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A STRONG LAW OF LARGE NUMBERS FOR
RANDOM COMPACT SETS

By Zvi ARTSTEIN' AND RICHARD A. VITALE?
Brown University

A strong law of large numbers is shown for random sets taking values
in the nonempty, compact subsets of R».

1. Introduction. In the study of probabilities on geometrical objects, there
have been some recent attempts to formulate general theories of random sets,
notably by Kendall [8] and Matheron [10]. It is our purpose here to make a
contribution in this direction by demonstrating the existence of a strong law
of large numbers for random sets taking values in the class of compact subsets
of R*. The result is proved first under the assumption of convexity and then
extended to the general case. In the spirit of previous (nonprobabilistic) work
by Castaing [6], Debreu [7], and Rockafellar [12] among others, we find it use-
ful to proceed from the definition of a random set as a measurable set-valued
function.

Our particular concern with the behavior of sums of random sets arose in the
formulation of a stochastic model of growth which seems useful in certain ap-
plications where enlargement occurs by surface accretion. Mathematically it is
appealing to model such a dynamic by the set addition of random “growth ele-
ments.” The question of asymptotic shape then leads naturally to the considera-
tion of normalized sums of random sets.

2. Random sets. We regard a random set X as a measurable map defined on
an abstract probability space ({2, Z, P) and taking values in the collection & of
nonempty, compact subsets of R*. With the introduction of the Hausdorff
distance

d(C,, C,) = inf{1: C, < C, + 1B, C,  C, + B},

& can be made into a separable, locally compact metric space. Here B is the
closed unit ball in R* and scalar multiplication and addition are defined as usual
by 2C ={Ac:ceC} and C, + C; = {¢; + ¢;: ¢,€C,, c,€C;}. We denote by
[|C||, the distance d(C, {0}), which is equal to sup {||c||: c e C}.

If C belongs to &, then we denote by coC the convex hull of C and by co&”
the collection of all such nonempty, convex, and compact subsets of R*. It is
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well-known that co’s” is a closed subset of <~ and that the map C — coC is
continuous.

In light of the metric structure of <°, measurability of X will be taken in the
Borel sense (Billingsley [5]). It should be pointed out that an apparent alterna-
tive is to focus on the geometry of the values of X and to require Z-measurability
of sets of the form {weQ: X(w) n C, # ¢}, C,e € (Kuratowski and Ryll-
Nardzewski [9], Rockafellar [12]). Debreu [7, page 355] has shown that this is
in fact an equivalent formulation.

Viewing random sets as random elements in a metric space, we note that well-
known results imply that, if X is a random set, than «X and coX are random

sets and ||X|| is a random variable. Moreover, if X}, X, ---, X, are random
sets, then so is >;& X,. If the former compose an independent collection, then
this implies the same for co X, coX;, - - -, coX,.

3. Law of large numbers. We begin by defining the expectation of a random
set. A selection of the random set X is a random vector x such that x(w) € X(®)
a.s. Selections exist (see Aumann [4], Kuratowski and Ryll-Nardzewski [9]).

DEFINITION. Let X be a random set such that each selection x has finite
expectation Ex. The expectation of X, written EX, is the set {Ex | x is a selection
of X}.

We regard the expectation as well-defined if EX € &”, for which a necessary
and sufficient condition is that E||X|| < co. Moreover, if P is nonatomic, then
EX = EcoX (see, for instance, Artstein [2], Aumann [4] for these respective
results in different notations).

An equivalent formulation of the expectation is to consider the integration of
a random set viewed as a point-valued function valued in & (Artstein and Burns
[3], Debreu [7]). The resulting expectation is the same and we do not present
the precise formulation here.

We turn now to the law of large numbers.

THEOREM. Let X, i = 1,2, ... be independent, identically distributed random
sets such that E||X,|| < co. Then

Sy = X1+X3+N"' + Xy — EcoX a.s.

Note that by Aumann’s result E coX is equal to EX if the probability space is
nonatomic. In the context of the law of large numbers for nonconstant X, the
appropriate (product) probability space is always nonatomic.

The proof of the theorem will be given in two steps. First it is specialized to
the case of convex-set-valued random sets (Section 4) and then extended to the
general case (Section 5). ‘

4. The convex case. We note that co%” can be embedded in the Banach
space of continuous functions defined on the unit sphere in R* by identifying a
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set C e coZ” with its support function

s(p, C) =sup{p-c:ceC}.
Since this mapping preserves both metric and linear structure, a direct appeal
to a known strong law in a Banach space (see, for instance, Mourier [11]) yields
the a.s. convergence of the sequence s(., Sy). In particular for each pe R",
s(p, Sy) — Es(p, X) a.s. which is equal to s(p, EX) (see Artstein [2]). In view

of the isometry between convex sets and their support functions, we conclude
Sy — EX a.s.

5. The general case. In relaxing the assumption of convexity, we note that
an embedding such as the one mentioned in the previous section cannot be done
except for extremely specialized situations. Here, it seems, we are forced to
recognize the geometrical content of the problem. The following result will
provide a convenient way to bridge the gap.

ProrosITION. (Shapley-Folkman; see Arrow and Hahn [1, page 396]): Let

Ce&, 1,2,---, N, such that ||C;|| < M. Then
d(N. € co L, C)) < ntM

(note the lack of dependence on N).

We use this to show that in some sense averaging is asymptotically “convexi-
fying.”

LEMMA. LetC,e€,i=1,2,..., besuch that co[(C,+C;+ - -+ +Cy)/N]—
C (necessarily convex). Then (C, + C, + «-+ + Cy)/N — C.

Proor. With the triangle inequality, we have

d(C1+C2+ e+ Cy C>£d<c1+ e+ Cy ’ CO[C1+ _|_CN})
N )T N N
+d<co[c1+ +C”], C).
N
The second term goes to zero with increasing N by assumption. As for the first
term, we note that for fixed p e R"

s(p Gt Ce) = Lysip, €

converges to s(p, C), which implies a fortiori s(p, Cy) = o(N). Since this holds
for each p among the 2n signed unit vectors in R", we clearly have ||Cy|| =
o(N). Itisstraightforward to conclude that max {||C||/N|i = 1,2, ---, N} -0
and hence by the Shapley-Folkman result
d<c1+cz"|‘ +CN’ CO[C1+C2+ +CN_]>

N N

lICll
N

gn-max{ i=1,2,---,N}—-—>0.
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With this preparation, the extension of the law of large numbers to the general
case is easily effected. Indeed under the assumptions made, the sequence co X,
CoX,, - .- satisfies the hypotheses of the theorem for the convex case. Hence

coX, +coX,+ .-+ +coX,
N

—EcoX a.s.

By the lemma, S, converges on the same  set to the identical limit, and we
are done.

It should be pointed out that the hypotheses of the theorem can be relaxed to
state simply that coX;, coX,, - - - satisfy the conditions of the theorem. Indeed,
it is possible to construct examples where the individual X; are not even random
sets in the sense that they fail the measurability criterion. However, we have
chosen to state the theorem in the more natural context.

We conclude by noting that other results can probably be obtained by using
an outline of the development employed above; in short, by first applying a
standard limit theorem for random variables to support functions—yielding a
limit result for random convex sets—and then using the lemma above (or another
extension of the Shapley-Folkman result) to cover the general case.
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