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A NOTE ON DOWNCROSSINGS FOR EXTREMAL PROCESSES!

By JUDAH M. FRANKEL
Brookhaven National Laboratory, Upton, New York

Asymptotic expressions for the downcrossing probabilities of certain
extremal and their related order statistics processes are obtained.

1. Introduction. Let X, X, --- be independent random variables uniformly
distibuted on (0, 1) and let X,* denote the kth smallest among X;, - - -, X,. Then
for the Markov process V*(#), 0 < t < oo defined by P(V¥(t,) < a,i=1,---,r) =
lim, ., P(X}, < afni=1,...,r) the following hold (Frankel 1972):

1) P(z(x) > s|V¥(t)=x)=e** t,5>0, and
2) PVt + o(x) =y V) =x) = (y/x)* for y=x
where 7(x) is the time until the first jump from x. Alsofor0 < b < x<a < o
3) p(x) = P(V¥(t) = aft before V¥t) < b/t for t > s|V¥(s) = x/[t)
= (Y e*/u* du + €"[|b*)[({¢ e*[u* du + e*[b¥),

@) P(VE1t) = g(t)/t i.0. t1o0)=0 or 1 according as
(e rMgh(r)/tdt < oo or =00
where g(f) 1 oo, 9(¢)/t | 0 ultimately, and
®) P(X,* = c,/n i.0.) =0 or 1 according as
rene,fn < oo or = o0

where ¢, 1 oo and c,/n | 0 ultimately.
Wichura (1973) has obtained asymptotic expressions for:
(6) P(VX1t) = g(t)jt some t=s) as sfoo  and
©)] P(X,* = g(n)/n some n=m) as m? oo.

We will show that with slight modifications asymptotic expressions may also
be obtained for

®) P(V¥t) < h(t)/t some t=s) as s] oo, and for
9) P(X,* < h(n)/n some n=m) as mfoo.

2. Results. Lets(s) = inf(r > s|V¥(r) = 1/r), s,(s) = inf(r > s|V¥r) < 1/r)
and g(x) = P(V*(t) < b/t before V¥(t) = 1/t for t > s|V¥(s) = x[s) for0 < b <
x < 1. Note that with a = 1 in (3) we have g(x) = 1 — p(x).
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Lemma 1.

P(VE(t) < bjt some s < t < s(s)|V¥s) = 1/s) ~eb* as b|O0.

PROOF.

P(V¥#) < bft some s < t < s5,(5)| VE(s) = 1/s)

= P(V(s(s)) = b/s(s) [ V5(s) = 1/s)

+ 15 9(x) dP(VX(s(5)) = x[s(s)| V¥(s) = 1)
= b¥ + (1 b*(\} e*/u* du)kx*-* dx)[(e® + b* \} e*[u* du) by (2) and (3)
= eb*/(e® + b* (} e*[u* du) ~ eb* as b 0.

CorOLLARY 1. Let ZMu) = e*V¥e*) then P(Z*u) < b before Z*(u)=
1] Z%0) = 1) = P(V¥e*) < ble* for some 1 < e* < s5,(s)|V¥(1) = 1) ~ eb* as
b | 0by Lemma 1.

Now let A(f) | 0 and H(f) = (= h%(s)/s ds)/T'(k); then if
(10) H(exp(t 4 #'=°)) ~ H(e') as t1 oo for somec < 3
the proofs of Theorem 2.1 and Corollary 2.1 of Wichura (1973) will yield:

THEOREM 1. P(Vk(t) < h(t)[t some t = s) ~ H(s) as s | co.

THEOREM 2. P(X*(n) < h(n)/n some n = m) ~ H(m) as m 1 oo.

ReEMARKS. Using martingale techniques, Robbins and Siegmund (1972) have
obtained exact although more complicated solutions to (6) when k = 1; their
method may be extended to get solutions to (6) for all k for the A() of greatest
interest.
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