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ON A FUNCTIONAL CENTRAL LIMIT THEOREM
FOR RANDOM WALKS CONDITIONED
TO STAY POSITIVE

By ERWIN BOLTHAUSEN
Universitdt Konstanz

Let {Xx: k = 1} be a sequence of i.i.d.rv with E(X;) = 0 and E(X;2) =
0%, 0 < 6% < oo, Set Sp= X1+ +++ + Xn. Let Yu(f) be Si/ont for t = k/n
and suitably interpolated elsewhere. This paper gives a generalization of
a theorem of Iglehart which states weak convergence of Ya(t), conditioned
to stay positive, to a suitable limiting process.

1. Introduction. Let {X.},., be a sequence of i.i.d.rv with E(X;) = 0 and
E(X") = 0" where 0 < 0* < co. Let §, = X, + ... + X, and Y,(¢) be the con-
tinuous process on [0, 1] for which Y, (k/n) = S,/on* and which is linearly inter-
polated elsewhere.

It is well known (see e.g., [2]) that Y,(r) converges weakly in (C[0, 1], p) to
the Brownian motion process, where C[0, 1] is the set of continuous functions
on [0, 1] and p the supremum metric.

Let now C* = {fe C: f(t) = 0 for r€[0, 1]}. We have P(Y,c C*) > 0 for
each n. So the definition of conditional probabilities is elementary. Let Y,* be
the Y,-process conditioned to stay positive. That is for all Borel-sets 4 — C[0, 1]
we set P(Y,* e A) = P(Y,e€ A|Y,eC*). We remark that C* is a null set for
the measure of the Brownian motion. Iglehart proved [3] weak convergence of
the Y,* process to the Brownian meander process W+ which is defined by

1
(=
with W the Brownian process and = sup {re [0, 1]: W(r) = 0}. (Notice that
T < la.s.)

Iglehart assumed E|X,|* < oo and X, nonlattice or integer valued with span 1.
It is shown in this paper that these extra assumptions are superfluous. Iglehart
calculates the finite-dimensional distributions and proves tightness. Then he
identifies the process with (1.1) for which Belkin [1] calculated the finite dimen-
sional distributions. The proof given here requires no computation. It is based
on identifying lim,_.. Y,*(f) = W(T + t) — W(T) = W+(t) for an appropriate
random time 7 and uses only the continuous mapping theorem (Theorem 5.1

in [2]).

2. Notations and preliminary lemmas. For se (0, co] let C* be the set of

(1.1) WH(r) = Wz + (1 — o)), 0<r<1
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continuous functions on [0, s] (or [0, co) for s = co) and <Z'* the smallest o-
algebra such that the mappings C* 5 f — f(f) € R are measurable.
Let P* be the measure of the Brownian motion on (C*, £2°).

T*: C* - R* = [0, o] is the mapping with
2.1 To(f)y =inf{t: fu) = f(t) for tSu<t4+ 1<), (inf@ = o0).
We set T = T and P = P> for simplicity.
LemMA 2.1. For all s (0, co] T® is &&'*-measurable.

ProoF. If v =5 — (u + 1) > 0 then {T* < 4} = N,z1, {f€ C*: there exists
a rational r < u + 1/n with f(r) < min,_,,_, f(r + i/n) + 1/n}, which is easily
seen to belong to <Z°.

LemMA 2.2. P(T < ) = 1.

PrROOF. Let A, = {feC':ex. s <1 — ¢ with f(s) < f(u) for s < u < 5 + ¢}
Now we have A4, | {fe C': fnonincreasing} as ¢ | 0. We infer P(4,)11 for
€| 0. If ¢ : C* — C= is defined by ¢(f)(f) = e~f(ef) then ¢ is measure preserv-
ing (see [5] page 246) and ¢(A4,) C {T < oo} so P(T < o0) = P(A,) for all ¢ > 0.

LemMA 2.3. The following three statements are true for all s € (0, co].

(2.2) PA(A(T?) = f(T* + 1)) = 0;
(23) Ps(T’:S— l):O;
(2.4) P(ex. ue(0,1) with f(T*) = f(T*+u))=0.

ProoF. We set m(f) = miny,, W(f). D(t) = W(f) — m(¢) has the same finite-
dimensional distributions as |W(f)| (see [5] page 193). Observe now that T =
inf{t <s— 1:m(t) = m(t 4+ 1)}. NowT* = s — 1 implies D(s — 1) = 0 which
has P measure 0. This proves (2.3).

Let U = {ex. u < v < w with m(u) = m(v) = m(w) and D(u) = D(v) = D(w) =
0}. Then U C U, seq {minyg,, W(f) = min,,, ., W(f)} and the last has P meas-
ure 0. This proves (2.4).

It suffices to prove (2.2) for s = co. With probability one, the hitting time
process {T_,: x = 0} (T_, = inf {t: W(f) = —x}) has no jumps of length one.
This follows from its Lévy decomposition (see Section 1.7 of [4]). Together
with P(U) = 0 this yields (2.2).

LemMMA 2.4. For each se (0, co] T* is a continuous P* a.e. on (C*, p).

Proor. By (2.3) it suffices to consider the case s = co. Let f be such that
T(f) < oo and f does not belong to the null sets defined in (2.2)—(2.4).

(I) We first prove that for all 0 > O there exists an ¢ > 0 with
T(f)=T(f)+9d  when p(f, f') <e.
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By (2.2) there is as 7 < d so that

infr cugrinee () > AT) .
Now (2.4) gives ¢ = 3(infr, . cu<rica f(#) — f(T)) > 0.

If p(, /') < e and 7" is such that T() < 7' < T(f)+ and /(') = infygyars. f/(4)
then T(f") < 7 < T(f) + .

(II) To show the other inequality note that

lim, .. (inf {T(f"): p(/, ') < 1/n}) = 2 < T(f) .

Let {f,}..~ be a sequence with p(f, f,) < 1/n and lim,_,, T(f,) = 2. Lete > 0.
By the continuity of f and the uniform convergence of f,, there exists n, such
that for n = n, we have:

infygyca ) = Infrp s cucris, i () — €

= infr g cusris fa(l) — 2¢

2 fulT(fa)) — 26 2 AT(f,)) — 3¢ =2 f(2) — 4e.
So inf, ., <141 f(#) = f(4) which implies T(f) < 4 completing the proof of Lemma
2.4
Let u be the function in C* which is everywhere equal —1. We define a map
Q,: C*— C!

QN =AT(f)+1) for T(f) <o
=u for T(f) = .
We write ® = @, for simplicity.
A straightforward conclusion of Lemma 2.4 is

LEMMA 2.5. For each s (0, co] @, is continuous P* a.s. on (C*, p).

3. Sums of independent random variables conditioned to stay positive. Let
X, X, - -+, be iid.rv with E(X;) = 0; E(X?) =0 < oo (¢*>0) and S, =

ko X; T,=inf{k:S,,, =S, fori=1,...,n}. Clearly T, < oo holds a.s.
We set Z, = S ., — Sr,-

LEMMA 3.1. For each sequence of real‘ numbers a,, - - -, a,
(3.1) PSS, fa,k=1,---,n8$,=20,k=1,...,n)

=PZ,La,k=1,.--,n).

Proor. This is an easy consequence of the independence and identical distri-
bution of the X;: :
IfB; = Uizs {S, < S, for s + 1 < r < min(j, s + n)} we have

P(Sy oo — Sr, = a, for k=1,...,n)
= 250 P(Sis —S; =g, for k=1, ...,n|T, = )T, =)
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= Z;?=0P(Sj+k - SJ' é alc for k = 19 AR n|Sj+k g Sj
for k=1, ..-,n and Bj")P(Tn =])
=PS,La,k=1,.---,n|8=20k=1,..-,n)
since T, < co a.s.
We set Y, (k/n) = (1/nt0)S, for k = 0 and Y,(¢) linearly interpolated.

Let Q, be the probability measure defined on (C*, &#~) by this process. Let
II,: C= — C* be the projection map and @, C* defined as above. We remark
that P* = PII,~*.

Let Q,II,-(dx| C*) be the probability measure on C* which is defined by

Q,1I,7(4| C*) = Q,(IL,7(4 n C*))/Q,(I,7(C™))
for Ae .

THEOREM 3.2. The probability measures Q,II,7'(dx|C*) converge weakly to
P®-1 (on (CY, p)).

Proor. We have proved in Lemma 3.1 that
(3.2) Q,1,-}(dx|C*) = Q,®Y(dx) holds.

Now by Donsker’s theorem (see [2]), @, II,~* converges weakly to P* for s < co.
With regard to Lemma 2.5 we have for s < oo
(3.3) 0.(0,II)* — P*®,~' weakly.

(Theorem 5.1 in [2].)
Let 4 be a continuity set in <£*, that is PO-(d4) = 0. We are going to
show that

(3.4) lim,_,, Q,®-'(4) = PO'(4).
The theorem then follows. (3.4) doesn’t follow directly from (3.3) because we
have there the assumption s < co. Set
D = {feC': miny,, f(t) = —3} .
Without loss of generality we can assume 4 C D. (If not: replace 4 by 4 n D
noticing Q, ®-Y(D°) = PO} (D°) = PO~} (aD) = 0).
Let ¢ > 0 be given. According to Lemma 2.2 we have P(T < o) = 1. So

there exists a real number ¢ > Osuchthat AT <c—1) =1 —e.
We choose n, such that for n = n,

(3.5) 10, T1,(T* < o0) — PA(T* < oo)| < <.

(According to Lemma 2.4 {T° < oo} is a continuity set with respect to P°. (3.5)
then follows by Donsker’s theorem.)
We infer from (3.5) and the setting of c:

(3.6) P(@II, + D) < ¢,
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(3.7) 0,(Q,1I, D) < 2.

(We have {O,II, = ®} n {T < oo} = {T°Il, < o0} ={T < ¢ — 1}.)
We choose n, = n, such that for n = n,

(3.8) |0.,(©,I1,)"H(A) — PD,H(A)| < ¢.

(The element u doesn’t belong to 94 because we assumed 4 c D. It is easily
seen that (®,II,)"*(4) c ®-*(d4) holds, so we infer that P(®,II)-'(04) =
P®,(94) = 0 and the existence of an n,, such that (3.8) holds then follows
from (3.3).)

For n = n, we have:

10, @71(4) — PO-Y(4)| < |0, P7(4) — Qu(P,IL)7}(4)]
+ 1Qu(P. L) 7(4) — PO 7}(4)|
+ 1P(P,11,)7(4) — PO7Y(4)|
L0,(@#IL) 4 ¢+ PO+ O,I1) < 4e.
So lim, ., Q, ®~'(4) = P¢~'(A) which is (3.4) and the proof is complete.

So far we have proved that Y, * converges weakly to P®~! which is W(T +¢) —
W(T) 0 <t < 1. It remains to identify W(T+,) — W(T) with the Brownian
meander W+*. But this clearly follows from Iglehart’s result. We give a sketch
of a proof using the methods of the present paper: Let X, = +1 each with
probability 4. Set p, = inf {k < n: the sequence S,, ---, S, does not change
sign} and let v, = n — p, (remark that v, > 1). We define Y,(7) as follows:
Y (k[v,) = (1/v,)}lS,, il for 0 < k < v, and linearly interpolated elsewhere.
Y,(+) has the same distribution as Y} (+) where {Y,*},. and v, are independent.
Define 7': C* — [0, 1] by 7/(f) = inf {t € [0, 1]: f(s) does not change sign for
se[¢, 1]}. Further, define ¥': C* — C'by W(f)(r) = |(1 — ')} (' + (1 — ¢'))]
for 7’ € [0, 1), and W(f) identically zero for ' = 1. We then have ¥, = ¥(Y,),
which is identical in law to Y} . Now ¢/ = ¢ = sup (e [0, 1]: f(r) = 0} Pl-a.s.
(This can be proved in the same way as the statements of Lemma 2.3). So W+
has the same distribution as W(W). It can be shown by the same methods as in
Lemma 2.4 and 2.5 that ¥ is P'-a.s. continuous on (C%, p). The continuous
mapping theorem implies ¥, — W+ and so Y} — W* in distribution. By Theo-
rem 3.2 Y,* - W(T+,) — W(T). Clearly v, — oo in distribution. This is suf-
ficient for Y} — W(T+.) — W(T) because {Y,*} and v, are independent. It
follows that W+ and W(T+.) — W(T) have the same distribution.
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