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ON EXISTENCE AND NON-EXISTENCE OF PROPER,
REGULAR, CONDITIONAL DISTRIBUTIONS!

By DAvVID BLACKWELL AND LESTER E. DUBINS
University of California, Berkeley and University of Michigan

If o is the tail, invariant, or symmetric field for discrete-time pro-
cesses, or a field of the form &7, for continuous-time processes, then no
countably additive, regular, conditional distribution given % is proper.
A notion of normal conditional distributions is given, and there always
exist countably additive normal conditional distributions if .o is a counta-
bly generated sub o-field of a standard space. The study incidentally shows
that the Borel-measurable axiom of choice is false. Classically interesting
subfields & of &Z possess certain desirable properties which are the defin-
ing properties for . to be ‘‘regular’’ in .

1. Whenever stronger conditions are not explicitly imposed, (Q, &%) is a
measurable space, that is, Q is a nonempty set, <% is a o-field of its subsets; and
Y7 is a sub o-field of <.

A regular conditional distribution (r.c.d.) given % on &% is a function Q de-
fined on Q x <Z which satisfies for all w ¢ Q and B e &%

(a-1) Q(w, +) is a probability measure on <7,
 (a-2) Q(w, +) is countably additive;
(b) For each Be &, Q(+, B) is %“-measurable.

For a number of decades it has generally been considered appropriate to es-
tablish for a countably additive probability measure P on <2 the existence for
P of ar.c.d. given %, which has meant a Q satisfying (a) and (b) and related
to P via:

(1.1) {4+ Q(w, B)dP(w) = P(A n B), for Ae & and Be ZZ.

However, regular conditional distributions may not be the appropriate concept
on which to focus primary attention. As was shown in [3], and as will be shown
below, for some classically interesting pairs of o-fields (%7, <#'), regular con-
ditional distributions never satisfy the intuitive desideratum introduced in [3] of
being proper, that is, of satisfying this requirement:

(1.2) Q(w, A) =1 whenever we de 7.
Note that for proper Q, Condition (1.1) is implied by the weaker, and simpler
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condition:
(1.3) { O(w, B) dP(w) = P(B) for Be <%.

A probability measure P on & is extreme if P(A) = 0 or 1 for all A4e 7.
An 7-atom is the intersection of all elements of . that contain a given point
of Q. If for an 4 e .7, P(A) = 1, P is supported by A.

THEOREM 1. Suppose that <# is countably generated. Then each of these con-
ditions implies its successor.

(a) There exists an extreme probability measure on .57 which is countably addi-
tive and which is supported by no S7-atom belonging to 57

(b) & is not countably genevated,

(€) No regular conditional distribution given 87 is proper.

Proor. Suppose (c) fails, and let Q be a r.c.d. given & which is proper.
Let % be a countable field which generates <%, and let % * be the smallest -
field with respect to which Q(+, F) is measurable for all F e 5. Plainly, %7* is
countably generated. So (b) will be seen to fail once it is shown that & = o7*.
Obviously, &7* < .. For the reverse inclusion, verify that the set of B for
which Q(., B) is " *-measurable includes & and is closed under complements,
countably monotone unions, and countably monotone intersections. Hence,
QO(+, B) is %7 *-measurable for all B¢ <%. In particular, for 4 € %7, the event,
Q(+, A) = 1, namely 4 itself, is an element of &7*. Thatis, &% c & *. So
& = % is countably generated, which contradicts (b).

Suppose next that (b) is false, that is, that .o/ is countably generated, and let
P be an extreme probability measure on'.%” which is countably additive. Let
A,, A, - -+ be an enumeration of a countable system of generators for .97, and
let B, equal A, or Q — A, according as P(4;) = 1 or 0. The intersection of the
B, has P-probability 1 and is an atom of .%, which contradicts (a). This com-
pletes the proof.

In view of Kolmogoroff’s zero-one law, the Hewitt-Savage zero-one law, and
the ergodicity of the shift, Theorem 1 implies that there exists no proper, regular,
conditional distribution given the tail field, the field of symmetric events, nor the in-
variant field, for one-sided, as well as for two-sided, discrete-time processes, where
the states are elements of, say, a separable metric space with at least two points.

Likewise, let Q be the space C of continuous, real-valued functions » defined
on [0, co) for which w(0) = 0, let &, be, as usual, the least o-field with re-
spect to which all evaluation maps for ¢/ < ¢ are measurable and, let &, =
Neso-F 14.- There exists no proper, regular conditional distribution given & ,.
For this, letting <% be the o-field generated by all the evaluation mappings and
letting .o/, = & ,,, is suffices to see that .97 satisfies Condition (a) of Theorem
1. As is well known, and easily verified, the restriction to .%7;—call it p—of
the distribution of a standard Brownian motion on C assigns to every element
of %7, a probability of zero or 1. Now for each 7 > 0, it is plain that %7, too,
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satisfies Condition (a). For let <7, be the collection of all elements of &, which
are subsets of ' ‘
B=[w:0(s)=0 for 0 <s<1].

Then the o-field <, is isomorphic to .97}, so on <7, there is a measure p, iso-
morphic to p. The extension z,* of 4, to all of .7, obtained by letting p,*(4) =
¢,(4 n B) for all 4 e 7, is a remote, countably additive measure on .27, which
is supported by no .%/;-atom. Hence, %/ satisfies Condition (a).

Similarly, if Q is the space D of right-continuous, with left limits, real-valued
functions defined on [0, co0), no regular conditional distribution given 5, is proper,
for the same argument, with Brownian motion replaced by a standard stable
process, applies.

Since properness is a fundamentally desirable property for conditional distri-
butions, it is important to relax one or more of the defining conditions for
regularity.

Let P be a probability measure defined for <Z. Consonant with a definition
given in [5], a function Q defined on Q x <7 is a normal conditional distribution
given % for P if these conditions are satisfied:

(i) For each w, Q(w, ) is a finitely additive probability on 7.
(ii) For each Be <%, Q(-, B) is constant on each .%~atom.
(iii) For each Be %, Q(+, B) is measurable with respect to the completion
of P, and (1.3) holds.
@(iv) Q(w, A) =1ifwe de V.

Plainly, if Q is a regular, proper distribution for P, then Q is normal and
countably additive.

If Q is a Borel subset of a complete separable metric space and <7 is the set
of all its Borel subsets, then (Q, &%) is a standard space.

Even if 9 is a countably generated sub o-field of a standard space, there
may exist no proper, regular, conditional distributions as was shown in [3]. But
normal conditional distributions do then exist:

THEOREM 2. If (Q, &%) is a standard space, or, more generally, a Lusin space,
and &7 is a countably generated sub sigma-field of <%, then, for every countably
additive P on &%, there is a countably additive, normal, conditional distribution Q
given o7

As defined in [1], (Q, £7) is a Lusin space if <7 is countably generated and
the range of every <Z-measurable, real-valued function defined on Q is an ana-
lytic set. '

ProoF oF THEOREM 2. According to[1] (Theorem 5), there isan N € & with
P(N) = 0 and a countably additive Q that satisfies all the conditions for nor-
mality except that (iv) may fail for w € N. Let ¢ by any mapping of Q into Q
which maps each .%~atom, 4, into a single point of 4. Now define a new Q
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thus. Outside of N, the new Q is the same as the old. But for w € N, let Q(o, +)
be the one-point delta-measure that assigns probability one to ¢(w). As rede-
fined, Q is normal.

When &7 is not countably generated, it might sometimes be useful, in view
of Theorem 2, to know that for a class &7 of P’s there is a countably generated
* C ¥ equivalent to 7. The latter clause means that, for every P e &
and every 4 e .97, there is an 4* € .%* such that 4 and 4* differ by an event
of P-measure zero.

For discrete-time i.i.d. processes, P, the zero-one laws replace the nonsepa-
rable tail or symmetric fields by the trivial field. For stationary processes, the
nonseparable field of invariant events is equivalent to the separable .%* deter-
mined by the variables

k+1

where B, is a sequence of events generating <%, T is the usual shift, and the
convenient notational device suggested by de Finetti [4] of using the same letter
to designate an event as well as its indicator has been employed.

That there is no countably generated .%7"* equivalent to the tail o-field .o for
Markov processes, it is the purpose of the next theorem to demonstrate.

(1.4) Y, = limsup,_,

THEOREM 3. Let Q be the set of infinite sequences @ = x,, X,, - - - Wwith each x,
equaltoOorl. Let X, (w) = x,,n=1,2,...,let F, = H(X,, X,,,, -+ ) be the
o-field generated by the X; for j = n, and let T = (3., <5, be the tail field. Then,
for any countably generated sub-sigma-field & of 7, there is a P on Q under which
X, is Markov and for which & is not equivalent to 7. '

PRrROOF OF THEOREM 3. Let P* be fair coin measure. There is an SZatom S
with P*(S) = 1. For any o eQ, denote by & the (unique) point such that
X,(@) =1 — X, (o) for all n. Since ® — @ is P* preserving, 3w, € S with &, ¢ S.
Consider the P with P(w,) = P(®,) = 4. It is Markov; in fact, given any X,,
one can produce the entire process. And .5 is not P-equivalent to .77, since
the tail atoms containing w, and @, have P-measure } each are contained in the
SZatom S. This ends the proof.

If attention is restricted to stationary Markov processes, or Markov processes
with stationary transitions, perhaps, in contrast to Theorem 3, there is a count-
ably generated .~ equivalent to .7". For the finite state case this is certainly the
case, for the indecomposable set of states in which the process is, and the phase,
are a tail variable that determines the tail field up to equivalence.

2. That no regular, conditional distribution given the tail field of the usual
coin-tossing space Q is proper can be established by an argument somewhat
different from that of Theorem 1. Indeed, this also follows, as in [5], from the
non-existence of an analytic set that has precisely one point in common with
each tail atom, an analytic .7-section, where % is the tail field. And this latter
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non-existence holds for, by a Vitali-like argument relying on the group-theoretic
properties enjoyed by a product of two-point groups, and in particular, because
of the existence on it of an invariant Haar measure, there exists no Lebesgue
measurable .%-selection, and, a fortiori, no analytic .%-selection.

Though we see no way to show the non-existence of Lebesgue-like selections
for o-fields .7 where there is no obvious group structure, the non-existence of
analytic .%“selections is indeed a fairly general phenomenon, as Theorem 4,
and, to some extent, as Theorem 3, suggesis.

A countably generated sub o-field . of the Borel subsets, <%, of the real
line which separates points is <7, where %7 separates points if, for x different
from y, there is an 4 € % with xe 4 and y € 4°. Slightly generalized, this fact
becomes this lemma, previously reported in ([1] Theorem 3).

LeEmMMA 1. Let (Q, &%) be a Lusin space and .57 a countably generated sub o-field
of &B. Then every B e &7 that is a union of elements of .97 is itself an element of 7.

THEOREM 4. Let .7 be a sub o-field of a standard space (Q, 7). Then each of
the following conditions implies its successors.

(a) & has a proper, regular conditional distribution.

(b) &7 has a selection function, i.e., there exists a function f: Q — Q such that
fU(F) C 7, and x € Ae 7 implies f(x) € A.

(c) & has a separating function, i.e., 3 .57-measurable g: Q — some complete,
separable, metric space such that xe Ae &7 and y ¢ A — f(y) # f(x).

(d) &7 is countably generated.

(e) Every 0-1 countably additive P on 57" concentrates on an atom of .57

ProoF. Assume (a). By Theorem 1, .9 is countably generated, so [3] applies
to yield (b). If (b) holds, (c) is immediate since all selection functions are sepa-
rating functions. Suppose that (c) holds, and let g be a separating function for
7. Then Z(g) C . So every atom of <Z(g) is a union of .%~atoms. On
distinct .S7“atoms, g assumes distinct values, and on each £#(g)-atom, g is con-
stant. This implies that every atom of <Z(g) is an .%7-atom, and conversely.
In particular, for 4 e .97, 4 is a union of <Z/(g)-atoms and 4 € &&. In view of
Lemma 1, 4 e “%(g). So &% = ZZ(g), which yields (d). That (d) — (e) is part
of Theorem 1. []

CoROLLARY 1. Let Q be the space of continuous functions w on 0 < t < oo. If
¢ Q— Q is tail measurable, or equiv’alently, is Borel measurable and satisfies
d(0) = ¢(0*) if o(t) = w*(t) for all sufficiently large t, then 3 @ for which ¢(w) is
not in the same tail atom as is o.

Let .&” be the set of all nonempty, finite or denumerable, sets of real numbers.
A real-valued function 4 defined on & is a choice function if h(S) € S for all § ¢ &
That there is no Borel measurable choice function is perhaps already known to
logicians, but it is related to Theorem 4, thus.
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COROLLARY 2. The Borel-measurable axiom of choice is false, that is, there is
no Borel-measurable function g defined on the space Q of sequences of real numbers
such that g(w,) = g(w,) whenever w, and o, have the same range and such that, for all
o, g(w) is an element of the range of w.

Of course, if @ = x;, x,, - - -, then the range, p(®), of o is the set of real
numbers x such that, for some n, x, = x.

Proor. Let .o/ be the least o-field with respect to which g is Borel measur-
able, let x be a countably additive probability on the Borel subsets of the real
line such that x(S) = 0 for all countable S, and let P be that measure on Q which
is the product of infinitely many copies of p. As the Hewitt-Savage zero-one
law implies, restricted to the Borel subsets of Q invariant under finite permu-
tations, and a fortiori restricted to %7, P is a 0-1 measure.

To each real number, s, there is associated the atom 4 of & consisting of
all w such that p(w) = s, and every atom of % is of this form. Therefore, for
all 7-atoms A4,

P(A) = P(U (X, = 9))

< X P(X, = 9)

= 2 s}

=0.
Since P(A4) is 0, Condition (e), and hence Condition (c), of Theorem 4 fails to
hold. Since there is no .%-separating function, there is no g with the properties
stated in Corollary 2. []

As is easily seen, the implications (b) — (c) — (d) — (e) hold if (Q, &7 is only
assumed to be a Lusin space. Perhaps the implication (a) — (b), and hence,
Theorem 4 itself, holds under this weakened hypothesis.

(2.1)

REMARK. As for the reverse implications, obviously (b) implies (a) and (d)
implies (c). Whether (e) implies (d) we do not know. The remaining impli-
cation, (c) implies (b), is false even if (Q, £7) is a standard space, as can be seen
thus. There exists a Borel subset, B, of the unit square whose projection on the
x axis is the unit interval I but which contains no Borel graph over I (e.g., see
[3] and its references). Let II be the projection onto Iand let . = ZZ(II).
As is evident, II is a separating function for .97, but there exists no selection
function for .&7.

Of course, Condition (b) of Theorem'4 implies:

(b') . has an analytic selection-set S, that is, there is an analytic subset §
of Q which intersects each atom of .&" in exactly one point.

We suppose that (b’) is weaker than (b), but in the presence of modest con-
ditions on .%7, (b’) implies (b), as the next theorem shows.

THEOREM 5. Let (Q, Z) be a standard space, and let .57 be a sub o-field of <&
such that:



PROPER, REGULAR, CONDITIONAL DISTRIBUTIONS 747

(i) Every .S7-atom is an element of o7
(ii) If Be <7 is a union of elements of .57, then B e .7
(ili) Q@ = {(x,y)eQ x Q: x and y are in the same .o7-atom} is analytic.
Then, for any analytic subset S of Q which intersects each .S7-atom in exactly one

point, if f(x) is the unique y € S which is in the same 7-atom as is x, then f is o7~
measurable.

Proor. The graph G of fis analytic‘, for G = Q n {y e S} is the intersection of
two analytic sets. The following argument leans on that in ([6] page 398). Note
that G°, namely Q x Q — G, is the projection on the first two coordinates of

(2.2) A={(xy,2)eQxQxQ:z+y and (x,2)eG}.

Obviously, 4, and hence also G*, is analytic. Since both G and its complement
are analytic, G is Borel. Because (Q, <) is a standard space and the graph of f
is Borel, f itself is Borel. Since f is constant on .%-atoms, (i) and (ii) together
yield the .%~measurability of f.

3. This section and those that follow are concerned to show that various well
known sub o-fields & of standard spaces (Q, <Z’) possess properties (i), (ii) and
(iii) of Theorem 5.

Call .7 regular if (i), (ii) and this strengthening of (iii) of Theorem 5 hold:
(iv) QO = O(.%) is a Borel subset of Q x Q.

As is easily verified with the help of Lemma 1, if .7 is countably generated,
then it is regular. With countably generated .%’s as building blocks, new .%"’s
that are regular can be constructed.

For each xeQ, let .%/(x) be the .%-atom containing x. If, for each x,
A(x) e %, 7 is atomic and Q(.%7) is the set of (x, y) such that 97(x) = ¥(y).

Fact 1. %7, C %7, implies: Q(.%7) C Q(-%), and (x) C % (x) for all x.

FacT 2. Q(&) = Q(¥'*), where .o7* is the least field, including %7, which
satisfies (ii) of Theorem 5.

Facr 3. If &7, D %, D ..., then Q(N ;) = U O(¥)).
Proor. Since N %; C %, Q(N ;) D Q(;) for all j, so
(3.1) o(N ;) 5 U A7) -

For the reverse inclusion, suppose (x, y) is not in |J Q(-%;). Then, for all j,
34;e % ;suchthat, xe A;and ye 4;°. Soxe A = limsup 4;and y e A°. Since
Ae N %, (x,y) is not in Q(N %;), which completes the proof.

For &7, c %7, C .-, let |J % be the set theoretic union of the %, which
is a field, and let \/ .7, be the o-field generated by |J 7. '

Fact 4. If &, C &%, C ---, then
(3-2) oV ) = (U %) = N: A7) -
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Proor. The first equality obtains essentially by Fact 2. And, by Fact 1,
3.3) QU ) c NA(H) -
For the reverse inclusion, suppose (x, y) ¢ Q(lJ -%¢;). Then 34¢|J 5, such

(2]

that xe 4, ye 4°. Since 4 e %7 for some i, (x, y) ¢ Q(-%7). Thatis, (x, y) ¢
N 0(-%7;). This completes the proof.

Several of the above facts are summarized, thus:

PROPOSITION 1. Suppose .57 is a monotone sequence of o fields. Then

(a) Q(¥) is monotone in the reverse order,

(b) Q(lim 57;) = lim Q(.57);

(c) If each Q(.577) is Borel or analytic, so is Q(lim 277).

(d) For each x € Q, the sequence of atoms 7 (x) is monotone in the reverse order,
and

3.4) (lim &77)(x) = lim (.7 (x)) ;
(e) If also each 57 is atomic, so is lim 7.

For &7 C 2%, % is saturated (in <7) if every element of <& which is a union
of elements of %7 is itself an element of .o/, Slightly more stringent would be
to require that every element of <2 which is a union of atoms of %" is in &7
If &7 is atomic, these notions coalesce, of course.

PROPOSITION 2. Suppose .57, is a monotone decreasing sequence of o-fields each
of which is saturated in Z&. Then lim .57, is saturated, too.

PrOOF. Let Be <% be a union of elements of lim .%,. Then, for each i, B is
a union of elements of .97;, and hence, is itself an element of &}, for .7 is
saturated. That is, B € lim .%7;. This completes the proof.

We do not know whether the same conclusion holds for increasing sequences
of o-fields, though we doubt it.

CoROLLARY 3. The tail o-field of a product of denumerably many standard spaces
is regular. Also the usual fields & ,_, & ,, and 5, for continuous time processes
with paths in C or D are regular.

COROLLARY 4. Let Q be the space of infinite sequences of real numbers, and let
S < Q have one, and only one, element in common with each tail atom. Then S is
not analytic.

4. This section shows that the symmetric and invariant fields are regular with
“saturated” replaced by a somewhat stronger property.

For each subset E of Q, let %1E) be the union of all .%7“atoms whose inter-
section with E is nonempty.

PROPOSITION 3. The operation E — S7{E) enjoys these properties:
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(a) EcC M(E);

(b) E, C E,— MA(E,) C M(Ey);

() SAAE)) = SE);

(d) %, C 7, — E) C E);

(¢) If 57, is a monotone decreasing sequence of o-fields, then S7(E) is monotone
in the reverse order, and

(f) (lim S7)(E) = lim 57,(E).

For &7 C &5, 57 is strongly saturated in <7 if, whenever B ¢ <5, 57(B) e .57.

PROPOSITION 4. Let .7 be a monotone decreasing sequence of o-fields each of
which is strongly saturated in <%. Then lim 57 is strongly saturated, too.

Proor. Let Be <Z. Then (lim ) (B) = lim .%7(B), and .%(B) € .57 for all
i. As is easily seen, lim .%7(B) e lim %7, which completes the proof.

Let (Q, &%) be a measurable space and G a group of (<%, £%')-measurable
transformations of Q onto itself, that is, each g e G is a 1-1 map of Q onto Q
such that

“4.1) g°(B)ye %  for each Be 2.

A subset 4 of Q is G-invariant if g=*(4) = A for all geG. Plainly, the G-
invariant sets form a field closed under the formation of arbitrary unions, so if
7 designates the collection of G-invariant sets that are elements of <7, then
&7 is a saturated, sub o-field of <2 For E e <% and G countable, (E), the
union of the .%-atoms that intersect E, is simply the union over all ge G of
g(E). This implies:

LeMMA 2. If G is a (countable) group of measurable transformations of the meas-
urable space (Q, 7), then the G-invariant, Z5-measurable sets constitute a (strongly)
saturated, sub o-field of 5.

As is evident, Q0 = Q(.%7), the set of (x, y) such that x and y cannot be sepa-
rated by elements of .o, is simply the set of (x, y) such that x and y are in the
same G-orbit, and the .%~atom that contains x is the orbit of x. In particular,
(%, y) € Q if, and only if, for some g € G, g(x) = y, that is, if and only if, for
some g € G, (x, y) is in the inverse image of the main diagonal D of Q x Q under
the map (x, y) — (9(x), y). Soif D is an element of the product s-field, & x <7,
and G is countable, then Q, too, is an element of <% x <% in which event, .
is atomic. For D to be an element of <& x <7 it suffices that some countable
subset of &7 separates points, as is easily verified. These remarks, together with
Lemma 2, imply:

PROPOSITION 5. Let G be a countable group of measurable transformations acting
on a standard space (Q, &%) and let .57 be the G-invariant, &-measurable sets. Then
7 is regular and strongly saturated in 7.

Suppose (2, £7) is the product of a denumerable number of copies of the
same standard space. Then, as usual, the symmetric sets are the <Z-sets that are
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invariant under all permutations of the coordinates that keep all but a finite
number of coordinates fixed, and the invariant sets are those <Z-sets that are
invariant under the shift operation.

COROLLARY 5. Let (Q, &%) be the space of doubly infinite sequences - - - x_j, X,,
Xy, - -+ of elements of a standard space. Then the symmetric sets, as well as the sets
invariant under the shift, form a regular, strongly saturated, sub o-field of ZZ.

REMARK. As is now evident, “symmetric” or “invariant under invertible
shifts” can replace “tail” in Corollary 4.

Of course, if Q(.%7) is Borel, then every .o7~atom is Borel. And, as the referee
pointed out to us, if Q(-%7") is analytic, then every .%/-atom is analytic, because
every section of Q is analytic. Perhaps Q(.%) is analytic only if it is Borel?

5. Let.%,:t = 0, be an increasing family of regular, sub g-fields of a standard
space (Q, &) which generates 7, that is, for which

(5.1) V, I, = .
To avoid difficulties later, a stopping time 7 in this paper means a real-valued

function with domain all of Q and with values in the half-line [0 < t < c0)
which satisfies

(5.2) (rt£HeF, for all ¢.
As usual, &, the field of measurable events determined by time z, is defined by
(5.3) Ae F. . —An(t <te F, for all .

T

As will soon be evident, %, is atomic and saturated. Perhaps Q(.% ") is Borel,
in which event . _ is also regular, but we have established this only in the

T

presence of additional assumptions.
THEOREM 6. Under any of the following additional hypotheses, & _ is regular:

(a) 7 assumes only a countable number of values;

(b) The family 5 ,: t = 0 is continuous on the right;

(c) Q is either C, the space of continuous, or D, the space of right-continuous
with left-limits, R-valued functions defined on [0, co), and &, is the o-field generated
by the evaluation maps for moments of time s < t.

LeMMA 3. If each 7, is a saturated sub o-field of <7, then so is &,
LeEMMA 4. For x in the domain of t,
(5-4) F LX) = F () -

PROOF. Suppose y is not in & _,,(x). Then 34e .5, such that xec 4 and
yeA. Let B= An {r = t(x)}, and verify that Be &, xc Band ye B, s0 y
is not in .# (x). Conversely, if y is not in % _(x), 3B e &, such that x ¢ Band
yeB,. Lett =c(x)andlet 4 =B n{r <1} Sincede ¥ ,xcdandyed’,y
is not in & (x). That is, y is not in .5 _,,(x). This completes the proof.
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LEMMA 5. If each 5, is atomic, then 7 _ is also atomic.

Proof. In view of Lemma 4, all that need be verified is that & _,,(x) e &,
or, equivalently, that

(5.5) =) nF ,H,(x)eF, for all ¢.

T

Case (1). ¢t = r(x). Then &, (x) €. F ., C F,, since & _,, is atomic and
7(x) < t. So (5.5) holds.

Case (2). t < z(x). Since xe(r = 7(X))€F .4 F (X) C (v = (x)).
Hence the left-hand side of (5.5) is empty, which proves Lemma 5.

The facts and lemmas above, and their proofs, are valid without assumptions
(@), (b) or (c) and, indeed, without the assumption that (Q, £#') be a standard
space.

LemMMA 6. Q(F.) is Borel if (a), (b) or (c) obtain.

Proor. Case (a). Let A, be the set of (x, y) € Q x Q such that 7(x) = z(y) = ¢,
and verify that

(5.6) Q(F) = U A() n Q(F7) -

Since each Q(.%,) is Borel, as is each A(f), and the union is over only a counta-
ble set of #’s, the proof is complete.

Case (b). Let z(n)\ 7, each r(n) countably valued. So .5 is the intersection
of the decreasing sequence .% _,,,, and Q(% _,,) is Borel for all n. An application

v(n)?

of Proposition 1(c) completes the proof for this case.

Case (c). Q(5,) is the set of (x, y) such that

(3.7) () =) x(z(x) =y(();
and
(5.8) x(t) = y(v) for all rational ¢ < 7(x).

That this is a Borel set is easily confirmed. This completes the proof of Lemma
6, which, together with Lemmas 3 and 5, proves Theorem 6. Possibly the hy-
pothesis (c) of Theorem 6 implies not only that & is regular, but also that it
is countably generated.

Here is a final, though less useful, observation.

PRrOPOSITION 6. If (Q, &Z) is a measurable space, 5 ,:t = 0 is an increasing
family of strongly saturated sub o-fields of <7, then F_ is strongly saturated if
Conditions (a) or (b) of Theorem 6 hold.

PrOOF. What must be seen is that for Be <&, 7 (B) e 7 ,. If r assumes only
a countable number of values, it suffices that, for each ¢,

(5.9) A=(c=t)nF (B e F,.
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To verify (5.9), note first that

(5.10) F.B)=U,F.Bn(r=1)= U.FBn((=1),
and that

(5.11) FBn(rz=1))C(r=1).
Together, (5.10) and (5.11) imply:
(5.12) A=F,Bn(t=1).

Because .7, is saturated A is therefore an element of & ,.

Suppose now that .&, is continuous on the right and let z(1) = 7(2) = - --
be a decreasing sequence of stopping times each of which assumes only a counta-
ble number of values and r(n) — z. Since &, is a decreasing sequence of
strongly saturated fields which converges to %, Proposition 4 implies that &,
is strongly saturated, too. [J

We suppose that even in the absence of one or both of the assumptions:
V &, = B, and the domain of 7 is all of Q, the results of this section suitably
formulated remain valid. But there may be some difficulties in demonstrating
this, as a careful and helpful referee called to our attention.
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