ON DERIVATIVES OF CHARACTERISTIC FUNCTIONS¹

By Stephen J. Wolfe

University of Delaware

If k is a positive odd integer, it is shown that it is possible to construct a characteristic function f(t) such that $f^{(k)}(0)$ exists but $f^{(k)}(t_m)$ does not exist for a sequence of numbers $\{t_m\}$ where $t_m \to 0$ as $m \to \infty$.

1. Introduction. Various authors have studied the relationships between the asymptotic behavior of a distribution function and the behavior of its characteristic function near the origin. A discussion of this work can be found in [2].

Let f(t) be the characteristic function of a distribution function F(x). It is well known that if k is a positive even integer, the existence of $f^{(k)}(0)$ implies the existence of the kth absolute moment of F(x) and thus the existence of $f^{(k)}(t)$ for all real t. If k is a positive odd integer, the existence of $f^{(k)}(0)$ does not imply the existence of the kth absolute moment of F(x). Thus it is of interest to ask the following question: If k is a positive odd integer and $f^{(k)}(0)$ exists, does $f^{(k)}(t)$ exist for all t or at least for all t in some neighborhood of the origin? In this note, it will be shown that if k is a positive odd integer then it is possible to construct a characteristic function f(t) such that $f^{(k)}(0)$ exists but $f^{(k)}(t_m)$ does not exist for a sequence of numbers $\{t_m\}$ where $t_m \to 0$ as $m \to \infty$. This construction depends on a result of Boas [1] that if $1 - F(x) + F(-x) = o(x^{-1})$ as $x \to +\infty$ then f'(t) exists if and only if

$$\lim_{T\to +\infty} \int_{-T}^{T} x e^{ixt} dF(x)$$

exists.

2. Construction. For each positive integer n, let $F_n(x)$ be the distribution function with masses $c_n/j^2 \ln j$ concentrated at the points $\pm j$ for $j=2^n$, $(2^n)5$, $(2^n)9$, \cdots , where c_n is chosen so that the sum of the masses is 1. Let $F(x) = \sum_{n=1}^{\infty} 2^{-n} F_n(x)$ and let f(t) be the characteristic function of F(x). Let

$$h_n(t, T) = \int_{-T}^T x \sin xt \, dF_n(x)$$

and let m be an integer that is greater than 1. If n < m-1 the first 2^{m-n-2} terms of the sequence $\{\sin\left[2^{n-m}(1+4k)\pi\right]\}_{k=0}^{\infty}$ are positive, the next 2^{m-n-2} terms are negative, and so on. Thus $\lim_{T\to+\infty}h_n(\pi/2^m,T)$ exists and is positive. If n=m-1 then $\lim_{T\to+\infty}h_n(\pi/2^m,T)=+\infty$. If n>m-1 then $h_n(\pi/2^m,T)=0$ for $T\ge 0$. If follows that

$$\lim_{T\to +\infty} \int_{-T}^{T} x \sin(\pi x/2^m) dF(x) = +\infty$$

and thus $f'(\pi/2^m)$ does not exist.

Key words and phrases. Characteristic function, derivative.

Received October 21, 1974.

¹ This research was supported by The National Science Foundation Grant GP-43986. AMS 1970 subject classifications. Primary 60E05, Secondary 42A72.

For each n there is a positive constant D_n such that

$$1 - F_n(x) + F_n(-x) \le D_n \setminus_{x=1}^{\infty} (y^2 \ln y)^{-1} dy$$

if x > 2. Thus $1 - F_n(x) + F_n(-x) = o(x^{-1})$ as $x \to +\infty$ for each n and it follows that $1 - F(x) + F(-x) = o(x^{-1})$ as $x \to +\infty$. Since F(x) is symmetric it follows that f'(0) exists.

If k is a positive odd integer that is greater than 1 and n is a nonnegative integer let

$$G_n(x) = b_n \int_{-\infty}^x y^{1-k} dF_n(y)$$

where b_n is chosen so that $G_n(x)$ is a distribution function. Let $G(x) = \sum_{n=1}^{\infty} 2^{-n} G_n(x)$ and let g(t) be the characteristic function of G(x). It is easy to see that $g^{(k)}(0)$ exists but $g^{(k)}(t_m)$ does not exist for a sequence of numbers $\{t_m\}$ where $t_m \to 0$ as $m \to \infty$.

REFERENCES

- [1] Boas, R. P. (1967). Lipschitz behavior and integrability of characteristic functions. *Ann. Math. Statist.* 38 32-36.
- [2] Wolff, S. J. (1973). On the local behavior of characteristic functions. *Ann. Probability* **1** 862-866.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF DELAWARE NEWARK, DELAWARE 19711