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WEAK COMPARATIVE PROBABILITY ON INFINITE SETS

By PeTER C. FISHBURN
The Pennsylvania State University

Let & be a Boolean algebra of subsets of a state space Sand let > bea
binary comparative probability relation on & with 4 > B interpreted as
‘4 is more probable than B.”” Axioms are given for > on & which are
sufficient for the existence of a finitely additive probability measure P on
& which has P(4) > P(B) whenever A > B. The axioms consist of a neces-
sary cancellation or additivity condition, a simple monotonicity axiom, an
axiom for the preservation of > under common deletions, and an Archi-
medean condition. '

1. Introduction and main theorem. Throughout, S is a non-empty set of states
[13], & is a Boolean algebra of subsets of S which contains S, @ is the empty
set, and > (“is more probable than”) is an asymmetric comparative probability
relation on & with symmetric complement ~, so that 4 ~ B if neither 4 > B
nor B > A. A finitely additive probability measure P on &

weakly agrees with > iff A4 > B—= P(4) > P(B),
almost agrees with > iff P(4) > P(B)= A4 > B,

for all 4, Be &, and strictly agrees with > iff it weakly agrees and almost agrees
with >. The relation > is transitive under strict agreement and noncyclic un-
der weak agreement, but it can cycle under almost agreement as when 4 > B >
C > A and P(4) = P(B) = P(C). On the other hand, ~ is transitive (hence an
equivalence) under almost agreement or strict agreement, but need not be transi-
tive under weak agreement. Nontransitivity of ~ accommodates Savage’s notion
of vagueness in judgments of personal probabilities, as when small successive
but accumulating differences between events 4,, 4;, - -+, 4, give 4, ~ Ay, -+,
A,_, ~ A, along with 4, > A,, and interest in the notion of weak agreement
has been expressed by several writers [2, 4, 7, 14, 15, 17]. The purpose of the
present paper is to provide axioms for > which imply the existence of a weakly
agreeing measure when & is infinite.

Kraft, Pratt and Seidenberg [10] and others [4, 16] present axioms for > which
are necessary and sufficient for strict agreement when & is finite, and Fishburn
[4] and Domotor and Stelzer [2] axiomatize weak agreement and intermediate
cases when & is finite. Moreover, when . is finite with atoms a,, - - -, a,, SO
that Ae & iff A = @ or A is the union of one or more g;, the method of these
papers shows that & has an almost agreeing measure if, and only if, there is no
finite sequence {(4,, B,)}, of event pairs for which 4, > B, or 4, ~ B, for all
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k and the number of B, which include a; exceeds the number of 4, which include
a, for every ie {1, - .., n}. Sufficient conditions for strict agreement when § is
infinite are given by Koopman [8, 9], Savage [13], Luce [11], Fine [3], and
Narens [12], among others, and Savage [13, pages 34-35] gives conditions (in-
cluding transitivity of >) which are sufficient for almost agreement but not for
strict agreement when § is infinite. A more recent almost agreeing axiomatiza-
tion for arbitrary S is given by Narens [12].

An important omission from prior work is the absence of easily interpreted
conditions for > which imply the existence of a weakly agreeing probability
measure without also implying the existence of a strictly agreeing measure when
& is infinite. The following theorem, proved in the next section, is an attempt
to remedy this omission. For every 4¢e.%, A': S — {0, 1} is the indicator func-
tion for 4 with A'(s) = 1iff se A; A\B = {s: se€ 4 and s ¢ B}; and a partition of
a subset of S is an .&” partition iff every set in the partition is in &

THEOREM 1. There exists a finitely additive probability measure on & that weakly
agrees with > if the following hold for all A, B, C, A,, B, € & and all positive inte-
gers n:

(Al) (A, > B,and A, n B, = @ fori=1,...,n)= 37 A" + 3%, B/

(A2) A>B2CorA2B > C)=4 > C.

(A3) (A> Band C < A n B)= A\C > B\C.

(A4) A > B = there is a finite & partition of S such that A > B U C for every
set C in the partition.

Axiom (A1) is an additivity condition which, since 3] 4, = }; B,/ = ) P(4,) =
2. P(B,), is necessary for weak agreement: (Al)and (A3) forbid > cycles but
do not imply that > is transitive. Axiom (A2) is an appealing monotonicity
condition for > preservation under inclusion. Axiom (A3) says that > is pre-
served under removal of a subset C included in both 4 and B. It seems psycho-
logically realistic since if 4 is judged to be more probable than B then the bases
for this judgment should be even more evident when C is removed from 4 and
B. Axioms (Al), (A2) and (A3) are sufficient [4] for weak agreement when &
is finite, but neither (A2) nor (A3) is necessary. Kraft, Pratt and Seidenberg
[10] show that some condition like (A1) is required in the general finite context,
but some strict-agreement axiomatizations [11, 13] with infinite & avoid the
complexities of (A1) by using weak or simple orders along with strong structural
presuppositions. '

Axiom (A4), used elsewhere [5, page 195] in a characterization of Savage’s
strict-agreement axioms, in an Archimedean condition suggested by de Finetti
[1] and Savage [13]. It is stronger than necessary since, in conjunction with the
other axioms, it requires 4 ~ @ for every atom 4 e .~ and when § > @ it
forces S to be infinite. However, I have not been able to obtain weak agreement
under (Al), (A2) and (A3) with the use of a more palatable Archimedean axiom
and invite others to attempt to remedy this shortcoming of the axiomatization.
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For examples in which the axioms hold but do not imply strict agreement when
§ is countable, let S be the set of all rational numbers in [0, 1], let & be the
algebra consisting of @ and all finite unions of intervals in S, and for each
Ae & let u(A) be the Lebesgue measure of the closure of 4 in [0, 1]. Two
simple models which satisfy the axioms are 4 > B iff y(A4) > Apx(B) with 2 = 1,
and 4 > B iff pu(A) > p(B) + 6 with § = 0. In the latter case another weakly
agreeing measure for § = 1 is P(4) = 2u(A) 4 4A4'(s) with s any fixed point in S.

2. Proof of Theorem 1. My proof of Theorem 1 is based on Hausner and
Wendel’s theorem [6] for real lexicographic representations of ordered vector
spaces. We call (V, >) an ordered vector space when V is a real vector space with
origin #, > is a linear order (irreflexive, transitive, complete) on ¥ and, for all
x,yeVand 2eRe: (i) x >fand 2 >0=4x >0, (ii)x >0andy >0 =x +
y >0, (iii) x > y iff x — y > 6. The positive cone V* = {xe V: x > ¢} com-
pletely describes >.

Let (¥, >) be an ordered vector space and define binary relations » and =~
on V*by x> yiff x> 2y for all 2> 0, and x = y iff Ax > y > ux for some
2, # > 0. Then =~ is an equivalence and, with [x] the equivalence class in V*+/~
which contains x € ¥+, the relation <,on V*/~, defined by [x] <,[y]iff x > y,
is a linear order on V+/~. Aset W C Vis Archimedean iff x,ye W=Ix —ye W
and y — pxe W for some 2, # > 0. The classes in V*+/~ are the maximal
Archimedean sets in V'*,

A function F: V — U, where U also is a real vector space, is linear iff F(Ax +
uy) = AF(x) + pF(y) for all x, ye V and 2, ¢ € Re.

THeEOREM 2 (Hausner and Wendel). Let (V, >) be an ordered vector space with
T = V*|= and [x] <,[y]iff x > y. Define (V,, > ) as the ordered vector space
of all real-valued functions on T which are nonzero on at most a well ordered subset
of (T, <), withf >, g when f,geV, iff f+ g and f(t) > 9(¢) for the first t in T
at which f(r) # 9(f). Select e, et for each t ¢ T and define f, e V, by f(t) = 1 and
fi(s) = O for all se T\{t}. Then there exists a linear F:V — V, with F(e,) = f,
for all t € T such that x > y iff F(x) >, F(y), forall x,yeV.

Henceforth, let ¥ be the real vector space of all real-valued functions on S,
letV,={4' — B': A,Be & and 4 > BlandletV, = {37 4, x;:ne{l,2,...},
2; > 0 and x; € V,}, the convex cone in V generated by V,. We presume axioms
(A1) through (A4) and S > @, for otherwise V, = @ by (A2).

LemMAa 1. ¢V, and V, is Archimedean.

ProoF. Suppose # € V, with 4,, B;e &, A, > B;and 4, > 0 fori=1, ...,n,
and Y] A,(4," — B/) = 6. Using(A3), 4, n B, = @ can be assumed without loss
of generality. Since 4/(s) — B;/(s)e{1,0, —1}foralliands, 3} (4, — B/) =0
is tantamount to a finite system (4,, - - -, 4,) - p? = 0 for a subset of p? in {1,0,
—1}*. Since the pi are integral vectors there are integral 2,* > 0 such that
3 2,%(4 — B/) = 0. Then A,* replications of (4,, B;) gives 3.7, C/ = X}, D/
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with C; > D, fori=1, ..., m( = 3 4,*)and C, n D, = @ for each i. But this
contradicts (Al). Hence 0 ¢ V..

To show that ¥, is Archimedean suppose first that 4 > B. Using (A3), we can
presume that 4 N B = @. Then, using (A2) and (A4), there are partitions {C,}r_,
of 4 and {D;}7, of S\B such that 4 > B U C,and 4 > B U D, for all i and j,
sothat 4’ — B' — C/eV,and 4 — B' — D/ eV, foralliand j. Addition over
all i and j then gives (n + m)(4’ — B') — A" — (S\BY = (n+ m — 1)(4' — B') —
S'eV, withn 4 m — 1 > 0, so that N(4" — B’) — S’ ¢ V, for positive N. By an
analogous procedure (given S > @), partitions of 4 and S\B lead to MS’ —
(A" — B") e V, for some positive M.

Therefore, if 4 > Band C > D, N(4'—B')—S' e V,and S’ — M Y(C' — D') e
V, for some positive N and M so that NM(A" — B') — (C' — D')e V,. To com-
plete the Archimedean proof, suppose x, y € ¥, with x = 2., (4, — B/) and
y= 2", ¢,{(C;/ — D) with 2;,, u; >0 and 4, > B, C; > D; for all i and j.
Then there exists N for which N(4/ — B/) — (C;/ — D;/)e V, for all i and j.
Multiplying N(A4,’ — B/) — (C;/ — D;’) by 2, ¢; and double summing over all i
and j, we get (N 33, ¢;/>3; 4)x — y e V,. This proves that V| is Archimedean.

To complete the proof of Theorem 1 let K be the set of all convex cones in V
which include ¥, contain 4’ for every nonempty 4 € .5/, and do not contain 6.
Using (A1), (A2) and (A3) it is easily checked that K = ¢J. Zorn’s lemma then
implies that K contains a maximal such cone, say V'*. Definingx > yiffx — ye
V*, (V, >) is easily seen to be an ordered vector space. Let F: V — V, be as
given by Theorem 2. Since V; c V'* and V, is Archimedean by Lemma 1, V, is
included in one of the equivalence classes in T'= V*/~, say t€ T. Since e, et
can be chosen as we wish let e, = ', with F(S') = f,. It is readily seen that,
with F,(x) the value of F(x) at ¢ for xe V, F,(x) > 0 for all x e V,, and indeed
for all xer. Hence if Ae¢.5” and 4 = @ then F,(A4) > 0 if 4" et¢. Suppose
however that A ¢ &, A + @ and A’ ¢ t. Then, since A’ € '+, A’ is in some other
classin T, say t*. Since &' — A’ is the indicator function of $\4, §" — 4" e V'*.
Therefore, the definitions prior to Theorem 2 require ¢ <, #*. It then follows
from Theorem 2 that F,(A4") = 0. Moreover, F,(f) = 0 by linearity.

A finitely additive probability measure P: .~ — Re which weakly agrees with
> is defined by P(4) = F(A’) for all 4e 5. As just noted, P(4) = 0 for all
Ae S, P(S) = Fy(S') = f(t) = 1 by Theorem 2, and additivity for P follows
from linearity for F,. Moreover, if 4, Be & and A > Bthen A’ — B’ eV, so
that P(4) — P(B) = FyA') — F(B') = F(A' — B') > 0.
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