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EXISTENCE AND UNIQUENESS OF COUNTABLE
ONE-DIMENSIONAL MARKOV
RANDOM FIELDS

By HARRY KESTEN!
Cornell University

For a countable set S and strictly positive matrix Q = (Q(x, ¥))z,yes
let £(Q) be the set of all probability measures 2 on Q = SZ, strictly posi-
tive on cylinder sets, and with the following ‘‘two-sided Markov property’’:
wn = x| o1, 1 # n} = [Q¥x, 2)]710(y, x)0(x, z) a.e. on the set {wp—1 =¥,
o1 = z}. In other words, for every pe &(Q), the conditional distribution
of w, given all other w; depends on wx-1 and wx1 only, and ‘‘behaves as if
{wa}nez is a Markov chain with transition probability matrix Q.” Z(Q)
denotes the set of those pe £(Q) which are in addition translation in-
variant. We establish a conjecture of Spitzer’s [9] that either £(Q) = @
or Zy(Q) consists of one element only, which is then necessarily a station-
ary Markov chain on Q. We also give a condition for £(Q) = @.

1. Introduction and statement of results. Let S be a countable set and Q the
product space SZ (Z = the integers). Denote a generic point of Q by » and its
nth coordinate by »,. For —oco < a < b < oo & is the smallest g-field con-
taining all sets of the form {0, = x,,a < n < b}.

"gvb = Va§b ‘-gvab ’ ‘—g—‘a = ngay—;lb and ._g‘: vb y—b

= smallest o-field containing all cylinder sets. In [9] Spitzer investigated the
structure of the Markov random fields on Q (see also Follmer [1]). This is the
class of probability measures # on & which assign strictly positive probability
to all cylinder sets and for which the conditional distribution of w, given
F vty F ., depends on the values of w,_, and o,,, only, but not on any of
the other w, or n. In other words, there should exist constants f, ,(y) (x, y, z€ S)
such that

(1.1)  plo,=y|F v T, )=[iy) ae on {w,_,=x 0,,=1.

As explained in [9] (see Theorem 1; also [5], Theorem 4.1 or [8], Theorem 3.22)
there must then exist a strictly positive matrix Q = (Q(x, )).,,.s Which plays
the role of a transition probability matrix in the sense that

(12) #{wn = yl‘-g-“—l 4 ‘-7‘7%1}

= 20, 2) a.e; on {w,,=x0,,=7z}.

Q%(x, 2)

Received June 24, 1975.

1 Research supported by the NSF under grant MPS 72-04534 A03.

AMS 1970 subject classifications. Primary 60J10, 60K 35; Secondary 82A25.

Key words and phrases. Markov random field, translation invariant Markov random field,
stationary Markov chain, strong ratio limit property.

557

j
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% 2

5N

The Annals of Probability. BINOIY

www.jstor.org



558 HARRY KESTEN

This leads to the following problem (compare [1] and [9]): Let Q be a matrix
on S x S for which

(1.3) 0(x,y) >0, x,yes
(1.4) Q*(%,Y) = Taes Ox, 2)Q(2, ) < 00 5 x,yes.
Define ¥(Q) to be the class of all probability measures on & which satisfy (1.2),
and let & (Q) be the set of translation invariant elements of <(Q), i.e., the set

of pe &(Q) for which
Au{wa-l»n = Xu Y =n= b}

is independent of a for all 0 < b < oo and x,eS. What is the structure of
Z(Q) and Z(Q)? In particular when are these sets nonempty, and if so, how
many elements do they contain? If £ Z(Q) > 1 we say that phase transition
occurs.” The most interesting situation is where ¥(Q) contains at least two
elements s, and g, which cannot be obtained from each other by translation
and Spitzer gives examples of this kind in [9]. Spitzer called two matrices Q
and Q' equivalent (Q ~ Q') if there exists some strictly positive vector v: § — R*
and a constant 2 > 0 such that
' — 2= W)

Q(x,y)___W, x,yeS.
One easily sees that if Q ~ Q' then Z(Q) = Z(Q’). Spitzer [9] also showed
that, conversely, &(Q) n £(Q’) + @ implies O ~ Q' and hence L(Q) = L(Q').
Thus Z(Q) depends only on the equivalence class of Q. If Q ~ P for some
positive recurrent stochastic matrix P then clearly P* e &(Q) = Z(P) where
P* is the distribution of the stationary doubly infinite Markov chain with tran-
sition probability matrix P. That is,

(1.5) Pw,,n = x,, 0 < n < b} = v(xy) TI2Z8 P(Xs5 Xy01) »

where v is the unique invariant probability measure of P (P = v). Our main
result is Theorem 1 below which confirms a conjecture of Spitzer’s [9] that
Z,(Q) never can have any other elements. Throughout this paper all matrices
have all entries strictly positive, and have finite second powers. The stochastic
matrices are therefore automatically irreducible and spheriodic.

THEOREM 1. For all Q satisfying (1.3) and (1.4) one has either Z(Q) = @ or
% Z(Q) = 1. The latter case occurs if and only if Q ~ P for some positive recurrent
stochastic matrix P. Moreover, in this case P is unique and Z(Q) = {P*} with P*
as in (1.5).

REMARK 1. Define

ZU(0) = {pe Z(Q): for all ¢ > 0 there exists a finite set
(1.6) S with liminf,_, ¢{o, ¢S} <e¢ and
liminf, ,_, p{o, ¢S} < €},

2 # 4 denotes the number of elements in 4.
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Zy(Q) = {¢re Z(Q): for some 7 > 0 there exists a finite
1.7 set $? with plo_,eS% 0,e 5% =7y
for all n = 0}.

Clearly &, ¢ &, n ¥, and we shall actually prove the stronger result that either
Zy(Q) = Zy(Q) = @ or Q is equivalent to a positive recurrent stochastic P and
ZY(Q) = Zy(Q) = {P*}. Note that if Z,(Q) = @, then Z(Q) can only contain
measures ¢ for which min (|,|, |o_,|) tends to infinity in probability as n — oo.
(Here |x| = k if x = s,, where s, 5, 5, - - - is an arbitrary fixed ordering of S.)

Spitzer, [9], end of Section 3, showed that if § = Z and Q is equivalent to
the transition probability matrix P of a random walk, i.e., P(x + z,y + z) =
P(x, y), then £(Q) = @. This result is generalized considerably in

THEOREM 2. Assume Q satisfies (1.3) and (1.4), but is not equivalent to a posi-
tive recurrent stochastic matrix P. If there exist 3, > 0 and my, > 1 such that

(1'8) :Lngl Q"(xa x) 250, XGS,
then Z(Q) = @.

The above theorem shows for instance that &(P) = @ for any substochastic
P which is not positive recurrent but has its diagonal elements bounded away
from zero. More complicated arguments than in Section 3 show that (1.8) can
be weakened to

(19) Qn0+m0(x’ }’) = 50Qn°(x, y) P X, ye S,

for some n, = 0, m, > 1. However, this still leaves open the general problem
of finding necessary and sufficient conditions for &(Q) ++ @. We note in pass-
ing, that the arguments which establish &(Q) = @ from (1.9) also can be used

to show that the still weaker condition
(1.10) 2., min {P"o*™o(x, y), P"(x, y)} = 0,, xesS

implies the strong ratio limit property for an irreducible, aperiodic, recurrent
stochastic matrix P (compare [3] and also Remark 4 below).

2. The structure of & (Q). Before starting the proof of Theorem 1 we note
that, by the assumption of the strict positivity of Q, the right hand side of (1.2)
is strictly positive for all x, y, ze S. Thus if p satisfies (1.2) and if x, € S are
such that

/J{wnzx”,aghgb}>0,

then also for any y,,, € S
:u{wa = xa’ wa+l :ya+l’ wn = x‘n’ a + 2 é n é b}

= #{wa = x(v a)n = xn’ a + 2 é n é b} Q(xa’ ya;l)Q(ya+1’ xﬂ«+2) > 0 .
Q*(Xas Xq12)

Iteration of this argument shows that any xe ©(Q) assigns strictly positive




560 HARRY KESTEN

measure to {0, = x,, 0, = y,,a < n < b, v, = x,} for any y,, and hence to all
cylinder sets. The proof of [8], Theorem 3.22 (see also [5], Theorem 4.1 or [9],
Theorem 1) now shows that if £(Q) # @, then necessarily

(2.1) 0"(x,y) < o, x,ye8S,n=1,2,...,
and for any pe ¥(Q)
(2.2) o, =x,a<lnb|F*Vv . F,}
— O Xaur) TTaZ041 Q(Xns Xp42)Q(Xp-1s 2)
Q"> 2)

on the set {w, = y, ®, = z}. From now on we therefore also assume (2.1) for all
our matrices. It is simple to see ([10], Lemma 1 or [7], Theorem 6.1) that for
such a Q all the power series Y 2, Q"(x, y)w" have a common finite radius of
convergence, say R = R(Q). Our first lemma takes care of the case R(Q) = 0.

LemMa 1. If R(Q) = 0, then Z,(Q) = Z,(Q) = @ .
ProOF. Assume pe &, (Q). Then, by (2.2)
Ho_, =x,0,=y, 0, =17}
(2.3) = po_, = x, 0, = 2)plw, = y| T v )
= Hlo_, = x, 0, = Z}{Q"(x, 2)}7'Q"(x, )2"(); 2) -
Now let » and S* be as in definition (1.7) and let $* be such that p{w, ¢ S*} <
7/2. Summation of (2.3) over x, z € S? and y € $* then yields
7 < po_, eS8, 0,e5%, 0,¢ 57

= Desess Liyest {Q7(x, 2)}710"(x, y)Q"() 2) -

It follows that for each n > 0 there exist y, € $* and x,, z, € S? such that

Q" (%> Yu)Q" (Vs 2,) Z {24 S*(#S)}71Q* (x,, 2,.) -
Now let s be any fixed element of S. Then

Q”+2(s’ S) g Q(S, xn)Q”(xm yn)Q(yn’ S)
= min, s O(s, X) - min, g Q(y, $)Q™(X,, V)
and similarly for Q*(y,, z,). Also
Q" (X, 2,) Z (X, Q™ 7(s, 5)Q(S, 2,) -

Since the minima of Q(-, +) over finite sets are strictly positive it follows that
there exists a C, > 0 for which

(2.4) {Q"F(s, 5)) = C, Q™ 7%(s, 5) .
Define a sequence of integers n, by

n, =17, Mpyy = 21, — 6,
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and write
7 = Q"k(s, 5) .
Then
n, _ n_, 3 nm, 3 3
_27 — k-1 - k-1 — k-2 - k-1 - k-2
=”o"32f=_4}2_l""1a k— oo.

On the other hand, (2.4) implies
S G S G S S G
so that
(2.5) lim sup, .. {Q"x(s, 5)}™ = lim sup, ., {r}'" < Cy7'ry < o0 .
However, it is known ([11], Theorem A or [7], proof of Theorem 6.1) that
| R(Q) = lim, .., {Q"(s, )}
which together with (2-5) contradicts R(Q) = 0. []

REMARK 2. R(Q) = 0 does not imply £(Q) = . That is, one can construct
examples with Z(Q) # @ even though the powers of Q increase so rapidly that

{O™(x, x)}/" — oo.
In view of Lemma 1 we may restrict ourselves to 0 < R(Q) < oo, and for
such matrices we have the following proposition of Vere-Jones ([10], [11]).

ProPOSITION 1. If R(Q) > O then there exists a substochastic matrix P such that .
(2.6) Q~P and RP)=1.
Exactly one of the following three cases must occur:

i) (positive recurrent case) P is positive recurrent. In this case there is only
one P satisfying (2.6).
ii) (null recurrent case) P is null recurrent. In this case there is only one P
satisfying (2.6).
iii) (transient case) P is transient. This automatically includes all cases where
any row sum of P is strictly less than one.

Proor. Vere-Jones ([10], Theorem II; [11], Section 4; see also [7], Chapter
6) showed that there exists a strictly positive vector v: S — R, satisfying
R(Q)(Qv)(x) < v(x), xe S. Thus,

_ » 9(x, »)v(y)
(2.7) P(x,y) = R =

defines a substochastic matrix, equivalent to Q. If Q’ is given by

, _ Q(x, »)w(y)
w Q') = Aw(x)
for some w(+) > 0, 2 > 0, then

R(Q') = lim,_., {(Q)"(x, )} ™" = 2R(Q) .
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Thus by (2.7) R(P) = 1. Moreover if P’ is another matrix equivalent to Q,
with R(P') = R(P) = 1 then necessarily

P(x, y) = P(x;vf))cv;(y)

for some w(.) > 0. If P’ is in addition substochastic then necessarily
(2.8) Pw(x) < w(x),

and it is well known ([2], Proposition 6.3 or [11], Corollary 4.2) that the only
positive solution of (2.8) for a given irreducible recurrent matrix P is the con-
stant vector. Thus, in cases (i) and (ii) we must have P’ = P. Also if P and P’
are two equivalent irreducible substochastic matrices with R(P) = R(P’) =1,
then it is impossible that one is recurrent and the other transient, or one posi-
tive recurrent and the other null recurrent. [J

COROLLARY. An irreducible positive recurrent stochastic matrix P cannot be
equivalent to an irreducible null recurrent stochastic matrix P'.

Proor. If P is recurrent, then

2inPM(x, X) = o0 .
Consequently
R(P) = lim,_, {P™(x, x)}""" < 1.

—

Since R(P) = 1 for any stochastic matrix, it follows that R(P) must equal one,
and the same holds for R(P’). We can now apply Proposition 1 with Q = P. []

Theorem 1 will now follow from the next two lemmas.
LEMMA 2. In the transient and null recurrent case Z(Q) = Z,(Q) = @.

Proor. By Proposition 1 we may and shall assume that Q is substochastic
with R(Q) = 1. Let

(2.9) Q=I5

and denote a generic point of Q by & = {®,},s,- Also let v, be the unique sub-
probability measure on Q which satisfies

(2.10) v{y=x} =1,
(2.11) v{®, = x,,0 < n < a} = 122 O(x, X,s1) if x,=x.

Under v {@,},s, is a Markov chain (possibly with a finite life time) ‘with tran-
sition probability matrix Q, and starting out at x. £, denotes the expectation
operator with respect to v,. It operates on functions on Q. Similarly for func-
tions on Q, E, denotes the expectation operator with respect to p.

Assume now that ;e Z,(Q) and let 5, S be as in definition (1.7). Consider
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the following random variables on Q, respectively Q,
hy = 2,(0) = ke [—n, n]: 0, e 57,
A(X) = 2,(x, 0) = ke [—n, n]: 0, = x},
(%) = 2,(x, @) = ${k € [0, n]: &, = x} .
Then
E, = 3, o, e 57
=23 o, eS8, w,eS% = 2ny.
Since
Ay = Dlaes Zn(x) s
there exists an x € S? and sequence n, 1 oo for which
27

S2

(2.12) E, 2, (x) = n, = on,, say.

Let x be fixed in this way and introduce the random times
0, =0,(0) =min{k > —n: o, = x},
T, = T(0) =max{k < n: o, = x}.
Then, since w, + x for —n < k < g, and ¢ < k < n, one has
(2.13) E2(X) = Xl -nsesisa 0, = 8,7, = 1}
X Dh=s o), = X0, = 5,7, = 1}.
But{s, = 5,7, =1}e F* Vv &, and 0, = w, = x on this set, so that by (2.2)

o, = x|o, =57, =1} = Q*=*(x, x)Q'*(x, x)

Qt—s(x’ x)

= l):n:{d)k—s = xld)t—s = x} .

Consequently,
Zik=s Moy, = x[0, = 5,7, = 1}
(214) = Ex{zt—s(x) I a—)t—s = X}
< O (st )b (r—s4 1w {z‘ > (-9, = x}
= 4 z t—s 4 t—s
0 . 1 5 d
= (t— 1 — nH—— —(t—29)}.
S G U—s+D+(—s41) e {Zt_s(x) > s)}
Of course, always ,
(2.15) Sheslop=x[o, =50, =t} < (1 — s+ 1).
Combining (2.13)—(2.15) we obtain
0
E,u'zn(x) é ’Z h + Z—nésgtén,t—sg(aﬂi)n ;1{0',” = S, Tn = t}
0 1
—(t — 1 — ) ————
><<4 (t=s+D+@—s+1) 0"(x, )

X v, {Zt_s(x) > % (t — s)}) .
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This together with (2.12) requires

0n(x,x) = v { 1) > §-ml

for infinitely many m. However,
lim,_.. {Q"(x, )" = (RQ)}* = 1,

and we shall complete the proof by showing
(2.16) lim sup,, _., (ux {Zm(x) > % m})l/m <1,

thereby deriving a contradiction from the assumption ¢ e Z,(Q).
To prove (2.16) we consider the Markov chain governed by v, and define p,,
[ = 0, as the successive times @, visits x. That is, p, = 0 and

041 =min{k > p,: @, = x}(= oo if nosuch k exists).
Then

{Zm(x) > % m} = {00/m < m} .

Moreover, under v,, the conditional distribution of p,,, — p,, given p, < oo and
00> P15 * * *» 05, is the same as the distribution of p,. In particular, if Q is transient

B =v.forn < o|p, < oo} = v {p; < oo}
=y @, =x forsome k= 1} <1,
and consequently

Vo{0isam < M} < v,{000m < 00} = O™,

This already proves (2.16) in the transient case. If Q is null recurrent all the
p, are fiinite with v,-probability one, but now the p,,, — o, are independent
identically distributed with

Ez{pl+1 - lol} = Expl = .
(2.16) now follows from standard exponential estimates. In fact, let
Zy =0, — 01 if op—p,=4,
=0 otherwise,
where A is chosen so large that

8

L2,z .

v

Then
”x{P(a/«;)m =m} < va{ 2 ipm (Z,—E,Z) < —m}

which decreases exponentially in m by Bernstein’s inequality since 0 < Z, < 4
(see [6], Theorem VII. 4.1). []
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LemMA. 3. If Q ~ P for a positive recurrent stochastic matrix P, then & (Q) =
Z(Q) = {P*}, with P* as in (1.5).
Proor. Let x_,, ---, x, be any elements of S, and S.' as in definition (1.6).
Let n, | —oco m; T +oco be sequences of integers for which
(2'17) lu{wnl e Sel} é 25 > /,!{(l)ml e Ssl} é 25 .
Then, again by (2.2),
o, = x,, —k <n < k}
1
QM= (y, 2)
X Q7 (y, x_p) TIF2he Q(*e X)) Q™ 2)
+ 0({w,, ¢ S} + o, ¢5.1)
for some 0 < # < 1. The right hand side of (2.18) is unchanged if Q is replaced
by an equivalent matrix; in particular we may replace Q by P. But P is ergodic

with invariant measure v so that, by the ergodic theorem for Markov chains ([2],
Theorem 6.38)

(2.18) = Dyesa HOn =y, 00 = 7}

lim,_., P~*"(y, x_,) = v(x_,),
lim, ., P™~*(x,, z) = lim,_., P™~"(y, z) = v(2)

for each fixed y, z. Letting | — co in (2.18) with Q replaced by P, and taking
into account (2.17), we therefore obtain

o, = x,, —k < n < k} — v(x_y) TTE2L, P(x,, X, 00)|

r=—k
< limsup,_,, p{o,, ¢ S} + limsup,_., p{w,, ¢ S.'}
< 4e.

Since ¢ > 0 is arbitrary and

Pu{wn = X —k é n g k} = V(x—k) Hk_l P(x'r’ xr+1)

r=—k

one has ¢ = P as desired. []

REMARK 3. Note that one does not necessarily have &, = £(Q) = {P*} under
the conditions of Lemma 3. Indeed, Spitzer [9], Section 2 constructed examples
of positive recurrent stochastic matrices P for which ¥(P) contains a measure
¢ # P*.* For such an example the convex combination x + 1P* belongs to
Z,(P), even though it clearly differs from P*.

3. A condition for £(Q) = . In this section we prove Theorem 2. Assume
that (1.8) holds. Then, as explained in [3], there exists for each x an n < m,
such that Q™(x, x) = d,m,™* and :

Qmol(x’ x) > {Q"(x, x)}mom—l = {50/m0}m0!n—1
= {0,/m™t =3, say.

3 See also Section 2 of the forthcoming article ‘“‘An example of phase transition in countable
one dimensional Markov random fields”” by T. Cox in J. Appl. Probability.
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For the remainder of the proof we restrict ourselves to the case m, = 1, so that
3.1 Q(x,x)=d>0, xeS.

This entails no loss of generality because if x e Z(Q), then the induced measure
governing the sequence {®,,, };.z belongs to Z(Q™') and Q™' has all diagonal
elements at least J. Moreover, one easily sees that if Q is in the transient or
null recurrent case then so is Q™'. Similarly R(Q) = 0 implies R(Q™') = 0.

Assume then that (3.1) holds and that e £(Q). Let x be an arbitrary fixed
element of S. Since # is a probability measure which assigns positive probability
to all cylinder sets there exists a finite set S, = S(x) such that

3.2) o, €8, 0y = x} = 15w, = x} .
Let

Ay = A,(x) ={yeS: 0"(y, x) = CO"(y, x)}
where the constant C will be fixed soon. Then, by (2.2)

1z plo_, ¢ 4, 0, = x, 0,€ S}

= ZyEAn Zzesq 'a{a)_n =y, 0, = Z} o+ (y, x)Q(x, Z)

Q’n+2(y’ Z)
: Q(x, z) - _n Q" ¥)Qx, 2)
B3 = Omiees, G gy Zvean Beeso MO =0 =8 205075
= Cmin Q(X, Z) /l{(l)__,n & A'na Wy = X, Wy € SO} .

2€8, Q2(X, Z)
Now fix C = C(x) such that

Cmin, g 32((’;’ ZZ)) = 16(p{w, = xH™.

Then (3.2) and (3.3) show
3.4) Ho_, ¢ A, 0y = x} £ o, = x, 0, & Sy}
+ Hlo_, ¢ Ay 0y = X, 0, € 8} < Fp{w, = x}.
We now claim that for all ¢ > 0 and re Z there exists an n, = nye, 7, x)
such that
(3.5 . Q" (y Q"(x2) Z Q'(ys )Q°(x, 2) — eQ™(y, 2)

for all ye 4,, ze S and n = n,. Before proving (3.5) we show that it will imply
Theorem 2. Indeed, take ¢ = {p{w, = x}.” Then for any r and n > n, (again
by (2.2))

‘u{wr = x} = ZyeA,,,,zeS /‘{w—n =), 0, = Z} Q”"‘"(y, x)Qn_T(x’ Z) '

0™(x, z)
= —e+ ZyeA,n,zeS Ho_, =y, 0, =z} Q”(y,zic)Q”(x, 2)
0"(y, 2)
> e oo Ay 0y = ) + ploy = 3} = Fufop = 3] .
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Thus, 4 has to satisfy for all re 7
o, = x} = {0, = x},
and this can be proved for each x. If now S, is a large finite set for which
tw, € S} > &, then for all r
/’l{w'resl} g % ersll’l{wo = x} Z 4-3”% = %%’
and a fortiori forn = 0
nu{w—nesv wnesl} g l - 2 ¢ ?13“% > O .

Thus, any pe Z(Q) necessarily lies in Z,(Q) and we already know that
Z,0) = @ from Lemmas 1 and 2. Theorem 2 has therefore been reduced
to (3.5).

We turn to the proof of (3.5). By (3.1) @ = oI + T for some positive matrix
T, and consequently for any te€ Z, n = [t|

Q™4(y, )Q™(x, 2) = (T + T)*X(y, )OI + T)"*(x, 2)
(3.6) = Tlnz0 0" Tisiem (YT Ky, DT (x, 2)
< 0™(y, 2) .-

We show first that for any p there exists an n, = n,(p, ¢, x) such that forn = n,,
yeAd,zeS

(.7 Xmss 0" Dkrrem DO Ty )T (x, 2)
S Zrsp 0" DTy, ¥)Q"(x, 2) < €Q™(y, 2) -

Indeed, for y € 4,, we have by the definition of 4,,

By HOT00 ) S oA T, R GIIT 40, 2

(n+1)
P+l n+1 C(P+1) .
émT)Q (y’x)§mQ(y’x)'

Thus, as soon as C(p + 1)07'(n + 1)~ < ¢, the second member of (3.7) is at
most eQ™(y, x)Q™(x, z) < ¢Q™(y, z). Next we show that for all ¢ > 0 we can
choose p so large that for some n, = n,(¢)

(38) Zm>p 5m Zk+l=m,lk/'m—§l>s (@(?)Tﬂ_k(y’ x)Tn—-l(x, Z)
< eQ™y,z) forall y,zeS, nz=n,.

To prove (3.8) split the same over k, [ into the two pieces k/m > % + ¢ and
klm < L — e. We restrict ourselves to the first piece. Choose ¢ such that

@) (o) =3

Now let p = (2/e)t. Then for m = pandm =k = m(} + ¢), | = m — k, one
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has (I + f)(k — t + 1) < (1 — e)(1 4 ¢)~*. Thus, for n > ¢

oy — (M—t4+1).-on (+1)...(I+1)(n—t n4t
k)(’)_(n+1)...(n+t) (k—t+1)---k<k—t><1—|-t>

o GG =5Gzo0en
k—t4+1/ \k—t/\141¢ 2\k—t/N\1l 41t/
Consequently, for n > ¢

Zim>p 0" Dksti=mismare OT 4y, x)T"(x, z)

€ m n—t\(n n—t)—(k— ntt)—
S 5 Zimop 0" Diwiam GEOGH)T " 07470(y, 0)T 0~ 040(x, 2)

A
IA

< (0" 2)) (see (3.6),

which proves (3.8). (3.6)—(3.8) together show that for givene > 0 there exist
Pr = pi(e) and ny = ny(p, ¢, x) such that p > p,and n > n,and all ye 4,, ze S

(3.10) 0"y, )Q™(x, 2) — 2:0%(y, 2)
= Ziwop 0" Dktimmm—yise DO T4y, )TN (x, 2) .
Lastly for [km™ — 4| < eand/ = m — kandm = p = (2/e)|r|]and n > |r| one has

wirym-ry — M+ o (nt+r) (—r4+1).---1 (n\/(n
E)GE) = (n—r+1)-..n (k+1)...(k+r)<k)<1>

(Y Q0= (5200
=\ k+r k/\1)=\13+3/ \k/\u
Thus for ye 4,, ze S
Q" (y, x)Q""(x, 2)
g Zm>p 5m Zk+l=m,]k/m—§]§e (Zi:) ’ZL::)T%-FT—(]C-{-T)())’ x)Tn—r—(l—r)(x’ Z)

1 — 3e\n n n _ 27
z@+%)Qqu&w 260y, z) ,

as soon as p = p(¢) + (2/e)[r|, n = |r| 4 ny(p, ¢, x). Since ¢ is arbitrary this
proves (3.5) and thereby Theorem 2.

REMARK 4. (1.8) is exactly the sufficient condition given by Kingman and
Orey [3] for the strong ratio limit property (SRLP), and the above proof has
some resemblance to the proof of the SRLP. As we already pointed out in the
introduction one can even prove that the SRLP for an irreducible, aperiodic,
recurrent stochastic matrix P holds under the weaker condition (1.10). We
doubt that (1.10) is enough to conclude Z(P) = . However, we do know
that the SRLP itself is not enough to guarantee &(P) = . For example, one
can construct strictly positive, null recurrent, stochastic, reversible P with a non-
empty Z(P), and one knows that any such P has the SRLP (by [4], Theorem 3).



MARKOV RANDOM FIELDS 569

Acknowledgment. The author wishes to thank Frank Spitzer for many helpful
conversations, and especially for giving an outline of the proof of Lemma 1.

(1]
2]
3]
[4]
(5]
[6]
[7
[8]
[9]
[10]

[11]

REFERENCES

FOLLMER, H. (1975). On the potential theory of stochastic fields. Lecture at ISI meeting,
Warsaw.
KEMENY, J. G., SNELL, J. L. and KnaPp, A. W. (1966). Denumerable Markov Chains. Van
Nostrand, New York.
KINGMAN, J. F. C. and ORrEY, S. (1964). Ratio limit theorems for Markov chains. Proc.
Amer. Math. Soc. 15 907-910.
OREY, S. (1961). Strong ratio limit property. Bull. Amer. Math. Soc. 67 571-574.
PRrEsTON, C. J. (1974). Gibbs States on Countable Sets. Cambridge Univ. Press.
RENYI, A. (1970). Probability Theory. North-Holland, Amsterdam.
SENETA, E. (1973). Nonnegative Matrices. Wiley, New York.
SpITZER, F. (1971). Random fields and interacting particle systems. Lecture notes of 1971
MAA summer seminar at Williams College, Math. Assoc. Amer.
SPITZER, F. (1975). Phase transition in one dimensional nearest neighbor systems. J. Func-
tional Anal. 20 240-254.
VERE-JONES, D. (1962). Geometric ergodicity in denumerable Markov chains. Quart. J.
Math. Oxford Ser. (2) 13 7-28.
VERE-JONES, D. (1967). Ergodic properties of nonnegative matrices I. Pacific J. Math. 22
361-386.
DEPARTMENT OF MATHEMATICS
WHITE HALL
CorRNELL UNIVERSITY
ITHACA, NEW YORK 14853



