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THE FIRST BIRTH PROBLEM FOR AN AGE-DEPENDENT
BRANCHING PROCESS

By J. F. C. KINGMAN
University of Oxford

If B, denotes the time of the first birth in the nth generation of an age-
dependent branching process of Crump-Mode type, then under a weak
condition there is a constant y such that Bu/n — 7 as n — oo, almost surely
on the event of ultimate survival. This strengthens a result of Hammersley,
who proved convergence in probability for the more special Bellman-Harris
process. The proof depends on a class of martingales which arise from a

‘collective marks’ argument.

1. The problem. Hammersley [9]has considered the following problem for an
age-dependent Bellman-Harris process (see [11] for definitions and basic theory).
Let B, be the time of the first birth in the nth generation, or equivalently of the
first death in the (n — 1)th generation. If the expected number of children born
to an individual exceeds 1, then the event S of ultimate survival has positive
probability, and B, is defined on S for all n > 1. What can be said about the
asymptotic properties of B, as n — co? He shows that there is a constant 7,
which may be calculated from the distributions defining the process, such that

(1.1) B,/n— 7y
in conditional probability given S.

Hammersley’s techniques depend on an ingenious theory of ‘superconvolutive’
sequences of distributions. They can be supplemented by a result of Kesten
[12], which appears to be sufficiently powerful to establish the convergence (1.1)
almost everywhere on S. The purpose of this paper is to present a quite different
approach to (1.1), which seems to me somewhat more transparent, and may be
useful for other problems about branching processes. This approach applies
without extra cost to the more general processes defined by Crump and Mode
[4], and the analysis will therefore be set within this broader context.

In the Crump-Mode model, an initial ancestor is born at + = 0 and then
produces children at random throughout his lifetime. We shall not be concerned
with death, and thus it makes no difference whether his lifetime is finite or
infinite, or whether (as in Doney’s generalisation [6] of the Crump-Mode model)
he is allowed to produce posthumous children. If Z(r) denotes the number of
children born to this ancestor before time r, then Z,(t) will be an arbitrary
counting process (i.e. a positive, increasing, right continuous, integer-valued
random process. Words like ‘positive’ and ‘increasing’ are to be understood in
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FIRST BIRTHS IN BRANCHING PROCESSES 791

the weak sense unless qualified by ‘strictly’.) In the next section a condition
(2.3) will be imposed on Z,, which will imply that Z,(¢) is finite for each finite
t, but the possibility is not excluded that the ancestor will live for ever and
have an infinite family.

The important feature of the Crump-Mode model is that the children of the
ancestor, from their several births, behave independently of one another and
of their parent, producing children at random according to random processes
with the same joint distributions as Z,. Their children produce children in the
same way, and so on. For a formal definition of this process, we refer to [4].

Let Z,(7) denote the number of nth generation individuals born before time
t, so that Z, is again a counting process, and write

(1.2) v =sup{n; Z,(t) > 0 for some ¢},

so that 0 < v < oo and S, the event of ultimate survival, is given by
(1.3) S ={v=o0}.

For each finite n < v, denote by

(1.4) B,<B,<B;=<---

the instants at which the births in the nth generation occur, arranged in ascend-
ing order, so that

(1.5) Z,(t) = 4{r B, =1
and
(1.6) B, =B, .

The aim of this analysis is to show that, under the weak condition (2.3), the
limiting equation (1.1) holds almost everywhere on S, and to exhibit the constant
7 in terms of the distributions of the process Z,.

-

2. The martingales. The basic tool of the present analysis is the function

2.1) 6(0) = E{3], exp(—0B,,)} 020,
where the summation runs over all the children of the initial ancestor. This
sum may have a finite or infinite number of terms, and is to be taken as 0 if it
is empty. By Fubini’s theorem, when 6 > 0,
(2:2) $(0) = \¢ e d{EZ,(1)} = 0 {7 e "E{Z(1)} dt .

Note that ¢(0) is the expected number of children of any individual, and in
order that S should have positive probability it is sufficient (and almost necessary
[11]) that ¢(0) > 1. We do not exclude the possibility that ¢(0) = co, but it is

then necessary to suppose that ¢(@) is finite for some (and then for all larger) 6.
These two conditions are neatly combined by requiring that

(2.3) ' 1 < ¢(0) < o0
for some 6, > 0, and this will be assumed in all that follows.
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THEOREM 1. If 7 is the o-field generated by the births in the first n generations,
then for all § = 0,,

(2-4) E{3, exp(—0B,,.,)| 7.} = ¢(0) 2., exp(—0B,,) .
Hence

(2.5) E(%, exp(—0B,,)} = 6(0)" .

and

(2.6) Wo(0) = $(0)™" . exp(—0B,,) = (0)™" §5 e dZ,(1)

defines a martingale with respect to the o-fields . .
Proor. Each birth in the sum

Zr exp(_03n+l,r)
comes from one of the individuals in the nth generation, so that the sum may
be written as
Zr exp(_aBnr){Zs exp[—0(3n+1,r,s - Bn'r)]} ’
where B, ,, , , is the birth time of the sth child of the rth individual in the nth
generation. The inner sum is of the form

Zs exp(_B{s) ’

where the sequence (Bj,) is independent of &, and has the same joint distri-

n

butions as (B,,). Hence, since B,, is & ,-measurable,

E{X, exp(—0B,.1,,) |7 a} = L, exp(—0B,,)E{}], exp(—0B,,)}
= 2. exp(—08,,)$(0) -
Thus (2.4) is proved, and it follows that W,(¢) is a martingale. Since EW,(0) =
1, EW,(0) = 1, which establishes (2.5) and completes the proof.

When 6 = 0, and if ¢(0) < oo, the martingale W, is an important tool in the
theory of branching processes [11], [1], and it is possible that it may have other
uses for general values of #. We shall need to use the fact that, because
W,(0) = 0, the martingale convergence theorem shows that the limit

(2.7) w(0) = lim,_,, W,(0)
exists, and satisfies
(28) EWO} <1  (020).

The identity (2.5) is in the spirit of van Dantzig’s ‘method of collective marks’
[5]- Suppose that the individuals are subject to a disease, which Kkills any
individual in a time interval (¢, ¢ + k) with probability 64 4 o(k), and acts
independently on different individuals and in disjoint intervals. The result is a
new Crump-Mode process, in which the mean family size is reduced from ¢(0)
to ¢(0). Conditional on the original process, the probability that the nth gene-
ration individual due to be born at B,, is not preempted by the death of an
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ancestor is exp(—0B,,). Thus (2.5) expresses the obvious fact that the expected
number in the nth generation of the modified process is ¢(6)".

3. The lower bound. Equation (2.5) shows that, for § > ¢, and any constant a,
$(6)" = E{exp(—0B,); n < v} = Efexp(—0B,); B, < na, 5}

= e P{B, < na, S},
so that
P(B, < na, S} < [$(0)e"]" .

The Borel-Cantelli lemma therefore shows that, as n — oo,
3.1) liminf B, /n = a
almost everywhere on S, so long as a satisfies

d(0)e’* < 1
for some 6 = 6,. Writing

(3:2) (@) = inf{(0)e’; 6 = 6.},

this shows that (3.1) is true if p(a) < 1. It is clear that x(a) is an increasing
function of @ = 0, and since ¢(8) — 0 as § — co (by monotone convergence),

p#a)—0 (a—0).

Hence p(a) < 1 for small values of @ > 0. If we define
(3-3) r = sup{a; p(a) < 1},
then (3.1) yields the following theorem.

THEOREM 2. If (2.3) holds, then as n — co,
(3.4) liminf B,/n = 7
almost everywhere on S, where v is defined by (3.3) and (3.2).

Suppose now that 7 is finite. The increasing function
(3.5) log p(a) = inf {log ¢(0) + Oa; 6 = 0,}

is clearly concave, and therefore continuous, on {a; p(a) > 0}. Moreover,
w(a) = 0 only if P{Z,(a) = 0} = 1. Hence, if we exclude the case

(3.6) P{Z(a) =0, all a< 7} =1,
we have p(y) = 1. Moreover, if (3.6) is excluded, then
d(@g)elor > 1, lim,_., ¢(0)e’" = oo .
Hence p(r) must be attained at an interior point 9 of (6, o), and we have the
equations
(3.7 $I9) = e, F(9) = —ré(9)
satisfied by 9 and 7. (In particular cases, (3.7) would usually be the starting-
point for the evaluation of y.) Note also that since ¢(6) = e~’7 for all § = 6,, it
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follows that p(a) = inf e?~1 > efoe-1 > 1 when a > 7;

(3.8) ma)>1 (@>7).

In the special case of the Bellman-Harris process (when all the birthtimes B,,
are equal) it is trivial to check that the definition of 7 is equivalent to that of
Hammersley ([9], equation (3.97)). Hence this argument gives a simple proof
of one side of Hammersley’s result.

Equation (2.5) shows that the increasing function
(3.9) E{Z,(1}
is the n-fold Stieltjes convolution of
(3.10) E{Z,(1)

with itself, and this suggests the estimation of (3.9) by standard techniques for
sums of independent random variables. For example, although Chernoff’s
theorem [3] is not directly applicable because (3.10) is not a distribution function,

the simple proof given by Bahadur and Ranga Rao [2] applies without change,
to show that

(3.11) E{Z (na)} = m"

for large n, whenever a > yand 1 < m < p(a). If we could deduce from (3.11)
that

P{Z,(na) > 0} + 0

as n — oo, this would suffice to prove (1.1), but such a deduction would not be
valid without further argument. However, (3.11) is of some interest in its own
right, and may be made more precise by using the methods of [2] in a rather
obvious way to show that, under slight further conditions,

(3.12) E{Z (na)} ~ c(a)n~tu(a)"
as n — oo, for a suitable constant c(a).

4. The limit W(6). It is a commonplace of martingale theory that, if the
limit of a positive martingale has the same expectation as the martingale, then

it may be used to close it [7]. In particular, if (2.8) can be replaced by the
equality

(4.1) E(W(0)} =1,
then
(4.2) W,(0) = E{W(0) | .7} .

Incase§ = 0 (and ¢(0) < oo) this question has been the subject of much research
(see [11] and [1]), culminating in the Kesten-Stigum theorem that (4.1) holds
if and only if E{W(0)|log W,(0)]} < co. Fortunately, we shall not have to
generalise this deep result, and it will suffice to use a simpler (and earlier)
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technique used by Harris to deal with the problem when E{W,(0)%} < oco.
Harris estimated E{,(0)*}, and this works with W,(¢) provided that @ is suf-
ficiently small. This is not enough, and further values of ¢ can be dealt with
by estimating E{W,(0)*} for values of a slightly greater than 1. By suitable
choice of a, this proves (4.1) whenever 6 < 9, and this result is best possible
since (4.1) is false for & > 9 (as will become clear in the proof of Theorem 5).
I do not know what happens in the critical case § = 9.

THEOREM 3. Suppose that (2.3) holds, and that a and 6 satisfy 60 = 6,, 1 <
a <2,

(4.3) E{W,(6)*} < o
and

(4.4) P(ald) < $(0)* .
Then

(4.5) sup E{W,(6)} < oo,

and therefore (4.1) and (4.2) hold.

LeMMA. Let 2, (r = 1) be positive constants, with finite sum A. Let Y, (r = 1)
be uncorrelated positive random variables, each with nonzero mean p and finite
variance ¢®. Then, for 1 < a < 2,

(4.6) E{(X, 2, Y} < Aope + (a — 1) 3, 3,05 .
ProoF oF LEMMA. For any positive random variable X, Holder’s inequality
implies that
E(X?) = [EQX)P[EQX] .
If X=3 2,Y,, then E(X) = Ay and
E(X) = A 4 5, 220 < A% + 3, 4 oA

= ApX(1 + A-ep2 3], 2,%7) .
Hence
E(X?) < (A1 4 A~op=* 3, 2,207

= (A1 + (@ — DA==p~? 31, 4,70%)
= Ay (a — 1) 5, A, e
Proor oF THEOREM 3. In the notation of the proof of Theorem 1,
E{[Z,exp(—0B,..,,)]"|-F .} = E{(X, 4. Y,)*| .}
where 1, = exp(—0B,,) is constant conditional on .&",, and
Y'r = Zs exp[_0(3n+1,r,s - Bnr)]
satisfies the conditions of the lemma with

p=40), o= (0) Var [W,(6)].
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Hence
E{[ X, exp(—0B,.1,)]* |7}
< [X, exp(=08,)]"(0)* + (a — 1) X, [exp(—0B,,)]*6(6)* Var [Wy(6)] ,
so that
E{(W,(0)*|- 7.} = Wa(0) + (a — D$(6)*¢(a6)" W ,(ab)) Var [W,(0)] -
Taking expectations and summing over n, we have
E(W,(0)} = 1 4 (« — 1) Var [Wy(6)] 22525 {$(a0)/$(0)}" »

so that (4.5) follows from (4.4). Moreover, (4.5) implies that the martingale
W,(6) is uniformly integrable, and (4.1) and (4.2) are consequences of standard
martingale theory ([7], Theorem 4.1).

CoRrOLLARY 1. Excluding (3.6), (4.1) and (4.2) hold for all values of 0 in 6, <
6 < 9 for which (4.3) is satisfied.

Proor. It is necessary only to show that & exists in 1 < a < 2 such that
(4.4) is satisfied. If ¢(6) = 1 this is trivially so for any such a, since ¢ is strictly
decreasing. Hence we may suppose that ¢(¢) < 1, and this means that ¢ lies in
the interval (8,, co) in which ¢ has derivatives of all orders. Then (4.4) will
hold with « greater than, but sufficiently near, 1 if

0
- 6) — & =
2-[4(at) — p(B)1 <0 a a=1,
that is, if
0¢'(6) < ¢(6) log $(9) »
or equivalently, if
64'(9)
@) = 2 — log () < 0.
a0y BN
From (3.7), ¢(9) = 0, and for 4 > 0,,
, _ n 0) ¢I(0) 2
=0 {4 (50} >
$(6) $(6)
as a consequence of (2.2) and Schwarz’s inequality (the case when ¢’ is identi-
cally zero being ruled out as a sub-case of (3.6)). Hence ¢(6) < 0 for all §, <
6 < 9, as required. .
COROLLARY 2. If (3.6) is true, then (4.1) and (4.2) hold for all values of 6 = 6,
for which (4.3) is satisfied.

Proor. The function
4.7) P(0)e’r = {7 e~?¢-1 d(EZ (1)}

is either constant (in which case (2.3) shows that (4.4) is trivially satisfied), or
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is strictly decreasing and (by (3.3)) = 1, so that
P(ab)e’r < §(0)e" < ($(0)e)" ,
so that (4.4) holds for any a > 1.

5. Subadditivity. In [8] Hammersley adduced the first birth problem as
evidence that a strengthening which I had adopted in [13] and [14] of the
original Hammersley—Welsh postulates [10] for subadditive processes was such
as to rule out interesting applications. Later ([9], Note 9) he withdrew this
objection in the light of remarks of Joshi, which made it clear that the problem
could not be fitted directly into subadditive ergodic theory. Nevertheless, the
methods of [10] and [13] do play a part in the proof of the main result.

THEOREM 4. Suppose that every individual has at least one child, and that

(5.1) E(B) < oo .

Then there is a constant 1" such that

(5.2) Eﬂ_r._m.
n

as n — oo, and if (2.3) holds, then
(5.3) r=r.

Proor. For any strictly positive integer k, we define by induction on m a
sequence of individuals .4, (m = 0), such that ,4, is the initial ancestor and
«An is in the mkth generation. If A4, has been defined, then by hypothesis he
has at least one descendant in the (m + 1)kth generation; let .4, ., be the first-
born of these. Define .8, as the time between the births of ,4,_, and ,4,,.
Then, for fixed k, the random variables ,3,, are independent, with the same
distribution as

(5.4) Wb = B, .
Moreover, since ,4,, cannot be born before B,,,,, we have
(55) B(mk) é Z:’;l ka'r .

From (5.1), (5.4) and (5.5), E(;8,) < oo for all k and m, and we can apply
the strong law of large numbers to (5.5) to conclude that, as m — oo,

lim sup Bpy/m < E(,8,) = E(B,)
with probability one. Since B, increases with n, it follows that, as n — oo,
(5.6) lim sup B,/n < E(By/k),

with probability one.
Consider the positive random variables

Xn = n_l(Z:":l 1181' - Bn) ’
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which have finite expectations
x, = E(X,) = E(B, — B,/n) .
Then (5.6) implies that
X, =liminf X, > x,
with probability one. By Fatou’s lemma,
liminf x, = E(X,) = x,
for all k, which shows that

x = lim x,,
exists. Moreover, since

PX,=x)=1, E(X,) < x,
we must have
P(X* = x) =1.
The random variables
Y, = inf{X,; m = n}
increase to X, = x as n — oo, so that
E|Y, — x| -0
by monotone convergence. Since Y, < X,
EX, - Y,|=EX, —EY,)»x—x=0,
so that
EX, —x|—>0.
Since
Ejn=t >*_,,8, — E(B)|—0

by the strong law, this establishes (5.2) with I' = E(B,) — x. Letting k —»
in (5.6), we have
(5.7) limsupB,/n < T
with probability one. If(2.3) holds, then comparison of (5.7) and (3.4) establishes
(5.3), and the proof is complete.

6. The main theorem.

THEOREM 5. Under condition (2.3),
(6.1) lim,_, B,/n = ¢
holds almost everywhere on S.

Proor. If y = oo, the result is a consequence of Theorem 2, and we therefore
suppose 7 finite. We prove the theorem first under three unecessary restrictions,

which will then be successively removed. Thus we suppose that each individual
has at least one child,

62) P{Z(c0) 2 1} = 1,
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that

(6.3) E(B)) < oo,
and that, for some 6, in 6§, < 6, < 9,

(6.4) E{W,(6,)’} < o .

Note that, since ¢(8) Wy(6) decreases with @, (6.4) implies that (4.3) holds for all
6 = 0,. Hence the corollaries to Theorem 3 show that (4.1) and (4.2) are true
whenever 6, < 6 < 9, or in case (3.6) whenever § = 6,.

For any such ¢, differentiate (2.5) to give

—n(6)*¢'(6) = E(S, B,, exp(—0B,,)}
; E{Bn Zr exp(_oBm-)} )

—§(0)/$(8) = E{n"B, W,(6)} = E{n~1B, W(8)}
> E{n'B, W(0); W(0) < w}

so that

for any finite w, where we have used (4.2) and the fact that B, is & ,-measurable.
Letting n — oo and using (5.2),

—¢4'(0)/$(0) = E{TW(0); W(6) < w}.
Letting w — co and using (4.1),
—4'(0)/9(0) = TE{W (@)} =T,
and letting @ — 9 (or § — oo in case (3.6), remembering (4.7),)
r=T.

Hence, from (5.3), I" = 7, and comparing (3.4) and (5.7), the conclusion (6.1)
follows with probability one.

It remains to remove the restrictions (6.2), (6.3) and (6.4). In any Crump-
Mode process, describe an individual as fecund if he has descendants in each
succeeding generation. Then the initial ancestor is fecund if and only if S
occurs, and the probability of any individual being fecund is P(S). An individual
is fecund if and only if he has at least one fecund child. It is easy to check that,
conditional on S, the fecund individuals form a new Crump-Mode process. If
quantities relating to this new process are distinguished by a bar (and if P and
E denote probability and expectation conditional on S) then although Z, has a
different structure from Z,, it is clearly true that E{Z,(r)} = E{Z,(¢)}, so that
¢=¢andj =7

For the new process, (6.2) is automatically satisfied, and hence from what
has already been proved we can conclude that

P{lim B,/n = 7} = 1
so long as

(6.5) B(B) < oo, E{W6)) < co.
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Since B, < B,, this means that
limsup B,/n < 7

almost surely on S, and comparison with (3.4) then proves (6.1). Since W, <
W, (6.5) follows from (6.4) and

(6.6) E(B) < oo .

Hence we have proved (6.1) under the conditions (6.4) and (6.6).

To remove (6.6), we modify the process in the manner described at the end
of Section 2, but writing § rather than # for the parameter measuring the
virulence of the disease. It is clearly possible to arrange that the modified pro-
cesses for all positive values of g are defined on the same probability space, in
such a way that death for one value of § implies death for all larger values.
Then, distinguishing quantities in the modified process by a superscript 4, we
see that

(6.7) $%0) = ¢(0 + 9),

so that (2.3) holds for all sufficiently small 6 > 0. The modification does not
disturb (6.4), and (6.5) holds for all 6 > 0, because (on §%), B, is less than the
lifetime of the initial ancestor, which has finite expectation ¢-'.
Hence, if (6.4) holds and & > 0, we can conclude from the fact that B, < B,
that
vy < liminf B,/n < limsup B, /n < 1°

almost everywhere on §°. As d — 0, S° increases to an event $* C S, and it
follows easily from (6.7) that y* — y. Hence (6.1) will be proved (still assuming
(6.4)) if it can be shown that P(S — S*) = 0. To show this, note that 5(0) =
P(S?) is the root in (0, 1) of the equation [11]

Sl = 5@)} =1 = 5(9) ,
fi(x) = Yoo P{Z%(c0) = m}x™
= E{I[, [1 = (I = x)exp(—08,,)]},
so long as ¢(d) > 1. From this it is immediate that

where

P(S$*) = lim,_, 5(0) = P(S),

and therefore (6.1) is proved under conditions (2.3) and (6.4).

Finally, we remove (6.4) by a truncation argument. Insist that any individual
is arbitrarily sterilised after producing N children, and denote this modification
by a suffix N. For the modified process, (6.4) is satisfied, and B, is increased,
so that, using (3.4) again,

vy < liminf B, /n < limsup B,/n < 1y
almost everywhere on S,. The survival probability s, = P(S,) satisfies

¥ P(Z(0) = m}(l — sy =1 — sy,

m=0
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&

from which s, — P(S) as N — co. Hence, as N — oo, SN~ increases to an event
S, with P(§ — S.) = 0. Finally, 7, is computed from

Px(0) = E{3, <y exp(—0B,,)},
from which it follows that y, — y. This suffices to complete the proof.
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