1), some j=1,2,.--,k+1.

The following theorem of Weyl ([5] page 64) pertains to the asymptotic dis-
tribution of linear forms modulo one.

THEOREM. Let L,(m), Ly(m), --- be a finite set of linear forms in m =
(my, my, - - -, m,) € Z* such that for integral u;, 3, ;u;L;(m) has all integer coef-
ficients of my, my, - - -, my only when u, = u, = - .. = 0. Then the fractional parts

{L;} are asymptotically uniformly and independently distributed in (0, 1). This means
that the {L,} s regarded as random variables defined on {1, 2, - - -, M} with uniform
probability measure, have a distribution whkich converges weakly to that stipulated
as M — oo.

A uniform version of Weyl’s theorem is needed for the problem at hand. For
N= (N, N, -+, N,)e Z* put

S;={neZ: N, =n<N; + M}

and assign a uniform probability measure to X §,. With v, , denoting the dis-
tribution induced by the {L;}’s it can be established that as M — co, the weak
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convergence of v , is uniform in the “initial vector” N. (Essentially, the bounds
on page 70 of [5] do not depend on N.) For a more recent discussion of these
uniform distribution theorems one is referred to Chapter VIII of [6].

In Case iii x,**" is irrational and the condition in Weyl’s theorem is easily
verified provided only ¢ is chosen so that the numbers 1, x,%+", and 2=x/e are
linearly independent over the rationals. This we assume.

Suppose T and a are of the form T = Me, a = Ne ¢ R*. For any cube K C
R, + a with designated vertex #, = m,e, either none of the inequalities in (3.10")
obtains, in which case (3.11) applies, or else

my€ By, ={(m,mg, -, m):Vji=12,.-- ., k+1,N;Sm; <N; + M
and either {L;m)} < (d+ 1)¢ or =1 — (d + 1)e}.
This set has cardinality M*v, ,(By ,). As before,

(3.12) T-* SRT+a lp|*dt < v, u(By, m)e(e, @) (nte)~* + (1 — .
Letting n — oo and appealing to the above mentioned uniformity in Weyl’s
theorem,
(3.13) lim sup,_, lim sup,_., sup, T-*n** § , .. |o|" dt

=< [2(d + D)e]**leke(e, ¢) .
Since ¢ is essentially arbitrary, the left side of (3.13) is zero and Case iii is
concluded. [T

Proor oF THEOREM 2. The proof of Theorem 1 goes through with modifi-
cation. The distribution of X, is given so that g, is fixed. First, observe that
for each T > 0 there exists an integer n, such that
(3.14) I = §>atr B(O)uo(et)|@,| dt < cB,e(T)(nt)~ke=*-172 n>n,.

This is because in the proof of Lemma 4, and with regard to the definition of
¢(T) in (3.0), the bound (2.12) may be replaced by 2¢(T) as n — co. The con-
clusion of Lemma 4 holds with this replacement.

The integral on the right side of (2.15) is bounded by dividing its region of
integration into the regions ||¢|| < ntT,, ntT, < ||¢|| < n*T and ||7|| = ntT, where
T, is the same as before. There results
(3'15) |S Ged(Pn - Qn)l é Il + 12 + 13' + 14 ’

where I, and I, are still given by (2.17) and (2.18), I/ is given in (3.14) and
I, = $abpo<nicats B(t)Uo(et)| @,| dt
< B,n*? Srosutusr || dt .
Owing to the nonlattice hypothesis, for each T, I, = O(n~=). Now replace ¢ by
e, =en-7in(3.15)and in Lemma 1. Incorporating the resulting bounds, we obtain
(3.16)  sup{|P,(C) — 0.(C)]: Ce &(M)}
= c(k, M)e(T)T*~*-b2p=1 4 cen=r + O(n~?) .
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Multiplying by n7 and letting in turn n — oo, T — co and ¢ — 0, the right side
of (3.16) becomes zero on account of Lemma 5. [

4. Generalization to a class of dilations. Recall the definitions of &(M, p)
and AC given in the introduction. For notational brevity we shall put § =
Bint, & = Ak exp{—p*2*/2} and [(f) = max{|logd|, 1}, # > 0. In this section ¢
will denote any constant depending at most on the class (M, p); i.e., on k,
M and p. There is no loss of generality in supposing ¢,, defined in Section 2,
satisfies ¢, < min{p/4, 1}.

LEMMA 6. There exists c(k, M, p) such that for all C e €(M, p) and all normal-
ized distributions,

|P,(AC) — Q,(AC)| < c(k, M, p)G(0, 2), 0<21< o030 in=1,2,---
where G is defined as follows; for k = 3.

(4.1) G0, 2) = LU=/t G+ QA £ £ 1< A<k
(4'2) — 02[(14:—1/2)(0) , eI £ £ o G/ k=1 2+ 1)/2 4 l<i< 2"k
_ 021k(0) —2e,04202 —202027(k+1)/2 - 2—k
4.3) = g e~ P R L & L e 672 ; 1<akd
(4.4) =02, &< e tordg?; 1<age-*
4.5) =0, 2> 62k
(4.6) = max{1%*-Vrg%, 6%} , A< 1;
for k = 2 (4.1)—(4.4) are replaced by:
4.1 - G0, 2) = 08, P8 < €&, 1<
(4.3) Ta((’;‘*lz(x@s)“’ eI < E < O 1<
(4.4) =07, &< e i 1<,

REeEMARK. These various conditions on & could be given explicitly in terms of
A since x“exp{—x’} = ca, a — 0 is solved by x* = |log a| + alog |loga|. We
have not done so because Theorem 3 follows immediately from the lemma in
the form given.

Proor. The proof will be only outlined. One verifies I,,(f) = 2*I(At) so that
(4.7) leo(t)] < By(t) = 2*B(2r)
< cmin {A%-D3|g|~EFDA QY le] < &

Define the smoothings
Ge,l = Il(c@) * U1|e| P ' |6| < g

From (2.4), |dQ,/dx| < c¢(1 + 0|x*) exp{—|x[*/2}. By considering the support
function representation of a convex set one sees (AC)* = A(C?) so that after a
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change of variable

(4.8) J = Suowieiior-ae [0, < e(1 + 02) exp{2ep@}ée .
Passing to the Fourier transform,

(4.9) IP,(AC) — 0,(2C)| < ¢ | By(Ouer)|p, — p,*|dt + J .
Now apply Lemma 4 to the integral on the right here to obtain
(4.10) §is0-1 Bi(t)o( e, di < cf¥e=h-1m

Because |¢,*(#)| = c exp{—|t[*/3}, 6 < 1, inequality (4.10) applies as well to ¢, *.
The region of integration in (4.9) must be subdivided:
[f| K AL 2P < i £ (et and A< g <07,

Bounding |¢, — ¢,*|, B, and u, appropriately in each subregion; integrating first
over the spherical surface; and putting dN = c exp{—r*/3} dr we have

Sie1<o-1 Ba(t)uo(eA0) | — @, %| dt
(4.11) < 0P (3T AN - gPA%D (AT pen gy
+ (@A) =R O N
Suppose for the time being 2 > 1. As ¢1— 0 the middle term is of order
622172 while the other two terms are of smaller order; as ¢4 — co, the third

term is of order 6?21~ *+1/2 while the other terms are smaller. It now follows
from (4.9)—(4.11) and these remarks that for 2 > 1

(4.12) |P,(AC) — Q.(C)| < cF(f, 2, <), e < ¢,
where
(4.13) F(0, 2, ¢) = @°A%-172 1 ghe— k=172

+ (1 4 62) exp{2epA’}ée, e g =41
(4.14) = QPA" 1 kD2 . Ghe— k=12 exp{2epA®)ée, e> 6.

Now we seek the order of magnitude of min,.,., F. Only the case k = 3 is
discussed. Suppose, first of all, § > exp{—2p2}0?2%+>2, 2 > 1. This forces
A < cl¥(0). Hence the term #4°* is bounded and may be ignored. Suppose as
well 2> ¢! so that ¢ < ¢. One is led to minimize F(e) = @k~ *-v72 |
exp{2epA’}ée, 0 < ¢ < ¢,. By supposition the second term exceeds the first at
the endpoint ¢, so that up to a constant factor, the minimum is obtained by
equating the terms. The solution ¢, is given by

64 A2 = cwW[(ArHIgE/E) k]

where » denotes the inverse of the map x+— xe®, x > 0. If the condition in
(4.1) holds then, since k = 3, 2**'6%/¢ < ¢ and since w(a) ~ a, a— 0, F(e,) <
c&k-1/k+bgyr . Under the same dondition F(e, ) dominates the first term in (4.13)
and is the bound given in this case. But under condition (4.2) the contrary
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holds. Though unnecessary for the validity of (4.1) and (4.2), it can be shown
that the effective minimum of F, ¢ < ¢, occurs for ¢ < «,.

The condition (4.3) is treated in a similar way except that the minimum is
sought in (e;, ¢)). Cases (4.4) and (4.5) lead to endpoint minima and the bounds
given are the larger of the first two terms in (4.14) up to a factor.

Finally, if 2 < 1 then § < c4* and reconsideration of (4.11) shows that (4.12)
holds with F now defined as

F = 0°2F - Gke=th-1 | Jke ey

Minimizing this gives rise to the bound in (4.6). This completes our discussion
of the proof. (]

REMARK. InasmuchasQ,(R*) = 0, it is easily seen that |Q,(1C)| = |Q,(AC)Y| <
c§/2. It follows that P,(AC) < ¢G(0, 2) whenever &/2* < 622%-17,

Proor or THEOREM 3. It is sufficient to show that G(6, 1) < c6* for 0 <
2 < 0,0 <1 where G is the function in Lemma 6. This is because there
always is the bound |P,(A1C) — Q,(AC)| < ¢(1 + 0) < cb*, 6 — 0. Now, & is
bounded and 2y < 2 so that all cases but (4.3) are immediate. But condition
(4.3) implies
1(08) 2 202 = cl(8) . i
Von Bahr (1967) has extended the result of Esseen for spheres. Let S, denote
a centered sphere of radius 2. Assuming $, < co and with the supposition of
a normalized distribution, he obtains the result

(4.15)  |P(S;) — O(S,)| = e(Bor KY(1 + A4+3) exp{—o2)n-7
+ n~Y(log n)*-b/} 2 < (2.5 log n)t

where § =4 if k =2and 6 = 4(k — 1)/(k + 1), k > 3.
His bound is equivalent to our bound in case (4.2) but is worse in cases (4.1)
and (4.3). In cases (4.1), (4.1’), for example, we have

G(0, 2) = Ak-D/k+bk expl_522)0°r , k=3

= 2 exp{—2*/6}6%, k=2.
Von Bahr also states, with the same hypothesis
|Pa(S:) — ©(S)| < (B, k) d(n)2—*n—1, A= (2.5logn)t,

where d(n) is a sequence tending to zero. This appears to be an improvement
over our bounds by the factors d(n)A-* when k > 3 and case (4.4) obtains, and
d(n)2~* when k = 2. The contrast with the previous discussion is surprising.
Apparently the second term in (4.11) does not arise in Von Bahr’s estimation.
He does not provide details of the contribution corresponding to (4. 11) so that
the discrepancy cannot be resolved.

5. Conclusions. In the introduction reference was made to Rao’s expansion
in the lattice case of P,(B) for any Borel set B. An interesting consequence of
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Theorem 1 is that when B e (M) and §, < oo, the additional term of apparent
order n~* that arises in the lattice case is in fact of order n-7. This was noted
by Yarnold in his application of Rao’s expansion to the chi-square statistic.

Even for centered spheres Theorem 3 is a slight strengthening of Esseen’s
theorem inasmuch as for a normalized distribution, 8, = 1and ¥ < 8} except
when B3, = 1.

Theorem 1 will be true under the following weaker hypothesis: 8, < oo for
some s > 3 4 (k — 1)/(k + 1). As Bhattacharya has shown, an expansion of
¢, — ¢,* analogous to that in (2.16) still is available where the constant appear-
ing is replaced by (B,*n=t)".

It would be interesting to generalize to sufficiently regular unbounded convex
sets, or bounded ones which are not dilations of sets in (M, p), and even to
nonconvex sets. The difficulty that immediately arises is that the intersection
of an unbounded convex set possessing a smooth boundary with a large centered
sphere violates our smoothness assumptions. Another consideration for a bound-
ed though large set is that one would prefer not to smooth /, by convolution.
Rather, the smoothing could be more at boundary points far away from the
origin. For a smooth though nonconvex set, K(x) = 0 at some boundary points
and the proofs given clearly break down. However, if K(x) = 0 only on a null
set I,(r) may still behave properly as |f| — co in which case the proofs would
go through with minor modification.
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