ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR RANDOM WALKS CONDITIONED TO STAY POSITIVE

BY ERWIN BOLTHAUSEN

Universität Konstanz

Let $\{X_k : k \ge 1\}$ be a sequence of i.i.d.rv with $E(X_i) = 0$ and $E(X_i^2) = \sigma^2$, $0 < \sigma^2 < \infty$. Set $S_n = X_1 + \cdots + X_n$. Let $Y_n(t)$ be $S_k/\sigma n^{\frac{1}{2}}$ for t = k/n and suitably interpolated elsewhere. This paper gives a generalization of a theorem of Iglehart which states weak convergence of $Y_n(t)$, conditioned to stay positive, to a suitable limiting process.

1. Introduction. Let $\{X_i\}_{i\in N}$ be a sequence of i.i.d.rv with $E(X_i)=0$ and $E(X_i^2)=\sigma^2$ where $0<\sigma^2<\infty$. Let $S_k=X_1+\cdots+X_k$ and $Y_n(t)$ be the continuous process on [0,1] for which $Y_n(k/n)=S_k/\sigma n^{\frac{1}{2}}$ and which is linearly interpolated elsewhere.

It is well known (see e.g., [2]) that $Y_n(t)$ converges weakly in $(C[0, 1], \rho)$ to the Brownian motion process, where C[0, 1] is the set of continuous functions on [0, 1] and ρ the supremum metric.

Let now $C^+ = \{f \in C : f(t) \ge 0 \text{ for } t \in [0, 1]\}$. We have $P(Y_n \in C^+) > 0$ for each n. So the definition of conditional probabilities is elementary. Let Y_n^+ be the Y_n^- -process conditioned to stay positive. That is for all Borel-sets $A \subset C[0, 1]$ we set $P(Y_n^+ \in A) = P(Y_n \in A \mid Y_n \in C^+)$. We remark that C^+ is a null set for the measure of the Brownian motion. Iglehart proved [3] weak convergence of the Y_n^+ process to the Brownian meander process W^+ which is defined by

(1.1)
$$W^{+}(t) = \left| \frac{1}{(1-\tau)^{\frac{1}{2}}} W(\tau + (1-\tau)t) \right|, \qquad 0 \le t \le 1$$

with W the Brownian process and $\tau = \sup \{t \in [0, 1]: W(t) = 0\}$. (Notice that $\tau < 1$ a.s.)

Iglehart assumed $E|X_i|^3 < \infty$ and X_i nonlattice or integer valued with span 1. It is shown in this paper that these extra assumptions are superfluous. Iglehart calculates the finite-dimensional distributions and proves tightness. Then he identifies the process with (1.1) for which Belkin [1] calculated the finite dimensional distributions. The proof given here requires no computation. It is based on identifying $\lim_{n\to\infty} Y_n^+(t) = W(T+t) - W(T) = W^+(t)$ for an appropriate random time T and uses only the continuous mapping theorem (Theorem 5.1 in [2]).

2. Notations and preliminary lemmas. For $s \in (0, \infty]$ let C^s be the set of

Received May 27, 1975; revised November 10, 1975.

AMS 1970 subject classifications. Primary 60F05; Secondary 60J15.

Key words and phrases. Conditioned limit theorem, functional central limit theorem, random walks, weak convergence.

480

www.jstor.org

continuous functions on [0, s] (or $[0, \infty)$ for $s = \infty$) and \mathscr{B}^s the smallest σ -algebra such that the mappings $C^s \ni f \to f(t) \in \mathbb{R}$ are measurable.

Let P^s be the measure of the Brownian motion on (C^s, \mathcal{B}^s) .

$$T^s \colon C^s \to \bar{\mathbb{R}}^+ = [0, \infty]$$
 is the mapping with

$$(2.1) T^{s}(f) = \inf\{t : f(u) \ge f(t) \text{ for } t \le u \le t+1 \le s\}, \quad (\inf \emptyset = \infty).$$

We set $T = T^{\infty}$ and $P = P^{\infty}$ for simplicity.

LEMMA 2.1. For all $s \in (0, \infty]$ T^s is \mathscr{B}^s -measurable.

PROOF. If v = s - (u + 1) > 0 then $\{T^s \le u\} = \bigcap_{n \ge 1/v} \{f \in C^s : \text{there exists a rational } r \le u + 1/n \text{ with } f(r) < \min_{1 \le i \le n-1} f(r + i/n) + 1/n\}$, which is easily seen to belong to \mathscr{B}^s .

LEMMA 2.2. $P(T < \infty) = 1$.

PROOF. Let $A_{\varepsilon} = \{ f \in C^1 : \text{ex. } s \leq 1 - \varepsilon \text{ with } f(s) \leq f(u) \text{ for } s \leq u \leq s + \varepsilon \}.$ Now we have $A_{\varepsilon}^{\circ} \downarrow \{ f \in C^1 : f \text{ nonincreasing} \}$ as $\varepsilon \downarrow 0$. We infer $P(A_{\varepsilon}) \uparrow 1$ for $\varepsilon \downarrow 0$. If $\varphi : C^{\infty} \to C^{\infty}$ is defined by $\varphi(f)(t) = \varepsilon^{-\frac{1}{2}} f(\varepsilon t)$ then φ is measure preserving (see [5] page 246) and $\varphi(A_{\varepsilon}) \subset \{ T < \infty \}$ so $P(T < \infty) \geq P(A_{\varepsilon})$ for all $\varepsilon > 0$.

LEMMA 2.3. The following three statements are true for all $s \in (0, \infty]$.

$$(2.2) Ps(f(Ts) = f(Ts + 1)) = 0;$$

$$(2.3) P^{s}(T^{s} = s - 1) = 0;$$

$$(2.4) Ps(ex. u \in (0, 1) with $f(Ts) = f(Ts + u) = 0.$$$

PROOF. We set $m(t) = \min_{0 \le s \le t} W(t)$. D(t) = W(t) - m(t) has the same finite-dimensional distributions as |W(t)| (see [5] page 193). Observe now that $T^s = \inf\{t \le s-1: m(t) = m(t+1)\}$. Now $T^s = s-1$ implies D(s-1) = 0 which has P measure 0. This proves (2.3).

Let $U = \{\text{ex. } u < v < w \text{ with } m(u) = m(v) = m(w) \text{ and } D(u) = D(v) = D(w) = 0\}$. Then $U \subset \bigcup_{r,s \in Q} \{\min_{0 \le t \le r} W(t) = \min_{r \le t \le r+s} W(t)\}$ and the last has P measure 0. This proves (2.4).

It suffices to prove (2.2) for $s = \infty$. With probability one, the hitting time process $\{T_{-x} : x \ge 0\}$ $\{T_{-x} = \inf\{t : W(t) = -x\}\}$ has no jumps of length one. This follows from its Lévy decomposition (see Section 1.7 of [4]). Together with P(U) = 0 this yields (2.2).

LEMMA 2.4. For each $s \in (0, \infty]$ T^s is a continuous P^s a.e. on (C^s, ρ) .

PROOF. By (2.3) it suffices to consider the case $s = \infty$. Let f be such that $T(f) < \infty$ and f does not belong to the null sets defined in (2.2)—(2.4).

(I) We first prove that for all $\delta > 0$ there exists an $\epsilon > 0$ with

$$T(f') \le T(f) + \delta$$
 when $\rho(f, f') < \varepsilon$.

By (2.2) there is as $\tau < \delta$ so that

$$\inf_{T+1 \le u \le T+1+\tau} f(u) > f(T)$$
.

Now (2.4) gives $\varepsilon = \frac{1}{3}(\inf_{T+\tau \le u \le T+\tau+1} f(u) - f(T)) > 0$.

If $\rho(f, f') < \varepsilon$ and γ' is such that $T(f) \le \gamma' \le T(f) + \tau$ and $f'(\gamma') = \inf_{T \le u \le T + \tau} f'(u)$ then $T(f') \le \gamma' \le T(f) + \delta$.

(II) To show the other inequality note that

$$\lim_{n\to\infty}\left(\inf\left\{T(f')\colon\rho(f,\,f')<1/n\right\}\right)=\lambda\leqq T(f)\;.$$

Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence with $\rho(f,f_n)\leq 1/n$ and $\lim_{n\to\infty}T(f_n)=\lambda$. Let $\varepsilon>0$. By the continuity of f and the uniform convergence of f_n , there exists n_0 such that for $n\geq n_0$ we have:

$$\inf_{\lambda \le u \le \lambda + 1} f(u) \ge \inf_{T(f_n) \le u \le T(f_n) + 1} f(u) - \varepsilon$$

$$\ge \inf_{T(f_n) \le u \le T(f_n) + 1} f_n(u) - 2\varepsilon$$

$$\ge f_n(T(f_n)) - 2\varepsilon \ge f(T(f_n)) - 3\varepsilon \ge f(\lambda) - 4\varepsilon.$$

So $\inf_{\lambda \le u \le \lambda+1} f(u) \ge f(\lambda)$ which implies $T(f) \le \lambda$ completing the proof of Lemma 2.4.

Let u be the function in C^1 which is everywhere equal -1. We define a map $\Phi_s : C^s \to C^1$

$$\Phi_s(f)(t) = f(T^s(f) + t)$$
 for $T^s(f) < \infty$
= u for $T^s(f) = \infty$.

We write $\Phi = \Phi_{\infty}$ for simplicity.

A straightforward conclusion of Lemma 2.4 is

LEMMA 2.5. For each $s \in (0, \infty]$ Φ_s is continuous P^s a.s. on (C^s, ρ) .

3. Sums of independent random variables conditioned to stay positive. Let X_1, X_2, \cdots , be i.i.d.rv with $E(X_i) = 0$; $E(X_i^2) = \sigma^2 < \infty$ ($\sigma^2 > 0$) and $S_k = \sum_{j=1}^k X_j$. $T_n = \inf\{k : S_{k+i} \ge S_k \text{ for } i = 1, \cdots, n\}$. Clearly $T_n < \infty$ holds a.s. We set $Z_k = S_{T_n+k} - S_{T_n}$.

LEMMA 3.1. For each sequence of real numbers a_1, \dots, a_n

(3.1)
$$P(S_k \le a_k, k = 1, \dots, n | S_k \ge 0, k = 1, \dots, n) = P(Z_k \le a_k, k = 1, \dots, n).$$

PROOF. This is an easy consequence of the independence and identical distribution of the X_i :

If
$$B_{j} = \bigcup_{s=0}^{j-1} \{S_{s} \le S_{r} \text{ for } s+1 \le r \le \min(j, s+n)\}$$
 we have
$$P(S_{T_{n}+k} - S_{T_{n}} \le a_{k} \text{ for } k=1, \dots, n)$$
$$= \sum_{j=0}^{\infty} P(S_{j+k} - S_{j} \le a_{k} \text{ for } k=1, \dots, n \mid T_{n}=j) P(T_{n}=j)$$

$$= \sum_{j=0}^{\infty} P(S_{j+k} - S_j \leq a_k \text{ for } k = 1, \dots, n \mid S_{j+k} \geq S_j$$

$$\text{for } k = 1, \dots, n \text{ and } B_j^{\circ}) P(T_n = j)$$

$$= P(S_k \leq a_k, k = 1, \dots, n \mid S_k \geq 0, k = 1, \dots, n)$$

$$\text{since } T_n < \infty \quad \text{a.s.}$$

We set $Y_n(k/n) = (1/n^{\frac{1}{2}}\sigma)S_k$ for $k \ge 0$ and $Y_n(t)$ linearly interpolated.

Let Q_n be the probability measure defined on $(C^{\infty}, \mathcal{B}^{\infty})$ by this process. Let $\Pi_s \colon C^{\infty} \to C^s$ be the projection map and Φ , C^+ defined as above. We remark that $P^s = P\Pi_s^{-1}$.

Let $Q_n \prod_1^{-1} (dx \mid C^+)$ be the probability measure on C^1 which is defined by

$$Q_n \Pi_1^{-1}(A \mid C^+) = Q_n(\Pi_1^{-1}(A \cap C^+))/Q_n(\Pi_1^{-1}(C^+))$$

for $A \in \mathcal{B}^1$.

THEOREM 3.2. The probability measures $Q_n \Pi_1^{-1}(dx \mid C^+)$ converge weakly to $P\Phi^{-1}$ (on (C^1, ρ)).

PROOF. We have proved in Lemma 3.1 that

(3.2)
$$Q_n \Pi_1^{-1}(dx \mid C^+) = Q_n \Phi^{-1}(dx)$$
 holds.

Now by Donsker's theorem (see [2]), $Q_n \Pi_s^{-1}$ converges weakly to P^s for $s < \infty$. With regard to Lemma 2.5 we have for $s < \infty$

$$Q_n(\Phi_s \Pi_s)^{-1} \to P^s \Phi_s^{-1} \quad \text{weakly.}$$

(Theorem 5.1 in [2].)

Let A be a continuity set in \mathscr{B}^1 , that is $P\Phi^{-1}(\partial A)=0$. We are going to show that

(3.4)
$$\lim_{n\to\infty} Q_n \Phi^{-1}(A) = P\Phi^{-1}(A).$$

The theorem then follows. (3.4) doesn't follow directly from (3.3) because we have there the assumption $s < \infty$. Set

$$D = \{ f \in C^1 \colon \min_{0 \le t \le 1} f(t) \ge -\frac{1}{2} \} .$$

Without loss of generality we can assume $A \subset D$. (If not: replace A by $A \cap D$ noticing $Q_n \Phi^{-1}(D^e) = P\Phi^{-1}(D^e) = P\Phi^{-1}(\partial D) = 0$).

Let $\varepsilon > 0$ be given. According to Lemma 2.2 we have $P(T < \infty) = 1$. So there exists a real number c > 0 such that $P(T \le c - 1) \ge 1 - \varepsilon$.

We choose n_0 such that for $n \ge n_0$

$$|Q_n \Pi_{\varepsilon}^{-1}(T^{\varepsilon} < \infty) - P^{\varepsilon}(T^{\varepsilon} < \infty)| \leq \varepsilon.$$

(According to Lemma 2.4 $\{T^c < \infty\}$ is a continuity set with respect to P^c . (3.5) then follows by Donsker's theorem.)

We infer from (3.5) and the setting of c:

$$(3.6) P(\Phi_{c} \Pi_{c} \neq \Phi) \leq \varepsilon,$$

$$Q_n(\Phi_c \prod_c \neq \Phi) \leq 2\varepsilon.$$

(We have $\{\Phi_c \Pi_c = \Phi\} \cap \{T < \infty\} = \{T^c \Pi_c < \infty\} = \{T \le c - 1\}$.) We choose $n_1 \ge n_0$ such that for $n \ge n_1$

$$(3.8) |Q_n(\Phi_c\Pi_c)^{-1}(A) - P^c\Phi_c^{-1}(A)| \leq \varepsilon.$$

(The element u doesn't belong to ∂A because we assumed $A \subset D$. It is easily seen that $(\Phi_c \Pi_c)^{-1}(\partial A) \subset \Phi^{-1}(\partial A)$ holds, so we infer that $P(\Phi_c \Pi_c)^{-1}(\partial A) = P^c\Phi_c^{-1}(\partial A) = 0$ and the existence of an n_1 , such that (3.8) holds then follows from (3.3).)

For $n \ge n_1$ we have:

$$\begin{split} |Q_n \Phi^{-1}(A) - P \Phi^{-1}(A)| & \leq |Q_n \Phi^{-1}(A) - Q_n (\Phi_c \Pi_c)^{-1}(A)| \\ & + |Q_n (\Phi_c \Pi_c)^{-1}(A) - P^c \Phi_c^{-1}(A)| \\ & + |P(\Phi_c \Pi_c)^{-1}(A) - P \Phi^{-1}(A)| \\ & \leq Q_n (\Phi \neq \Phi_c \Pi_c) + \varepsilon + P(\Phi \neq \Phi_c \Pi_c) \leq 4\varepsilon \; . \end{split}$$

So $\lim_{n\to\infty} Q_n \Phi^{-1}(A) = P\phi^{-1}(A)$ which is (3.4) and the proof is complete.

So far we have proved that Y_n^+ converges weakly to $P\Phi^{-1}$ which is W(T+t)W(T) $0 \le t \le 1$. It remains to identify $W(T+\cdot) - W(T)$ with the Brownian meander W^+ . But this clearly follows from Iglehart's result. We give a sketch of a proof using the methods of the present paper: Let $X_i=\pm 1$ each with probability $\frac{1}{2}$. Set $\mu_n = \inf\{k \leq n : \text{ the sequence } S_k, \dots, S_n \text{ does not change } \}$ sign) and let $\nu_n = n - \mu_n$ (remark that $\nu_n \ge 1$). We define $\tilde{Y}_n(t)$ as follows: $\tilde{Y}_n(k/\nu_n) = (1/\nu_n)^{\frac{1}{2}}|S_{\mu_n+k}|$ for $0 \le k \le \nu_n$ and linearly interpolated elsewhere. $\tilde{Y}_n(\cdot)$ has the same distribution as $Y_{\nu_n}^+(\cdot)$ where $\{Y_k^+\}_{k\in\mathbb{N}}$ and ν_n are independent. Define $\tau': C^1 \to [0, 1]$ by $\tau'(f) = \inf\{t \in [0, 1]: f(s) \text{ does not change sign for } f(s) \}$ $s \in [t, 1]$. Further, define $\Psi: C^1 \to C^1$ by $\Psi(f)(t) = |(1 - \tau')^{-\frac{1}{2}} f(\tau' + (1 - \tau')t)|$ for $\tau' \in [0, 1)$, and $\Psi(f)$ identically zero for $\tau' = 1$. We then have $\tilde{Y}_n = \Psi(Y_n)$, which is identical in law to $Y_{\nu_n}^+$. Now $\tau' = \tau = \sup\{t \in [0, 1]: f(t) = 0\}$ P^1 -a.s. (This can be proved in the same way as the statements of Lemma 2.3). So W^+ has the same distribution as $\Psi(W)$. It can be shown by the same methods as in Lemma 2.4 and 2.5 that Ψ is P^1 -a.s. continuous on (C^1, ρ) . The continuous mapping theorem implies $\tilde{Y}_n \to W^+$ and so $Y^+_{\nu_n} \to W^+$ in distribution. By Theorem 3.2 $Y_n^+ \to W(T+\bullet) - W(T)$. Clearly $\nu_n \to \infty$ in distribution. This is sufficient for $Y_{\nu_n}^+ \to W(T+\bullet) = W(T)$ because $\{Y_n^+\}$ and ν_n are independent. It follows that W^+ and $W(T+\bullet) - W(T)$ have the same distribution.

Acknowledgment. I would like to thank L. Rogge and the referee for helping in many ways to improve the original manuscript.

REFERENCES

- [1] Belkin, B. (1972). An invariance principle for conditioned random walks attracted to a stable law. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 21 45-64.
- [2] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

- [3] IGLEHART, D. L. (1974). Functional central limit theorems for random walks conditoned to stay positive. Ann. Probability 2 608-619.
- [4] Ito, K. and McKean, H. P. (1965). Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin.
- [5] LÉVY, P. (1945). Processus Stochastique et Mouvement Brownian. Gauthier-Villars, Paris.

FACHBEREICH STATISTIK UNIVERSITÄT KONSTANZ D-775 KONSTANZ POSTFACH 7733 GERMANY