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THE INFINITE SECRETARY PROBLEM

BY JACQUELINE GIANINI AND STEPHEN M. SAMUELS!
University of Ottawa and Purdue University

An infinite sequence of rankable individuals (rank 1 = best) arrive at
times which are i.i.d., uniform on (0, 1). We, in effect, observe only their
relative ranks as they arrive. We seek a stopping rule to minimize the
mean of a prescribed positive increasing function, g(e), of the actual rank
of the individual chosen.

Let f(f) be the minimal mean among all stopping rules which are
greater than ¢. Then f(+) is a solution to a certain differential equation
which is derived and used to find an optimal stopping rule.

This problem is in a strong sense the ““limit”’ of a corresponding se-
quence of ““finite secretary problems’ which have been examined by vari-
ous authors. The limit of the ‘‘finite-problem” minimal risks is finite if
and only if the differential equation has a solution, f{-), which is finite on
[0, 1) with f(1-) = sup q(n). Usually, if such a solution exists, it is unique,
in which case f(0) is both the minimal risk for the infinite problem and the
limit of the ‘‘finite-problem’” minimal risks.

0. Introduction. A finite “secretary problem” is one in which a finite sequence
of rankable individuals (rank 1 = best) arrive in random order but as they arrive
only their relative ranks with respect to their predecessors can be observed. In
one class of such problems an increasing loss function is prescribed and the ob-
ject is to find a stopping rule which minimizes the expectation of this function
of the absolute (actual) rank of the individual selected by the rule.

The study of the asymptotic form of the solutions, as the number of indi-
viduals goes to infinity, by Chow, Moriguti, Robbins and Samuels [2], and
recently by Mucci [5, 6], together with a long-standing suggestion of Rubin [7]
has stimulated us to formulate an infinite secretary problem, which is in a
strong sense the “limit” of the corresponding sequence of finite problems putting
the asymptotic results into a natural setting which permits their extension.

1. The infinite problem. In the finite problem—with, say, n individuals—the
statement “the individuals arrive in random order” is generally understood to
mean that each of the n is equally likely to arrive first, and each of the n — 1
remaining individuals is equally likely to arrive second, and so on. But it would
be just as valid to say that the best individual is equally likely to arrive first or
second or-..or last, and the second best is equally likely to arrive in any of
the n — 1 remaining positions, and so on. It happens that the former concep-
tion is more attractive for solving the finite problem. But it is only the latter
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THE INFINITE SECRETARY PROBLEM 419

one that suggests an analogous formulation of a problem with infinitely many
individuals.

Letting U, denote the arrival time of the ith best individual, i = 1,2, -..),
what we do is to simply take the U,’s to be independent and identically distributed
(i.i.d.), each uniformly distributed on the interval [0, 1]. This is our “model”
because all the other random variables which we shall define will be functions
of the vector ‘

U=U,U, ---).

For each t € (0, 1], define
K(r) = (K1), K1), -+ +)

where
K1) = min {j: U; < 1)
Kin(®) =min{j > Ky(t): U; < 1} ;
and
Z(t) = (Zy(1), Zy(1) -+ +) »
where

Z(1) = Uxim .

Thus Z,(¢) is the arrival time of the individual who is ith best among those who
arrive by time ¢.

The independence of Z(r) and K(f), and the fact that the Z(f)’s are i.i.d.,
uniform on (0, 7), are merely familiar properties of random samples from a uni-
form distribution on (0, 1).

The sequence Z(r) is to represent what we can observe up to time ¢, so we define

&, = o-field generated by Z(r) .

If s < t then Z(s) is a function of Z(f): we simply replace U; by Z,(f) in the
definition of K (s). Also Z,(f) —» Z(1) = U, as t1 1. Thus the & ’s are in-
creasing with t and V,, &, = &, the o-field generated by U.

Let & be the class of all random variables r satisfying

6y o0l
(2) t<1=r1e{U}
3) [r<stes, VLS.

This is the class of all stopping rules to be considered. (It is essential that &
include rules which take the value one with positive probability, i.e. which
“may not stop.”)

For each ¢ ¢ (0, 1), define

&, ={re&:t>1t as.}.
Clearly 7, 7;, 7,€ &, 7, > T a.s. implies

T lige + Tl 50 €F
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However & is not closed under monotone limits so when we form such limits
care will be required.
The following notation for the absolute and relative ranks, respectively, of
“an individual ariving at time #” will be convenient:
Xu =i if u= Ui
Y, =i if u=2Z(u)
X,=Y, =c0.

u

Here is the problem: Given a loss function g(+) with
0=9(1) =49 ---
9(c0) = lim; . 9(f) = oo,
find the minimal expected loss (minimal risk)
(1.1) v=inf,.. Eq(X,) < oo,

and find, if possible, an optimal .

That this is really analogous to the finite secretary problem is partly confirmed
by the fact that & contains the analogue of all the good rules in the finite
problem—what we call the cutoff-point rules.

IA

DEFINITION. r is a cutoff-point rule if there isasequence 0 < , < 1, < - -+
(which we call the cutoff points) such that

t=min{U;: U; = t,, and Y, <k}
=1 if nosuch U;.

In other words ¢ stops at the first time in [#,, #,,,) at which there is an arrival
of relative rank < k, if there is such a time and if ¢ did not stop before time #,.
The Z,(t,)’s are i.i.d., uniform on (0, 7,), so

(1.2) P >t)=PZ(t) <tpi=1, -, k—1) =T t/t) -

Limits of sequences of cutoff points determine corresponding limits of rules
and of risks as follows:

ProrosiTiON 1.1. Let {t,™}: n = 1, 2, - - . be cutoff-point sequences with limits
4, = lim, t,', and let ,: n < oo be the corresponding stopping rules. If t,"> > 0,
then X, — X, a.s.; hence Eq(X, ) — Eq(X.,) if q(+) is bounded. A sufficient con-
dition for 1,') > 0 is lim sup Eq(X, ) < ¢(c0).

Proor. On E, = {r,, < ) and r,, # t,, for some m = n}, there must be an
arrival of relative rank < k in one of the intervals [inf,,., '™, SUP,=, &;'™], | =
1,2, ..., k. The lengths of these intervals shrink to zero as n — oo; hence
clearly P(E,) — 0 as n — oo as long as #,"’ > 0. Thus X, = X, forall n suf-
ficiently large a.s. on {r,, < 1}.

Let X, ,; denote the absolute rank of the best arrival in [, v]. Let T =
sup ¢, and, for each k, let g, be the first time after 7" at which there is an arrival
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of relative rank < k, ifthereisone; ¢, = lifnotorif T = 1. Thenlimsupz, < g,
so for any k and n > n(k) sufficiently large,

P(to = 1,ifpz, X, < %) < P(te = 1, i0fpp, T < 1) + P(Xpy 0,000 < %) -

For each k the first term on the right goes to zero as n — oo by exactly the same
argument as in the preceding paragraph. If T = 1 the second term is 1 — [#,*]7,
while, if T < 1, Xy, @5, = Y,, and, on {o, < 1}, Y, is uniformly distributed
on {1,2, ..., k} (see Proposition 3.4). In both cases the second term goes to
zero as k — co. Thus X, — X, = oo on {r., = 1} as well.

Convergence of the risks follows immediately by the bounded convergence
theorem.

If 1, < ¢, then with probability 1 — ¢ the best arrival in [0, ™ /e] arrives
in [£,™, 1, /e] in which case 1, < 7, < 1, /e and the expected loss is at least
Eq(K,(t,'™[e)). Thus

lim sup Eq(X; ) = (1 — ¢) lim sup Eq(K,(1," [e)) .

But # | 0 = K,(4) 1 oo a.s. so the right side is (I — ¢)g(o0) if lim inf #™ = 0.
This completes the proof. []

2. Independence of the past and the future. In this section we set the stage
for deriving the differential equation which is the analogue—and indeed the
“limit,” as Mucci [5, 6] showed—of the difference equations in the finite problem.
As in the finite case, the key step is to show that the minimal risk (1.1) isachieved
within the subclass of rules which, in effect, depend only on the arrival time and
relative rank of the current arrival and not on the past. This is a trivial matter
in the finite problem but requires some care here.

We need to generalize the notation of Section 1 as follows: For0 < s < ¢t < 1,
define

K(s, 1) = (Ki(s, 0, Kufs, 1), ++2) s

Z(s’ 1) = (Zy(s, t)’ Zy(s, 1), -++),

M(s, 1) = (Mi(s, 1), My(s, 1), +++) ,

F, . = o-field generated by (Z(s, 1), M(s, 1))
where
K, ) =min{j: s< U; £ ¢},
Ko (s, ) =min{j > K(s,): s < U; =1},
Zs, 1) = U005
M(s, 1) = Y05
=1+ 25 I(Kj(s)<Ki(a,t)) + X I(Zk(a.t)<Zi(s,t)) .

Thus Z(s, t) is the arrival time of the individual who is ith best among those
who arrive in (s, #], M,(s, t) is its relative rank at arrival time among all indi-
viduals who have so far arrived, and K,(s, ?) is its absolute rank.

That Z(s) and Z(s, ) are independent and each is independent of (K(s), K(s, 7))
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are further familiar properties of random samples from a uniform distribution.
From its definition, we see that M(s, f) is independent of Z(s). Thus we have

PROPOSITION 2.1. For each s and t with 0 < s <t <1, &, and F,, are
independent.

In particular,

2.1) Xz,en = Ki(s, t) is independent of &, .
Also it is clear that

2.2) T = TN T,
Now we define, for each 7 ¢ [0, 1),

(2.3) 7(0) = essinf,..., E[q(X,) |57,

(2-4) f() = inf... Eq(X,)

(2.5) g(t) = inf, . + Eq(X.)

where &,* is the subclass of &, consisting of those z’s which are measurable
with respect to &, ;, hence independent of & ,.
The main result of this section is

PRropoSITION 2.2. For each t € (0, 1)

(2.6) 1) = f(H) = g(t) a.s.
Proor. First we shall verify that every = > ¢ can be expressed as a mixture
{z.} of rules which are independent of .5, and that E(q(X,)|5",) is the cor-
responding mixture of {Eg(X, )}.
By (2.2), we can write
v = t(Z(¢), Z(t, 1), M(z, 1))
and define, for each z = (7, z,, ---): 0 < z; < ¢,
T, = ©(z, Z(t, 1), M(t, 1)) .
By measurability of sections, each r, is a random variable, which of course is
greater than ¢, measurable with respect to &, ,, hence independent of &, by
Proposition 2.1 and satisfies parts (1) and (2) of the definition of < in Section
1. Moreover, since {r < u}e &, for each u > ¢, we have, again by (2.2) and
measurability of sections,
{.sues . Cc 7.,

so 7, satisfies part (3) as well and is therefore a stopping rule.

Now,
(X)) = 9(X,, )

= 2 9(K(2, 1))I(rzm=zi<t,1)} ’
which is a measurable function of Z(r) and [K(z, 1), M(z, 1), Z(¢, 1)], the former
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being independent of the latter. So, by standard methods (see Breiman [1],
page 80, Corollary 4.38), we conclude that a version of E[q(X.)| % ,) has, on
each set {Z(¢) = z}, the value

E[ X 9K, DM e z,00n] = Eq(X2)
Of course each 7, e & ,* so, by (2.5), we have shown that
() = 9(t) a.s.
On the other hand, from the definitions (2.3)—(2.5),
o) = f) = Er(r) .
Equations (2.6) follow immediately from these inequalities to complete the
proof. []
If r e &, then I, + .o, € &, 50, by (2.3),
E[qX) 50| F ] Z 1(Ne5y a5
hence we have an immediate corollary:
@.7) E[q(X) 50|57 2 f(Oiesy 2.

Conceivably, for some g(+), f, which is obviously always an increasing func-
tion, could be finite on [0, 7,) and infinite on (z,, 1). But the next lemma and
proposition show that this is impossible.

LemMma 2.1. If Eq(X,) < co and esssupr = s < t < 1, then there is a o with
esssup o = t and Eq(X,) = Eq(X,).

Proor. Informally, we want ¢ to be simply = “applied” to the arrivals in
(t — s, t], rather than those in (0, s] and “completely ignoring” all arrivals in
(0,7 — 5s]. Formally, let U/ = (U, + 1 — t + 8o, U = (U/, Uy, --+), and
primed objects (e.g., &/, X,/, 7’) be defined on U’ exactly as the corresponding
unprimed objects are defined on U. Let g = v/ + (¢ — ).

Of course U’ has the same distribution as U so Eq(X},) = Eq(X,). Butsisa
stopping rule for the original process and X7}, = X,. []

PROPOSITION 2.3. v < oo = f(f) < o0 V1€][0, ).

Proor. By hypothesis there is a = with Eg(X,) < co. Then necessarily, by
(2.7), /
T S sup {t: f(f) < oo} a.s.

Now apply the previous lemma to conclude that this supremum must be one. []

Since, trivially, ¥ = co = f(#) = co on [0, 1), we have a dichotomy: f'is either
finite on all of [0, 1) or infinite on all of [0, 1) according as v is finite or infinite.

3. The differential equation for f. Foreachi=1,2, ... andeachte (0, 1],
define

(3.1 R(1) = X (2)q(R)r(1 — o).



424 JACQUELINE GIANINI AND STEPHEN M. SAMUELS

ProposiTION 3.1. E[q(X,,.)|-F ] = R().

ProoF. {Xj ., = k} = {K(r) = k}, which is independent of &, as we
remarked earlier, and of course K,(r) has the indicated negative binomial
distribution. [J

Here are some easily verifiable properties of the R,(f)’s which will be used
frequently:

(3.2) R(t) Koo =R(f)y < oo Vi,t>t;
(3.3) for fixed ¢ > t: Ry(f)1q(0) as il oo,
R(f) < R ;4(f) unless q(i) = g(c0);

(3.4) for fixed it R,(f) continuouson (¢, 1];

R(f)] and R,(0%) = g(c0),

Ry(t) | (strictly) on (z,, 1]—unless g¢(i) = g(co)—and

R(17) = 4() -

This list slightly modifies Mucci’s ([6], page 419); he considers only unbounded

¢’s for which each R,(-) is finite on (0, 1].
For convenience, define

3.5) R (1) = g(c0) .
ProroSITION 3.2. If Eq(X,) < oo, then
(3’6) E[q(Xt) |"g_r] = RY,(T) a.s.

ProofF. Forn=1,2,..., let X, , and Y, , be the absolute rank and the
relative rank at arrival time, respectively, of the best arrival in the interval
Jow = (kK = 1))2", k2"], k =1,2,...,2". (Notice that the relative rank of
this arrival at the later time k/2" necessarily remains Y, ,.) Now let

T = Dk kz_"l(re.i,,,k) >
X =20 Xn,kl(feJ,,,,,) >
Y,= 2 Yn,kl(re.fn,k) .
At each point o in the event {r < 1}, r is the arrival time of the best individual
in some sufficiently small open neighborhood of z(w). So not only does r, | z,
but also, on both {r < 1}and {r = 1}, X, 1 X, Y,, 1 Y., and ¢(X,) 1 ¢(X.). Thus
Ry (7.) T Ry (7), by (3.3) and (3.4), and it is easy to see that N.*., =.
So by a standard martingale theorem (Chung [3], page 340),
Elg(X)|F ] >us. E[9(X) | F] 5
while, by Proposition 3.1,
E[g(X,) |"71,,] = 20 E[9(X,) | ‘g‘k/zﬂ]l(rnﬂ/z”)
= 2 RY”(k/Z”)I(r”=k/2”)
= Ry (v,) as. 0
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The preceding proposition shows that the “improper” question—What do we
expect to lose if we choose an individual arriving at time ¢ with relative rank
i?—is not, after all, ambiguous, and the answer is R(f).

It is trivial that f(0*) > v, but since not every r € € is in &, for some ¢ > 0,
it is not a priori clear that f(0*) = v. Actually, more than this is true, namely:

ProrosiTiON 3.3. f(f) = v for all ¢ sufficiently small.

ProoF. f{(#) is increasing and < g(oo) for all ¢, sincer =1e &, V1.
The case f = g(co) is easy since, by (2.7), for any ¢, as ¢ | 0,

E[q(X) 5] Z 9(c0)P(x > 1) — g(c0)
$0 ¥ = ¢g(o0).

If f(t;) < g(c0) we shall show that there is an s, 0 < s, < 7,, and a ¢’ ¢ %
such that any r can be improved on {r < s,} by using ¢’ instead. This, of course,
proves that f(s)) = v.

There is certainly an s, such that, for any , E[¢(X,)].<,)] > f(t)P(c < s,)
because, on {r < s}, we have X, > X, ,,, so by Proposition 3.1

E[q(X)] < | F ] = R($)] . <y »

and by (3.4), R,(s) 1 g(co0) > f(t,) as s | 0.

Now, by Proposition 2.2, there is a 7’ ¢ % , independent of 5’} , hence of
F ,» With Eq(X,,) as close as we like to f{(,). Thus hiesey + T I(,S,o,, which is
in % is better than 7. [J

Thus, to know f on (0, 1) is to know v.

PROPOSITION 3.4. Let 0 < s < t < 1; Jet r be a positive integer and let

3.7 o =inf{U,e(s,1]: Y, < 1}
=1 if no such U,
then
(3.8) PY,=j|F)=r" j=1,2,--,r on {o<1}.

Proor. Let N; be the number of arrivals in (s, ] of rank between those of the

J — st and jth best arrivals in (0, s]; that is
N; = ZiI(Kj_1(8)<Ki(s,t)<Kj(s))

where Ki(s) = 0. Then the N;’s are independent of &, and i.i.d.; also inde-
pendent of &, the arrival at time o, if there is one, is equally likely to be best,
or second best, or- - . etc., of the N, + ... 4 N, best arrivals in (s, 7].

Thus on {o¢ < 1}, forj: 1,2, ...,r,

P(Y, =j|F) = E[K(Y, = j| Z, {N})|F]
=E[Na’/Z{=1Ni|Z{=1Ni>O] =1/r. Q

THEOREM 3.1. If v < oo, then f(t) is continuous on [0, 1) and on this interval
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satisfies the differential equation:
(3.9) [0 =17 Zia [f() — R()]* -
(This is the differential equation obtained by Mucci [6].)

Proor. Choose 0 < s < ¢t < 1 and let @ be the arrival time of the best arrival
in (s, f]. Forany r > s we have, by Proposition 3.2, and formulas (2.7), (3.3),
and (3.4),

Eq(X.) = ERy (7)

= E[Ry (M csoy + ()] e54]

2 E[Ry (Dic<y + f()] 5]

> E[Ry (1) A f(1)] -
Thus, for0 < s <t < 1,
(3.10) f(s) = E[Ry (1) A f(1)].
Of course Y, T oo as either s 1 ¢ or ¢-| s, so both left and right continuity follow
easily from (3.3) and (3.4) and the monotonicity of f.

Also we can easily see that f is constant on [0, #,] where ¢, = sup {r: R(t) =
(1)}, which agrees with (3.9).

Now let ¢ be as in (3.7), taking ¢ > 1, r = max {j: R;(f) < f(#)} and s close
enough to ¢ so that we also have
(3.11) r=max{j: R;(u) < f(?)} Vue(st].
(Properties (3.3) and (3.4) and continuity of f insure that this can be done.)
Consider rules of the form

p=0l,gy + thsy

where ¢ is independent of &, and as nearly optimal in &, as we like. From
(2.7), then (3.3) and (3.4) and Proposition 3.2, we have

J6) = E[9(X) o0, + [(D550]
(3.12) < E[Ry () <4y + (D] 554)]
= E[Ry(5) A f(D)] -
Now, for s close enough to ¢ so that (3.11) holds,
E[Ry (1) A f()] = X5 (5[] — s[R(1) + (s/1)f(2)
(since the distribution of Y, is obviously geometric); and, using Proposition
3.4, and the fact that Y, < rifand only if Y, < r,

E[Ry,(s) A f(O] = [1 = (s/1)"] L5 Ry(S)]r + (/1) £(2) -
It is easy to see that
lim,;, {f(t) — E[Ry (1) A fOB/( — 3)
= lim,;, {f(t) — E[Ry,(s) A f(OI}/(* — 9)
=1 U5 L) — Ri(0]" -



THE INFINITE SECRETARY PROBLEM 427

Hence, by (3.10) and (3.12), (3.9) holds for the left derivative of f. But con-
tinuity of f insures its validity for the right derivative as well and the theorem
is proved. []

4. An optimal rule. Ignore the trivial case: ¢(-) constant.

If v < oo, then, by (3.3) and (3.4) and monotonicity of f, there are unique
solutions {r,: k = 1,2, ...} to the equations Ry(f) = f(r), with 0 <5 <
t, < +-+- — 1, unless g(M) = g(oo) for some M, in which case 0 < £, < -+ <

Ly =ty = =+ =1.

Let o* be the cutoff-point rule defined by the #,’s. That is
(4.1) t* = min {u e {U}: Ry () < f(u)}
=1 if nosuch U,.
THEOREM 4.1. ¢* is optimal whenever v < co.
The proof of the theorem requires the following strengthening of (2.7):
ProposITION 4.1. If Eq(X,) < oo, then
(4.2) E[q(X) 050 |- ] Z (D)5 -8

Proor. Use the same 7,’s as in the proof of Proposition 3.2 to conclude by
the same martingale theorem:

E[q(Xo)I{0>rn) l*g—rn] - E[q(Xo)I(o>t) |*71] 4
while, by using (2.7) and monotonicity of f, we get
E[q(Xo)I(a>rn) | ﬁ:n] g f(fn)l(a>r,,,}

= f(f)](o>r,,,)
'_—)f(f)l(o>t) * D
Note also that, by (4.1), and Proposition 3.2,
(4.3) E[q(X.) | F o] = Ry (*) < f(z¥)

on {r* < 1}.
ProoF oF THEOREM 4.1. For any rule = with Eq(X,) < oo, the rule min (¢*, )
is at least as good, since by (4.2) and (4.3),

E[q(X) |7 ol ies ey = [(7*) 15 n)
g E[q(Xr*) l"g-r*]l(r>r*) H

moreover, for each k, on {r € [t,_,, ,), T < 7*}, Ry (7) = Ry(7) > Ry(t) = f(t0)
so t can be strictly improved on this event by waiting until time ¢, and then
using a sufficiently good rule in &, . '

Since, for any T < 1, there are only finitely many #,’s < 7', we conclude that
for some z, € &, the rule

*
T I{f*§T) + TI(mm(r*,r»T) + TTI(1§T<':*)
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is at least as good as z. Then, taking T =T, and r = r,, where T, 11 and
Eq(X.,) — v, it follows that there are rules r;, € &7 such that, with
f,n* = T*I{t*§T.n) "I“ TTnI{f*>Tn) Py
we have Eg(X, «) — .
Now f(T,) — g(c0) as T, 1 1, (see the next section) and, by (2.7),
Eq(Xr,,*) 2 Eq(Xr*)I(r‘éTn) +f(Tn)P(T* > Tn) ;
50, if g(c0) = o0, P(r* < 1) =1 and Eg(X,.) < v (hence equality must hold),
while, if g(c0) = Q < o0,
V= Eq(Xt*)I(r*<1) + QP(T* = 1)
= Eq(Xt*)
so again t* is optimal. []
5. Boundary conditions and finiteness of the minimal risk. In general, any

solution to the differential equation (3.9) which is continuous where it is finite
is one of the following kinds:

(1) Constant: f(f) = f(0) < oo;

(2) Bounded: f(0) < f(1) < oo;

(3) Finite unbounded: f(f) < oo V1< 1,

f(17) = oo;
(4) Explosive: f(f) < oo Vi< T, 0T <1,
=ooVt>T.

Moreover, for any two solutions, f and g,
f0) < 9(0) < 0o =f(t) < 9(t) Viaf(r) < 0.

Let f* denote the solution to (3.9) which is the f for our problem—namely
the one which satisfies (2.4).

It is easy to see that f*(1-) = g(co). This is because if ¢ > ¢ then X, >
K(t, 1), the rank of the best arrival in (¢, 1), and Eq(K,(t, 1)) = Eq(K,(1 — 1)) =
R(1 — 1)1 g(0)astll.

Here are some facts (recall the dichotomy for f* at the end of Section 2).

PROPOSITION 5.1. R,(f) = oo for some t€ (0, 1) = f*(t) = co.

In particular, if ¢ grows exponentially, then v is infinite. Indeed, a somewhat
stronger fact is true, namely: '

ProrosiTION 5.2. 3] [log q(k)]/k* = oo = f*(f) = co.

PROPOSITION 5.3. ¢(o0) = oo and q(k + 1)/q(k) = 1 4 O(k~")—i.e. q(k) grows
like a power of k = v < oo and f* is the unique finite unbounded solution.

PROPOSITION 5.4. g(o0) < oo = f* is the unique bounded solution with
f(17) = g(c0).

The last of these is obvious from the remarks at the beginning of this section.
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ProoF of ProposiTION 5.1. The hypothesis implies that g(k) > (1 — £)=*7
for infinitely many k’s. Choose a subsequence {k,} of such k’s with ,,,, > 2k,
Let

rky=(1 =) 2 if k, <k <k,,
=0 if k<k,.

The r(k) < q(k) for all k, since ¢ is increasing, so

2 [log q(k)]/k* = X [log r(k))/k?
2z —glog(l — ) 2. (1 = kyfknss)
= 0.
Apply Proposition 5.2. []
PRrOOF OF PROPOSITION 5.2. We have only to prove that v < oo implies con-

vergence of the series whenever g(co) = co. The rule z* of Section 4, being
optimal, satisfies

E[q(XeMeo>0] = fOP(z* > 1)
for all ¢. This goes to zero as ¢t 1 1 since P(c* = 1) = 0. In particular, at the
cutoff points, {7}, of =*, f(t,) = Ry(#,) > q(k), so, using formula (1.2) for
P(z* > 1,) and taking logs, we conclude that
log q(k) + klogt,™ — Xk  log ;7' — —oco as k1 oo.
Let a, = log #,~* and choose K so that, for all k£ > K,

log q(k) < X%, a; — ka, .
Then for all N > K,

log q(k) A a; ka,
ZkKk(k—1)<ZkKZ_lm ZkKk(k_l)

1
= Z?;lai ZkN=ij ‘—"‘—'k(k — l) Zk =K 57— k — 1
: 1
= 5~{=-11 Kﬁ 1 e 'N §Y=laj
- a;
SEE T .

Finiteness of v in Proposition 5.3 is Theorem 4.1 of Mucci [6]. Uniqueness
follows immediately from Corollary 2 of Proposition 5.6 and the corollary to
Proposition 5.8 both stated and proved below.

The key to a further understanding of the relationship between the differential
equation and the infinite secretary problem is to introduce four modified sec-
retary problems:

(A) Truncated Problem: Loss is q,(k) = q(k) if k < M
=q(M) if k > M;
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(B) Kickback Problem: Loss if 7 = 1 is B < g(c0);
(C) Hurry Up Problem: Loss if ¢ > Tis co; T < 1;
(D) Inflated Cost Problem: Replace g(k) by R(T); T < 1.

The main results are:

PROPOSITION 5.5. Let vy, be the optimal expected cost for the Truncated Problem.
Then v, 1 v whether v is finite or infinite.

Proor. If g(co) < oo the proposition is trivial. Likewise if lim v,, = co
since lim v, < v. So from now on we assume lim v, < co = g(o0).

Let 7, be the cutoff-point rule based on {#,0: f,(£,™) = R,™(¢,"")} which
we know, by Theorem 4.1, is optimal for the Truncated Problem. Choose a
subsequence {M,} for which #,*» converges for each k. Then lim #,*» > 0 by
our assumption and the last part of Proposition 1.1. Let 7., be the rule based
on the limits of the cutoff points. Then, using Proposition 1.1, for any N,

EqM,,,(XtM”) g EanAN(XrMn) d EqN(er) as n— oo.
Thus, for all N
lim v, = Eqy(X.,) -
But by the monotone convergence theorem

Equ(X. ) — Eq(X.) as N— oo.

The limit is necessarily at least v since z,, is a legitimate stopping rule. Thus
lim v, = v; the reverse inequality is trivial so the proposition is proved. []

COROLLARY. For the sequence of N-individual problems with loss functions q(i):
i < N, the sequence vy of minimal expected losses converges to v.

Proor. Immediate since Mucci ([6], page 420) has shown that lim, ., v, =
lim,_, vy. [

(This, incidentally, shows that Mucci’s v and our v are always equal, though
they are defined quite differently. His v is defined to be simply the limit of the
Vy’s.)

Gianini [4] has also proved equality of the two limits by a different method—
one which, in effect, “imbeds” the finite problems in the infinite problem.

Further evidence that the infinite problem is the “limit” of the finite problems
may be found in the papers of Gianini [4] and Mucci [5, 6]. Special cases are
explicitly solved in [2], [5] and [6].

PROPOSITION 5.6. The f for the Kickback Problem is f, the unique bounded solu-
tion to (3.9) with f(17) =

Proor. Theorem 3.1 remains valid. The rest is easy. []

COROLLARY 1. Let vy (which is of course f,(0)) be the optimal expected cost
for the Kickback Problem. Then vy 1 v as B 1 q(c0).
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Proor. The Kickback Problem is squeezed between the original problem and
the Truncated Problem. [J

COROLLARY 2. When q(oo) = oo, there is a finite unbounded solution if and only
if v < co. Moreover
v =min{A4: f(0) = A and [ is a finite unbounded solution} .

Proor. Existence of a finite unbounded solution guarantees that lim v, < co.
And of course we already know that finiteness of v guarantees the existence of
a finite unbounded solution, namely f*. Minimality comes from Corollary 1. 0

Let H and I be “the f’s” for the Hurry Up Problem and the Inflated Cost
Problem respectively. That is,
H(t) = inf 5, Eg(X ) ccr) 4 00 - P(r 2 T)
(oo - 0 = 0 of course), and
I(t) = inf ,, ER, (T) .
ProposITION 5.7. H is an infinite or explosive solution to (3.9); I is a solution to

$.1) @) =t nea [f(0) — R(T)];
and H(t) = I(t/T): in other words the two problems are equivalent.

Proor. Theorem 3.1 holds for the Hurry Up Problem so the first assertion is
easy. The second is immediate from

(3-2) Zk GIDRUD)H(1 — 0)*=F = Ry(tT) -

Furthermore the transformation g(r) = f(#/T) establishes a correspondence
between solutions, f, to (5.1) and explosive solutions, g, to (3.9). This would
prove the third assertion if we knew that H and I were the unique solutions
satisfying their right-hand boundary conditions. Since we don’t know this, wg
look at the problems more closely. By (5.2), ER, (T) = ER, (zT), from which
it follows easily that we can transform each problem into the other simply by
changing the time scale. (To be completely rigorous, we do need to truncate
all z’s in the Hurry Up Problem to 7: a minor point.) []

Now let v, = H(0) = I(0) denote the common minimal expected cost for the
two problems.

ProrositioN 5.8. If g(k) grows like a power of k—i.e. q(k + 1)/q(k) = 1 +
O(k=*)—then v, < oo YT < 1. Moreover there is a cutoff-point rule, t with
ERy (T)< 0o VT < 1.

Proor. The former assertion follows trivially from the latter.
For any cutoff-point rule = with cutoff points {¢,}, monotonicity in (3.4) gives

Eq(X,) = 2 Eq(X )y gcctp i
S X R()P(t =7 < p) -
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if q(k) grows like a power of k, Mucci ([6], Theorem 4.1) has shown that there
is a set of cutoff points for which the even larger series }; R,(#,)P(t = ;) con-
verges. This follows from the fact that in this case there is a positive integer
M such that for all &, ¢,

Ry(0) < g k) .
Combining this with (5.2) yields
R(tT) < e¥T-R(1) .
Thus, using the same cutoff-point rule, we have
ERy (T) = X Rt T)P(ty = 7 < th49)
T 37 R(t)P(1, £ © < typn)
< . g

COROLLARY. v, | v as T 11; hence

v =max {A4: f(0) = A and f is a finite unbounded solution} .

A1l

Proor. Immediate by the monotone convergence theorem since R,(T) | g(k)
asTT1Vk. [J

There is still a gap to be closed. Can Proposition 5.3 be extended to include
all g(+)’s with g(c0) = oo and v < o0? In other words, is a finite unbounded
solution to the differential equation—if it exists—always unique ?
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