WEAK COMPARATIVE PROBABILITY ON INFINITE SETS

By Peter C. Fishburn

The Pennsylvania State University

Let $\mathscr S$ be a Boolean algebra of subsets of a state space S and let > be a binary comparative probability relation on $\mathscr S$ with A>B interpreted as "A is more probable than B." Axioms are given for > on $\mathscr S$ which are sufficient for the existence of a finitely additive probability measure P on $\mathscr S$ which has P(A)>P(B) whenever A>B. The axioms consist of a necessary cancellation or additivity condition, a simple monotonicity axiom, an axiom for the preservation of > under common deletions, and an Archimedean condition.

1. Introduction and main theorem. Throughout, S is a non-empty set of states [13], S is a Boolean algebra of subsets of S which contains S, O is the empty set, and S ("is more probable than") is an asymmetric comparative probability relation on S with symmetric complement S, so that S if neither S nor S if neither S and S if neither S if nor S if neither S if nor S if neither S if nor S if neither S if neither S if nor S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of states and substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a non-empty set of substituting the norm S is a norm S in S

weakly agrees with
$$\rightarrow$$
 iff $A \rightarrow B \Rightarrow P(A) > P(B)$, almost agrees with \rightarrow iff $P(A) > P(B) \Rightarrow A > B$,

for all $A, B \in \mathcal{S}$, and strictly agrees with > iff it weakly agrees and almost agrees with >. The relation > is transitive under strict agreement and noncyclic under weak agreement, but it can cycle under almost agreement as when A > B > C > A and P(A) = P(B) = P(C). On the other hand, \sim is transitive (hence an equivalence) under almost agreement or strict agreement, but need not be transitive under weak agreement. Nontransitivity of \sim accommodates Savage's notion of vagueness in judgments of personal probabilities, as when small successive but accumulating differences between events A_1, A_2, \dots, A_n give $A_1 \sim A_2, \dots, A_{n-1} \sim A_n$ along with $A_n > A_1$, and interest in the notion of weak agreement has been expressed by several writers [2, 4, 7, 14, 15, 17]. The purpose of the present paper is to provide axioms for > which imply the existence of a weakly agreeing measure when \mathcal{S} is infinite.

Kraft, Pratt and Seidenberg [10] and others [4, 16] present axioms for > which are necessary and sufficient for strict agreement when $\mathscr S$ is finite, and Fishburn [4] and Domotor and Stelzer [2] axiomatize weak agreement and intermediate cases when $\mathscr S$ is finite. Moreover, when $\mathscr S$ is finite with atoms a_1, \dots, a_n , so that $A \in \mathscr S$ iff $A = \emptyset$ or A is the union of one or more a_i , the method of these papers shows that $\mathscr S$ has an almost agreeing measure if, and only if, there is no finite sequence $\{(A_k, B_k)\}_{k=1}^m$ of event pairs for which $A_k > B_k$ or $A_k \sim B_k$ for all

Received March 4, 1974; revised January 21, 1975.

AMS 1970 subject classifications. Primary 60A05; Secondary 06A10.

Key words and phrases. Comparative probability, finitely additive measures, partial order.

k and the number of B_k which include a_i exceeds the number of A_k which include a_i for every $i \in \{1, \dots, n\}$. Sufficient conditions for strict agreement when S is infinite are given by Koopman [8, 9], Savage [13], Luce [11], Fine [3], and Narens [12], among others, and Savage [13, pages 34–35] gives conditions (including transitivity of >) which are sufficient for almost agreement but not for strict agreement when S is infinite. A more recent almost agreeing axiomatization for arbitrary S is given by Narens [12].

An important omission from prior work is the absence of easily interpreted conditions for > which imply the existence of a weakly agreeing probability measure without also implying the existence of a strictly agreeing measure when $\mathscr S$ is infinite. The following theorem, proved in the next section, is an attempt to remedy this omission. For every $A \in \mathscr S$, $A' : S \to \{0, 1\}$ is the indicator function for A with A'(s) = 1 iff $s \in A$; $A \setminus B = \{s : s \in A \text{ and } s \notin B\}$; and a partition of a subset of S is an $\mathscr S$ partition iff every set in the partition is in $\mathscr S$.

THEOREM 1. There exists a finitely additive probability measure on S that weakly agrees with > if the following hold for all A, B, C, A_i , $B_i \in S$ and all positive integers n:

- (A1) $(A_i > B_i \text{ and } A_i \cap B_i = \emptyset \text{ for } i = 1, \dots, n) \Rightarrow \sum_{i=1}^n A_i' \neq \sum_{i=1}^n B_i'.$
- (A2) $(A > B \supseteq C \text{ or } A \supseteq B > C) \Rightarrow A > C$.
- (A3) $(A > B \text{ and } C \subseteq A \cap B) \Rightarrow A \setminus C > B \setminus C$.
- (A4) $A > B \Rightarrow$ there is a finite \mathcal{S} partition of S such that $A > B \cup C$ for every set C in the partition.

Axiom (A1) is an additivity condition which, since $\sum A_i' = \sum B_i' \Rightarrow \sum P(A_i) = \sum P(B_i)$, is necessary for weak agreement: (A1) and (A3) forbid > cycles but do not imply that > is transitive. Axiom (A2) is an appealing monotonicity condition for > preservation under inclusion. Axiom (A3) says that > is preserved under removal of a subset C included in both A and B. It seems psychologically realistic since if A is judged to be more probable than B then the bases for this judgment should be even more evident when C is removed from A and B. Axioms (A1), (A2) and (A3) are sufficient [4] for weak agreement when $\mathcal S$ is finite, but neither (A2) nor (A3) is necessary. Kraft, Pratt and Seidenberg [10] show that some condition like (A1) is required in the general finite context, but some strict-agreement axiomatizations [11, 13] with infinite $\mathcal S$ avoid the complexities of (A1) by using weak or simple orders along with strong structural presuppositions.

Axiom (A4), used elsewhere [5, page 195] in a characterization of Savage's strict-agreement axioms, in an Archimedean condition suggested by de Finetti [1] and Savage [13]. It is stronger than necessary since, in conjunction with the other axioms, it requires $A \sim \emptyset$ for every atom $A \in \mathcal{S}$, and when $S > \emptyset$ it forces S to be infinite. However, I have not been able to obtain weak agreement under (A1), (A2) and (A3) with the use of a more palatable Archimedean axiom and invite others to attempt to remedy this shortcoming of the axiomatization.

For examples in which the axioms hold but do not imply strict agreement when S is countable, let S be the set of all rational numbers in [0, 1], let S be the algebra consisting of O and all finite unions of intervals in S, and for each $A \in S$ let $\mu(A)$ be the Lebesgue measure of the closure of A in [0, 1]. Two simple models which satisfy the axioms are A > B iff $\mu(A) > \lambda \mu(B)$ with $\lambda \ge 1$, and A > B iff $\mu(A) > \mu(B) + \delta$ with $\delta \ge 0$. In the latter case another weakly agreeing measure for $\delta = \frac{1}{2}$ is $P(A) = \frac{2}{3}\mu(A) + \frac{1}{3}A'(s)$ with s any fixed point in S.

2. Proof of Theorem 1. My proof of Theorem 1 is based on Hausner and Wendel's theorem [6] for real lexicographic representations of ordered vector spaces. We call (V, >) an ordered vector space when V is a real vector space with origin θ , > is a linear order (irreflexive, transitive, complete) on V and, for all $x, y \in V$ and $\lambda \in \text{Re}$: (i) $x > \theta$ and $\lambda > 0 \Rightarrow \lambda x > \theta$, (ii) $x > \theta$ and $y > \theta \Rightarrow x + y > \theta$, (iii) x > y iff $x - y > \theta$. The positive cone $V^+ = \{x \in V : x > \theta\}$ completely describes >.

Let (V, >) be an ordered vector space and define binary relations \gg and \approx on V^+ by $x \gg y$ iff $x > \lambda y$ for all $\lambda > 0$, and $x \approx y$ iff $\lambda x > y > \mu x$ for some $\lambda, \mu > 0$. Then \approx is an equivalence and, with [x] the equivalence class in V^+/\approx which contains $x \in V^+$, the relation $<_0$ on V^+/\approx , defined by $[x] <_0 [y]$ iff $x \gg y$, is a linear order on V^+/\approx . A set $W \subseteq V$ is Archimedean iff $x, y \in W \Rightarrow \lambda x - y \in W$ and $y - \mu x \in W$ for some $\lambda, \mu > 0$. The classes in V^+/\approx are the maximal Archimedean sets in V^+ .

A function $F: V \to U$, where U also is a real vector space, is *linear* iff $F(\lambda x + \mu y) = \lambda F(x) + \mu F(y)$ for all $x, y \in V$ and $\lambda, \mu \in \text{Re}$.

THEOREM 2 (Hausner and Wendel). Let (V, >) be an ordered vector space with $T = V^+/\approx$ and $[x] <_0 [y]$ iff $x \gg y$. Define $(V_T, >_L)$ as the ordered vector space of all real-valued functions on T which are nonzero on at most a well ordered subset of $(T, <_0)$, with $f >_L g$ when $f, g \in V_T$ iff $f \neq g$ and f(t) > g(t) for the first t in T at which $f(t) \neq g(t)$. Select $e_t \in t$ for each $t \in T$ and define $f_t \in V_T$ by $f_t(t) = 1$ and $f_t(s) = 0$ for all $s \in T \setminus \{t\}$. Then there exists a linear $F: V \to V_T$ with $F(e_t) = f_t$ for all $t \in T$ such that x > y iff $F(x) >_L F(y)$, for all $x, y \in V$.

Henceforth, let V be the real vector space of all real-valued functions on S, let $V_0 = \{A' - B' : A, B \in \mathcal{S} \text{ and } A > B\}$ and let $V_1 = \{\sum_{i=1}^n \lambda_i x_i : n \in \{1, 2, \dots\}, \lambda_i > 0 \text{ and } x_i \in V_0\}$, the convex cone in V generated by V_0 . We presume axioms (A1) through (A4) and $S > \emptyset$, for otherwise $V_0 = \emptyset$ by (A2).

LEMMA 1. $\theta \notin V_1$ and V_1 is Archimedean.

PROOF. Suppose $\theta \in V_1$ with A_i , $B_i \in \mathcal{S}$, $A_i > B_i$ and $\lambda_i > 0$ for $i = 1, \dots, n$, and $\sum \lambda_i (A_i' - B_i') = \theta$. Using (A3), $A_i \cap B_i = \emptyset$ can be assumed without loss of generality. Since $A_i'(s) - B_i'(s) \in \{1, 0, -1\}$ for all i and s, $\sum \lambda_i (A_i' - B_i') = \theta$ is tantamount to a finite system $(\lambda_1, \dots, \lambda_n) \cdot p^j = 0$ for a subset of p^j in $\{1, 0, -1\}^n$. Since the p^j are integral vectors there are integral $\lambda_i^* > 0$ such that $\sum \lambda_i^* (A_i' - B_i') = \theta$. Then λ_i^* replications of (A_i, B_i) gives $\sum_{i=1}^m C_i' = \sum_{i=1}^m D_i'$

with $C_i > D_i$ for $i = 1, \dots, m = \sum \lambda_i^*$ and $C_i \cap D_i = \emptyset$ for each i. But this contradicts (A1). Hence $\theta \notin V_1$.

To show that V_1 is Archimedean suppose first that A > B. Using (A3), we can presume that $A \cap B = \emptyset$. Then, using (A2) and (A4), there are partitions $\{C_i\}_{i=1}^m$ of A and $\{D_j\}_{j=1}^m$ of $S \setminus B$ such that $A > B \cup C_i$ and $A > B \cup D_j$ for all i and j, so that $A' - B' - C_i' \in V_1$ and $A' - B' - D_j' \in V_1$ for all i and j. Addition over all i and j then gives $(n+m)(A'-B')-A'-(S\setminus B)'=(n+m-1)(A'-B')-S' \in V_1$ with n+m-1>0, so that $N(A'-B')-S' \in V_1$ for positive N. By an analogous procedure (given $S > \emptyset$), partitions of A and $S\setminus B$ lead to $MS' - (A'-B') \in V_1$ for some positive M.

Therefore, if A > B and C > D, $N(A' - B') - S' \in V_1$ and $S' - M^{-1}(C' - D') \in V_1$ for some positive N and M so that $NM(A' - B') - (C' - D') \in V_1$. To complete the Archimedean proof, suppose $x, y \in V_1$ with $x = \sum_{i=1}^n \lambda_i (A_i' - B_i')$ and $y = \sum_{j=1}^m \mu_j (C_j' - D_j')$ with $\lambda_i, \mu_j > 0$ and $A_i > B_i, C_j > D_j$ for all i and j. Then there exists N for which $N(A_i' - B_i') - (C_j' - D_j') \in V_1$ for all i and j. Multiplying $N(A_i' - B_i') - (C_j' - D_j')$ by $\lambda_i \mu_j$ and double summing over all i and j, we get $(N \sum_j \mu_j / \sum_i \lambda_i) x - y \in V_1$. This proves that V_1 is Archimedean.

To complete the proof of Theorem 1 let K be the set of all convex cones in V which include V_1 , contain A' for every nonempty $A \in \mathcal{S}$, and do not contain θ . Using (A1), (A2) and (A3) it is easily checked that $K \neq \emptyset$. Zorn's lemma then implies that K contains a maximal such cone, say V^+ . Defining x > y iff $x - y \in V^+$, (V, >) is easily seen to be an ordered vector space. Let $F: V \to V_T$ be as given by Theorem 2. Since $V_1 \subset V^+$ and V_1 is Archimedean by Lemma 1, V_1 is included in one of the equivalence classes in $T = V^+/\approx$, say $t \in T$. Since $e_t \in t$ can be chosen as we wish let $e_t = S'$, with $F(S') = f_t$. It is readily seen that, with $F_t(x)$ the value of F(x) at t for $x \in V$, $F_t(x) > 0$ for all $x \in V_1$, and indeed for all $x \in t$. Hence if $A \in \mathcal{S}$ and $A \neq \emptyset$ then $F_t(A') > 0$ if $A' \in t$. Suppose however that $A \in \mathcal{S}$, $A \neq \emptyset$ and $A' \notin t$. Then, since $A' \in V^+$, A' is in some other class in T, say t^* . Since S' - A' is the indicator function of $S \setminus A$, $S' - A' \in V^+$. Therefore, the definitions prior to Theorem 2 require $t <_0 t^*$. It then follows from Theorem 2 that $F_t(A') = 0$. Moreover, $F_t(\theta) = 0$ by linearity.

A finitely additive probability measure $P: \mathscr{S} \to \operatorname{Re}$ which weakly agrees with \succ is defined by $P(A) = F_t(A')$ for all $A \in \mathscr{S}$. As just noted, $P(A) \geq 0$ for all $A \in \mathscr{S}$, $P(S) = F_t(S') = f_t(t) = 1$ by Theorem 2, and additivity for P follows from linearity for F_t . Moreover, if $A, B \in \mathscr{S}$ and $A \succ B$ then $A' - B' \in V_1$ so that $P(A) - P(B) = F_t(A') - F_t(B') = F_t(A' - B') > 0$.

REFERENCES

- [1] DE FINETTI, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7 1-68. English translation in Studies in Subjective Probability (1964). Wiley, New York.
- [2] DOMOTOR, Z. and STELZER, J. (1971). Representation of finitely additive semiordered qualitative probability structures. J. Mathematical Psychology 8 145-158.

- [3] Fine, T. (1971). A note on the existence of quantitative probability. Ann. Math. Statist. 42 1182-1186.
- [4] FISHBURN, P. C. (1969). Weak qualitative probability on finite sets. Ann. Math. Statist. 40 2118-2126.
- [5] FISHBURN, P. C. (1970). Utility Theory for Decision Making. Wiley, New York.
- [6] HAUSNER, M. and WENDEL, J. G. (1952). Ordered vector spaces. Proc. Amer. Math. Soc. 3 977-982.
- [7] KEYNES, J. M. (1929). A Treatise on Probability (2nd ed.). MacMillan, New York. (Torchbook ed. (1962). Harper and Row, New York.)
- [8] KOOPMAN, B. O. (1940). The axioms and algebra of intuitive probability. *Ann. of Math.* 41 269-292.
- [9] KOOPMAN, B. O. (1941). Intuitive probabilities and sequences. Ann. of Math. 42 169-187.
- [10] KRAFT, C. H., PRATT, J. W. and SEIDENBERG, A. (1959). Intuitive probability on finite sets. Ann. Math. Statist. 30 408-419.
- [11] LUCE, R. D. (1967). Sufficient conditions for the existence of a finitely additive probability measure. Ann. Math. Statist. 38 780-786.
- [12] Narens, L. (1974). Minimal conditions for additive conjoint measurement and qualitative probability. *J. Mathematical Psychology* 11 404-430.
- [13] SAVAGE, L. J. (1954). The Foundations of Statistics. Wiley, New York. (Second revised edition (1972), Dover, New York.)
- [14] SAVAGE, L. J. (1967). Difficulties in the theory of personal probability. *Philos. Sci.* 34 305–310.
- [15] SAVAGE, L. J. et al. (1962). The Foundations of Statistical Inference. Wiley, New York.
- [16] SCOTT, D. (1964). Measurement structures and linear inequalities. J. Mathematical Psychology 1 233-247.
- [17] SMITH, C. A. B. (1961). Consistency in statistical inference and decision. J. Roy. Stat. Soc. Ser. B 23 1-37.

College of Business Administration The Pennsylvania State University 310 L Business Administration Building University Park, Pennsylvania 16802