A NOTE ON DOWNCROSSINGS FOR EXTREMAL PROCESSES1

BY JUDAH M. FRANKEL

Brookhaven National Laboratory, Upton, New York

Asymptotic expressions for the downcrossing probabilities of certain extremal and their related order statistics processes are obtained.

1. Introduction. Let X_1, X_2, \cdots be independent random variables uniformly distibuted on (0, 1) and let X_n^k denote the kth smallest among X_1, \cdots, X_n . Then for the Markov process $V^k(t), 0 < t < \infty$ defined by $P(V^k(t_i) < a_i i = 1, \cdots, r) = \lim_{n \to \infty} P(X_{[nt_i]}^k < a_i/n i = 1, \cdots, r)$ the following hold (Frankel 1972):

(1)
$$P(\tau(x) > s | V^k(t) = x) = e^{-sx} \quad t, s > 0$$
, and

(2)
$$P(V^{k}(t+\tau(x)) \le y \mid V^{k}(t) = x) = (y/x)^{k} \quad \text{for} \quad y \le x$$

where $\tau(x)$ is the time until the first jump from x. Also for $0 < b \le x \le a < \infty$

(3)
$$p(x) \equiv P(V^k(t) \ge a/t \text{ before } V^k(t) \le b/t \text{ for } t > s \mid V^k(s) = x/t)$$

= $(\int_a^x e^u/u^k du + e^b/b^k)/(\int_a^x e^u/u^k du + e^b/b^k)$,

(4)
$$P(V^k(t) \ge g(t)/t \text{ i.o. } t \uparrow \infty) = 0 \quad \text{or} \quad 1 \quad \text{according as}$$

$$\int_1^\infty e^{-g(t)} g^k(t)/t \, dt < \infty \quad \text{or} \quad = \infty$$

where $g(t) \uparrow \infty$, $g(t)/t \downarrow 0$ ultimately, and

(5)
$$P(X_n^k \ge c_n/n \text{ i.o.}) = 0 \quad \text{or} \quad 1 \quad \text{according as}$$

$$\sum_{1}^{\infty} e^{-c_n} c_n/n < \infty \quad \text{or} \quad = \infty$$

where $c_n \uparrow \infty$ and $c_n/n \downarrow 0$ ultimately.

Wichura (1973) has obtained asymptotic expressions for:

(6)
$$P(V^k(t) = g(t)/t \text{ some } t \ge s) \text{ as } s \uparrow \infty \text{ and}$$

(7)
$$P(X_n^k \ge g(n)/n \text{ some } n \ge m) \text{ as } m \uparrow \infty.$$

We will show that with slight modifications asymptotic expressions may also be obtained for

(8)
$$P(V^k(t) \le h(t)/t \text{ some } t \ge s) \text{ as } s \uparrow \infty, \text{ and for } s \ne s \uparrow \infty$$

(9)
$$P(X_n^k \le h(n)/n \text{ some } n \ge m) \text{ as } m \uparrow \infty.$$

2. Results. Let $s_1(s) = \inf(r > s \mid V^k(r) = 1/r)$, $s_2(s) = \inf(r > s \mid V^k(r) \le 1/r)$ and $q(x) = P(V^k(t) \le b/t)$ before $V^k(t) \ge 1/t$ for $t > s \mid V^k(s) = x/s$ for $0 \le b \le x < 1$. Note that with a = 1 in (3) we have q(x) = 1 - p(x).

Received July 10, 1972; revised March 20, 1975.

AMS 1970 subject classifications. Primary 60F15; Secondary 60J25, 60J50.

Key words and phrases. Boundary crossings, extremal processes, order statistics.

¹ Work performed under auspices of U.S. Atomic Energy Commission.

LEMMA 1.

$$P(V^k(t) \leq b/t \text{ some } s < t < s_1(s) | V^k(s) = 1/s) \sim eb^k \text{ as } b \downarrow 0.$$

Proof.

$$P(V^{k}(t) \leq b/t \text{ some } s < t < s_{1}(s) \mid V^{k}(s) = 1/s)$$

$$= P(V^{k}(s_{2}(s)) \leq b/s_{2}(s) \mid V^{k}(s) = 1/s)$$

$$+ \int_{b}^{b} q(x) dP(V^{k}(s_{2}(s)) \leq x/s_{2}(s) \mid V^{k}(s) = 1/s)$$

$$= b^{k} + (\int_{b}^{b} b^{k} (\int_{x}^{1} e^{u}/u^{k} du) k x^{k-1} dx)/(e^{b} + b^{k} \int_{b}^{1} e^{u}/u^{k} du) \quad \text{by (2) and (3)}$$

$$= eb^{k}/(e^{b} + b^{k} \int_{b}^{1} e^{k}/u^{u} du) \sim eb^{k} \quad \text{as} \quad b \downarrow 0.$$

COROLLARY 1. Let $Z^k(u) = e^u V^k(e^u)$ then $P(Z^k(u) \le b$ before $Z^k(u) = 1 \mid Z^k(0) = 1) = P(V^k(e^u) \le b/e^u$ for some $1 < e^u < s_1(s) \mid V^k(1) = 1) \sim eb^k$ as $b \downarrow 0$ by Lemma 1.

Now let $h(t) \downarrow 0$ and $H(t) = (\int_t^\infty h^k(s)/s \, ds)/\Gamma(k)$; then if

(10)
$$H(\exp(t+t^{1-c})) \sim H(e^t)$$
 as $t \uparrow \infty$ for some $c < \frac{1}{3}$

the proofs of Theorem 2.1 and Corollary 2.1 of Wichura (1973) will yield:

THEOREM 1. $P(V^k(t) \le h(t)/t \text{ some } t \ge s) \sim H(s) \text{ as } s \uparrow \infty$.

THEOREM 2.
$$P(X^k(n) \le h(n)/n \text{ some } n \ge m) \sim H(m) \text{ as } m \uparrow \infty$$
.

REMARKS. Using martingale techniques, Robbins and Siegmund (1972) have obtained exact although more complicated solutions to (6) when k = 1; their method may be extended to get solutions to (6) for all k for the h(t) of greatest interest.

Acknowledgment. The author is greatly indebted to Professor David Siegmund for his valuable advice and guidance.

REFERENCES

- [1] Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.
- [2] Frankel, J. (1972). On the law of the iterated logarithm for order statistics. Ph. D. dissertation, Columbia Univ.
- [3] ROBBINS, H. and SIEGMUND, D. (1972). On the law of the iterated logarithm for maxima and minima. *Proc. Sixth Berkeley Symp. Math. Statist.* 3 51-70. Univ. of California Press.
- [4] WICHURA, M. J. (1973). Boundary crossing probabilities associated with Motoo's law of the iterated logarithm. *Ann. Probability* 1 437-456.

1745 46TH STREET BROOKLYN, NEW YORK 11204