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DISCUSSION ON PROFESSOR BRILLINGER’S PAPER

D. R. Cox (Imperial College, London) My comments concern the statistical
aspects of Dr. Brillinger’s interesting paper. First, when it is required to study
the dependence of a process {N} on an explanatory process {M}, there are often
strong arguments for arguing conditionally on the observed process {m}. In
particular, assumptions about {M} itself are avoided; even its stationarity is not
required so long as the interrelations are time-invariant.

Secondly, some qualification seems desirable of. Dr. Brillinger’s blanket re-
commendation that {M} should, where possible, be chosen to be Poisson. Will
not much depend on the constraints on observation and on the nature of the
interrelations? For instance, one can envisage situations where it would be
more informative to take {M} as a regular sequence of widely spread points, sup-
plemented, perhaps, by some pairs of points close together to examine linearity.

Thirdly, an alternative to the study of interrelations is via the modulation of
simple models for {N} (Cox, 1972). In this the intensity of the {N} process is
modified by a factor depending on relevant aspects of the {M} process. Two
advantages of this approach are that in certain cases likelihood functions can be
obtained and that simple relations, nonlinear in Dr. Brillinger’s special sense,
can be accommodated; for example, the backward recurrence time in the {M}
process may be particularly relevant. An advantage of Dr. Brillinger’s approach
is that special assumptions about {N} are avoided. ’
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P. Z. MARMARELIS (California Institute of Technology) Professor Brillinger’s
well-written paper on the identification of point process systems fulfills, among
others, a long-standing need for such work in the field of neurophysiological
system analysis. I expect that many applications of these techniques on point

process systems (certainly on neural systems) will come to fruition following
Brillinger’s work.
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Motivated by this pioneering work, several additional points will need dis-
cussion and analysis in making this methodology practical and useful to experi-
mental research:

1. Delimitation of the class of point process systems which can be represented
by a Volterra expansion (3.6).

On this point, paralleling the Wiener analysis for continuous input-output
systems, we may note that the systems must have finite memory (effect of input
point on output must diminish to zero in finite time). What about point process
systems exhibiting a “hysteresis” effect? Can the formulation be easily modified
to include them?

2. Formulation of similar identification schemata for systems having (i) input
a continuous process, output a point process, and (ii) input a point process,
output a continuous process.

For case i, use of a Gaussian white-noise signal as input presents the advantages
discussed by Wiener (1958). For case ii, use of a point process with independent
increments, such as the Poisson, has the advantages discussed by Brillinger, i.e.,
oo ®)s Tonn(Hs V)5 Guryeww(d; v, w) are all identically zero. However, in both
cases, stochastic process parameters such as the second-order cross product den-
sity must be redefined, e.g. in case i with input x(7)

€)) E[dN(t + u)x(1)} = Py, (u)du dt
with loss of interpretation of this quantity as a probability. Similar models as
(3.6) can be written in both cases i and ii and the kernels r,, r (1), r(u, v) similarly
evaluated. For example, in case i we would have
ry =Py

(2) r(u) = qu.(4)[A,

rz(”’ v) = quz(”’ u— 1))/(2Ax2)
where ¢,,(tr) = A,0(r). Similarly for case ii.

3. Nonlinear formulation for systems with multiple inputs (the linear case is
covered in the paper).

For a multiple-input point process system a model can be written down which
accounts for interaction between the different input point processes: for an m-
input (M,(t), i = 1, - - ., m), one output system it will be:

(3) tu(t) = 5 + Dk :’;zk §§ .- Sul,-u,uk;distinct sil,n-,ik(t — Uy vy
t —u) [1i- dM;,(”l)
where M,(u) = M,(u) — uP,,.
For example, for a two-input one-output point process system we will have
(1) = 5o + § 5,(2 — w)dM(u) + § sy(t — u) dM,/(u)
4 + §§ su(r — wy, 0 — wy) dM,/ () dM,/ (1)
+ §§ 5ot — wy, t — u,) dM,/(u,) dM,(u,)
+ §§ st — wy, t — wy) dM,(u,) dM,/ (1)
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where si(t,, 1;) = 5,3(t,, 1) + 5,(1y, 1,) is the “cross-term” giving the second order
nonlinear interaction between inputs M,(f) and M,(¢). The system characterizing
kernels s; ..., (+) can be found (with some modification) by formulas analogous
to the one-input case (3.9). For purposes of identification it is convenient to
choose M,(r) and M,(t) to be independent processes with independent increments,
such as Poisson; then e.g. g, ,,(#) = 0 for all u. Then, for example (cf. also
Marmarelis and Naka (1974)),

(5) Su(u, v) = qNMlMl(u’ b — v)/(2P§{1)

S5(Us V) = G, (U5 U — V)/(Py, Py,) -
These relationships can also be conveniently formulated in terms of spectral
functions, as indicated in the paper for the one-input case (3.9).

4. Study of the statistical variance of the estimates of r,, r,(u), ry(u, v) due to
record lengths, noise sources (at input and/or output), etc.

On this point the usual statistical methods of estimating the variance should
prove directly applicable—even though the expressions for systems with a high
degree of nonlinearity, i.e., 5,(+) # 0 for large ’s, will tend to become unwieldy.
Nevertheless, such a study would be very useful in practical applications of these
techniques. »

5. Study of the mean-square-error of the predictor for a truncated represen-
tation (3.6).

This is a point of fundamental importance. Many point process systems will
be described by models (3.6) for K a fairly large number. The question arises:
If we truncate the series at some k = m where m < K, and compute s,(+), k =
1, ..., m, from cross-covariances such as (3.9), for Poisson input, do we obtain
the best mean-square-error predictor of form (3.6) for m terms? The answer
would be affirmative if the terms of series (3.6) are orthogonal for a Poisson
input M(#). To see this, we can write the truncated (3.6), with M'(u) = M(u) —
uP,, a.s.

(6 ™ (1) = 8o+ X Fsi(+); M'(1)]
=%+ 2§ Sul,---,uk;dlstinct St — Uy, - e
t —uw)dM'(u) --- dM'(u,) .

The error due to the truncation is
em(t) = py(t) — 2y ™(2)

Then, paralleling Schetzen (1974) for continuous process systems with a Gaussian
white input, it can easily be shown that, if M(r) is a Poisson process, then

N Ele (1) - F[f.(+); M(1)]} =0 for r=0,1,2,...,m

for any causal function f,(.).
Now, let us consider a different set {s,*(+)} and

(®) ty* (1) = 50" + L Fls*()s M(1)]
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Then the error for this characterization is

%) e (1) = (1) — w1 ™(1) = (1) — p™(0) + ™ (1) — ™)
and

(10) E{(e.*(1))} = E{en (0} + Ef[pn™(1) — ™ ™(0)]}

+ 2E{e, (D[ 1y™ (1) — py* ™ (D]} -
The last term of this expression is zero in view of (7). Therefore, since the
second term is nonnegative, the mean-square-error is minimum when

(11) ™ (1) = ™ ™(1)

that is, when s,*(+) = s5,(+). This completes the proof that the functions s,(-)
computed from cross-covariances of the system output and input point processes,
with a Poisson input, provide the best mean-square-error predictor model (3.6)
of the output processes N based on input process M, for any truncation of the
series (3.6).
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J. P. SEGUNDO (University of California, Los Angeles) Individual nerve cells
manifest their activity in several ways (Segundo, 1968), one of which is the
generation of events referred to as action potentials, spikes or impulses. The
latter, when recorded through a small electrode inserted into the cell, appear
commonly as recurrent events which are identical to each other and are separated
by intervals quite longer than their individual duration. These experimental
facts justify the assimilation of a sequence (i.e., a train) of spikes with a point
process. Furthermore, when nerve cells are connected and interact through
junctions referred to as synapses, the spike activity in one, called presynaptic,
has repercussions upon the spike activity in the other, called postsynaptic. The
study of this transformation from pre- to postsynaptic spikes constitutes an im-
portant chapter of neurophysiology. There are other manifestations of, and
interactions between, nerve cells (Segundo, 1968); the fact that a bulk of knowl-
edge is on spikes may reflect not just their importance but also the ease with
which they can be recorded, and even a trend of scientific fashion.

Most work on the synapse has concentrated on its mechanisms (e.g., chemical,
biophysical, etc.). Also meaningful, however, is the dynamic study of how the
one intensity of generation (i.e., that of presynaptic spikes) influences the other
(i.e., that of postsynaptic spikes). This is in essence an “identification” problem,
where the “black box” is all that which is interposed between one spike train
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and the other. Identification procedures apply, for the most part, to systems
that are linear and whose inputs and outputs are continuous or at best defined
at equispaced instants. This work, as well as other by the same author, allows
use of precise and rigorous procedures to the understanding of synaptic transfer.
It remains now to apply them to data from living cells, and to coin the quanti-
tatively inferred conclusions in terms that have physiological meaning.

Special care is required when mathematical techniques are applied to biology
(Segundo, 1971). Firstly, one must not be carried away by a natural desire for
explicit solutions into applying procedures (e.g., linear systems analysis) outside
of their justified domain, into unrealistic idealization of the observed phenomena,
into ignoring nonstationarities (e.g., cycles, learning, aging), or into applying
to living matter concepts (e.g., desirable, parasitic) developed for man-made
machines.
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The remarks of the discussants are gratefully appreciated. I agree with
Professor Cox that it is often sensible to argue conditionally, especially on an ob-
served input process. In the present situation it might further be sensible to
argue conditionally on N(0, T'], the observed number of output points. I also
agree that if it is possible to “design” the input process, consideration shouldn’t
be restricted to the Poisson. In the paragraph below expression (3.9) I have
suggested the use of an input process with widely spaced points, in order to
estimate the average impulse response of a linear system. Professor Cox’s remark
that such input may also be used to examine for nonlinearity is well taken. One
could use the model of (3.6) to discuss this suggestion in a formal manner. His
final suggestion of fitting simple models, of the type indicated, would appear to
be especially useful in the case of nonstationary processes.

Professor Marmarelis raises a number of interesting questions. I hope that
some colleagues will become interested in examining his first one of the degree
of accuracy of Volterra expansions. Hida (1970) is a relevant reference. I un-
derstand Professor Marmarelis to mean by “hysteresis effect” the occurrence of
multi-valued output. It occurs to me that this problem hasn’t really been seri-
ously addressed even in simple regression situations, despite the existence of
relevant data sets such as those of earthquake travel times. Professor Marmarelis
remarks that interpretations as probabilities are typically lacking for the pa-
rameters of hybrid point-continuous processes. This is a disadvantage. However
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one probability parameter that is proving useful in empirical analysis is that
defined by

Prob {dN(t + u) = 1 and x < X(f) < x + dx} = py,(u, x)dtdx .

Interesting graphs result from plotting estimates of p, ,(u, x) as a function of x
for fixed u.

Professor Segundo’s remarks put into proper perspective what is involved in
the leap from a probabilistic idealization to a real world phenomenon. I hope
that the readers of these Annals are aware that neurophysiologists are currently
collecting extensive point process data sets under well-controlled experimental
situations and are raising a host of interesting analytic questions. It would clearly
be of mutual benefit to probabilists and neurophysiologists to collaborate in the
analysis of this data.

DAvip R. BRILLINGER



