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Let (Xx(¢): t€[0, 11, n = 1) be a sequence of Gaussian processes with
mean zero and continuous paths on [0, 1]a.s. Let Ru(t, 5) = EXu(#)Xa(s)
and suppose that (R.: n = 1) is uniformly convergent, on the unit square,
to a covariance function R. It is shown in this paper that under certain
conditions the normalized sequence (Y(¢): € [0, 1], n = 2) where Y, (¢) =
(21g n)~4X,(r) is, with probability one, a sequentially compact subset of
C[0, 1] and its set of limit points coincides a.s. with the unit ball in the
reproducing kernel Hilbert space generated by R. This is Strassen’s form
of the iterated logarithm in its intrinsic formulation and includes a special
case studied by Oodaira in a recent paper.

1. Introduction. If (X,: n = 1)isasequence of independent N(0, 4,7) random
variables such that lim,__ 0,2 = 1, then the normalized sequence (Y,: n = 2)
where Y, = (20,2 1g n)~1X,, is sequentially compact with probability one and its
set of limit points is almost surely (a.s.) equal to the interval [—1, +1]. The
extension of this fact to the case of a sequence of Gaussian vectors in R" does
not present special difficulties. A simple proof may be obtained by a suitable
modification of the argument used by Finkelstein (1971) (Lemma 2, page 609).
The study of this problem in a more general setting appears to be less immediate
and a tentative solution will be presented here.

Throughout this paper we shall refer to a stochastic process (X(?): €[0, 1])
as a centered process if EX(f) = 0 on [0, 1]. Suppose (X(): t € [0, 1]) is a centered
Gaussian process. Then the reproducing kernel Hilbert space (RKHS) generated
by the covariance function R(t, s) = EX(#)X(s) plays a fundamental role in the
characterization of its basic properties. It will be shown here that the unit ball
in the RKHS generated by a continuous covariance function R identifies, under
certain conditions, the set of limit points of a sequence of centered Gaussian
processes, all having continuous paths on [0, 1] a.s., that are asymptotically in-
dependent in some sense. To be more precise we may state the main result of
our study in the following form.

THEOREM 1.1. Let (X, (¢): t€[0, 1], n = 1) be a sequence of separable, centered
Gaussian processes defined on (Q, &, P) and satisfying

(I.1) (a) E[X\(1) — Xu()) = 9°(|t — sI)

where g is a positive nondecreasing function on [0, 1] such that {7 g(e™**) du < oo.
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If there exists a (covariance) function R on [0, 1] x [0, 1] such that

(1.2) lim,_,, EX,(1)X,(s) = R(t, s) uniformly on the unit square,

n—00

then (Y,: n = 2), where Y,(t) = (21g n)~1X,(?), is sequentially compact in C[0, 1]
a.s. and its set of limit points is included in the unit ball K of the reproducing kernel
Hilbert space generated by R. Letting &, = (X,(t): te[0,1], 1 £ j<n)yand T =
Uz &, suppose furthermore that

(b) & is a Gaussian family of stochastic processes and

(1.3) lim,_, max,,_,~, E[E(X,()| )] = 0 uniformly on [0, 1],

700

where &, denotes the o-algebra generated by &,.
Then the set of limit points of (Y, : n = 2) in C[0, 1] coincides with K a.s.

This theorem is modeled upon Theorem 1 of Lai (1974) and complements it
in the sense that in Lai’s paper ouly the case where:

(1.4) R.(t, $) = EX,(0)X,(s)

equals R(z, s) for all n has been considered. Equation (1.3) is an equivalent
formulation of Lai’s condition of asymptotic independence with the stronger
requirement of uniform convergence.

We shall sketch hereafter the idea followed for the proof of the theorem. It
is well known that a continuous covariance function I'(¢, s) on [0, 1] X [0, 1]
can be expressed as the sum of a uniformly convergent series 3 ¢,(f)$;(s) where
(p;:j = 1) is any complete orthonormal sequence (CONS) in the (separable)
RKHS H(T") generated by I'. Let H(R,) be the RKHS’s generated by the func-
tions R, defined by equation (1.4). One basic point of our discussion consists
in showing that under conditions (1.1) and (1.2) it is possible to find CONS’s
(e;™: i = 1) in H(R,) such that the residual variability 3%, [e, (#)]* of the proc-
esses (X,(7): te[0, 1]) can be made small, for sufficiently large N, uniformly
with respect to n and ¢. This will allow, by applying a classical result of Fernique
(1964), the reduction of the problem to the finite dimensional case. To this end
we shall establish first, in Section 2, a lemma on the uniform convergence of
the sets (¢,”: 1 < i< N) to (¢;: 1 <i < N) where (e;: i = 1) is a CONS in
H(R). In the same section a few definitions and some complementary facts will
be given. Section 3 will be devoted to the proof of the theorem. In[5]Lai has
shown that his Theorem 1 easily implies Theorem 4 of Oodaira (1972). In the
same spirit we shall derive, in Section 4, Strassen’s form of the law of the iterated
logarithm ([10]) obtained by Oodaira (1973) for certain sequences of noniden-
tically distributed Gaussian processes. Finally we observe that our results can
be extended with no essential modification to the case where [0, 1] is replaced
by an arbitrary interval of the real line.

2. Preliminaries. Let C[0, 1] = & denote the space of all continuous func-
tions [0, 1] — R. Ifxe &, let ||x||; = sup (|x(?)|: £ €[0, 1]). The space & with
the topology induced by the norm ||+||, is a separable Banach space and the
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collection &* of all linear and bounded functionals on & can be identified with
the space of all (regular) measures v on the Borel subsets of [0, 1]. If v* and v~
denote the Hahn decomposition of v then |v|| = v*[0, 1] 4+ v~[0, 1] defines a
norm on €*. We shall let |vy| = v* + v~. Now & can be endowed with the
o-algebra ZZ generated by the open subsets of <. Since it can be shown that
Z# coincides with the smallest g-algebra generated by the maps x — x(f), x e &,
any stochastic process (X(¢): t € [0, 1]) on (Q, &, P) with continuous paths on
[0, 1] a.s. can be interpreted as a (&, &%) measurable map X: Q — <& if we
let X(¢) = d,(X) where 9, is the evaluation function at 7. We may then say that
X is Gaussian if and only if y(X) is a real-valued Gaussian random variable for
each v e €*. Suppose X is centered. Then R(t, s) = EX(f)X(s) is a symmetric,
positive-definite form on [0, 1] X [0, 1] and it generates a Hilbert space H(R) of
real-valued functions on [0, 1]. (Neveu (1968), Chapter 3.) Such a Hilbert
space, that is obtained as the completion of sp(R(¢, +): £ €0, 1]), has an inner
product (., «>, with the following reproducing property:

(2.1 if he H(R) then <(h, R(t, <)), = h(t), te[0,1].

Equation (2.1) implies that if R is continuous, as is always the case for Gaussian
processes with continuous paths on [0, 1] a.s., then H(R) C <& set-theoretically
and convergence on H(R) implies convergence on . Our first lemma gives
a useful representation of certain elements of H(R), their norms and inner prod-
ucts, in terms of an element of &*. (Unless otherwise indicated, all integrals
will be henceforth evaluated on [0, 1].)

LemMA 2.1. Letv € €* and R be a continuous covariance function. Define h(t) =
§ R(t, s)v(ds). Then

2.2) (a) he H(R),
(2.3) (b) forany fe H(R), <k fr={flt)u(dr),
(2.4) (o) [[7lls" = By By = §§ R(t, s)u(dt)v(ds) .

Proor. (a) Form = 1,2, ... and [0, 1] let ,(f) = 2™, R(¢, 5,)v, denote
the Riemann-Stieltjes sums corresponding to a partition of [0, 1] at the points
Sy, +++,8,. Then h,(t) — h(f), pointwise, as m — co. Now #, belongs to
sp(R(t, +): te[0, 1]) for each m. Using the property
(2.5) R(t, 5) = (R(t, +), R(5, )z
we have
(2.6) Py Boyp = D01y D10y R(sy, 8;)v,v; — 1 = §§ R(2, s)v(df)v(ds)
as m and n tend to infinity. Consequently

N — Pallz’ = P> Pupr + Pps Byg — 2By, By — T+ 1T — 21 =0
for m — oo, n— oo. Let &' denote the limit of (&,, m = 1) in H(R) that exists

because of completeness. Since convergence in ||||;-norm implies pointwise
convergence, #'(f) = lim,,_, %,(f) = k(¢), t € [0, 1] and % € H(R).
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(b) Let fe H(R) be of the form f(t) = R(1, t,), for some #, € [0, 1]. Using (2.5)
again we obtain

<hs [Hr = § R( t)u(dr) = § fln)u(dr) .

Hence (2.3) holds, by taking linear combinations for all fin sp(R(¢, ) : t € [0, 1]).
By passing to the limit, if necessary, one can see that the same conclusion holds
for all fin H(R).

(c¢) This is a consequence of (2.6).

Let L,(Q, &, P) be the Hilbert space of (classes of) random variables on (2,
&, P) with finite second moments. If L(X) denotes the closed, in L,(Q, &, P),
linear manifold spanned by a centered Gaussian process X = (X(¢): t€[0, 1])
on (Q, &, P), then L(X) and H(R) are congruent. Let 6: L(X) — H(R) denote
such a congruence that can be defined as R(¢, ) = 6(X()) for each ¢ (natural
congruence). Suppose that X has continuous paths on [0, 1] a.s. Sato (1969)
has shown that L(X) is separable; furthermore for some CONS (§,:i = 1) in
L(X) one can write £, = v,(X) where v, ¢ €* have the following properties:

(2.7) v, = (/05 Le<e*, [l =13
2.8) 0, =[SV R( )pfd)m(@d)] > 05 §§R(, s)pediyes(ds) = 0, i
We now have

LEMMA 2.2. Let (X, (f): te[0,1],n = 1) be a sequence of centered Gaussian
processes on (Q, &, P) with continuous paths on [0, 1] a.s. and covariance functions
R,(t, 5). Suppose there exists a probability space (', &', P') and a centered Gaus-
sian process (X(f): t € [0, 1]) on it with continuous sample paths on [0, 1] a.s. and
covariance function R(t, s). Let N be a positive integer. If

(2.9) R(t, 5) = lim,_, R,(¢, s) uniformly on the unit square,

then there exist orthonormal sets

(2.10) (e 1Z<i<N)
in H(R,) such that
(2.11) e,(t) = lim,_, e, (?) i=1,...,N

uniformly on [0, 1], where (e,: i = 1) is a CONS in H(R).

ProOF. Let (§;: i = 1) be a CONS in L(X) where &, = v,(X) with v,e €*
and satisfying (2.7) and (2.8). Let 6 be the natural congruence from L(X) onto
H(R)and e, = 0(¢,). Then (e;: i > 1)isa CONS in H(R) and by the reproducing
property

et) = (e, R(t, +)yr = EE,X(1) = § R(z, s)v,(ds) .
Because of (2.9)

(2.12) E[v(X,)T = §§ Ru(t, s)vi(dt)v(ds) > O
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forall n = ny = ny(N) and eachi =1, ..., N. Now for each n > n/ > n,and
i =1, ..., Nwe may define v, e € * recursively as follows:

v =y fo, ™ ; v ™ = m"[g, " i=2,.--,N
where
o, = [E((X))TEs o™ = [Em™(X,))}E, i=2,---,N
and
m™ =y, — " v — e — o v,
o™ = R, (1, s)ui(dt)uj‘”’(ds) s j<i.

Obviously ||y, — || — 0 as n — co which in turn implies ¢{%) — 0 and ¢, — 1
as n — co. Hence we have ||y, — v,|| — 0 as n— oo as well as, by a simple
induction

(2.13) [lp™ — v = 0 as n-— co, i=1,..--,N.

Define £, = v,™(X,). Then ™ e L(X,) and E§,¢,™ = §,; where d,; equals
1 or 0 according as i = j or i # j. Consequently, if e,* = 6,(£,"), where 6,
is the natural congruence from L(X,) onto H(R,), then (¢,;”: 1 <i < N) is
an orthonormal set in H(R,) and e,™(f) = E§,™X,(t) = § R,(t, s)v, (ds) —
{ R(t, s)vy(ds) = e(t) as n — oo, uniformly on [0, 1] for each i = I, .-, N.

The following lemma will allow us to deduce an important consequence from
Lemma 2.2.

LemMma 2.3. Let (R,: n = 1) and R be covariance functions corresponding to
centered Gaussian processes as in Lemma 2.2. Then for any ¢ > 0 it is possible to
find a positive integer N = N(¢) such that if condition (2.9) is satisfied

(a) for some CONS’s (e,™: i = 1) in H(R,), lim,_.e™(t) = e(t),i=1,---,
N, uniformly on [0, 1] where (e,: i = 1) is a CONS in H(R);
(b) sup,z [[Ry™|le < &, where Ry™(t) = L %41 [ (O]

PrOOF. Let (e;: i = 1) be a CONS in H(R) defined by e,(f) = § R(Z, s)v(ds)
where the measures v, satisfy conditions (2.7) and (2.8). Let us set R'(f) = R(t, ?),
R, (1) = R,(t, t). Then for any ¢ > O there exists an integer N, = N(¢) such
that |R' — Y10, e2||, < ¢/10. Forn = n,/ = n,, where n, is determined by (2.12),
we write H(R,) = Hy ,® Hy , where Hy ., = sp(e,™, -, ef)) and the set
(e, : 1 £ i < N,)satisfies (2.10)and (2.11). Nowif (f,»: i = 1)isan orthonor-
mal basis for Hy , and we setefy),; = f;, i = 1, then (¢,*: i = 1) are CONS’s
in H(R,) and (a) holds. Furthermore we can write R,'(f) = 252, [e,(?)]’ uni-
formly on [0, 1]; hence,

1 X541 [e™Plle < (IR — R|lc + | 221 [eT — D ellle
+ [|[R — X ellle = F5¢

for all n = n, = n(N,, ¢). Since 35 ., [e,™]" is a series of positive functions one
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can choose an N > N,, if necessary, so that the conclusion claimed under (b)
will follow.

3. Proof of the theorem. Let E be a topological space and 4 ¢ E. The set
A is said to be sequentially compact if every sequence in A has at least a sub-
sequence converging to some point of E. The set of limit points of A in E will
be denoted by .#7;(A4) or simply by #/(4) if E is understood.

Proof of the relation £(Y,) C K a.s. Under assumption (a) of the theorem
all processes (X,(f): te[0, 1], n = 1) have continuous paths on [0, 1] a.s. by a
classical result of Fernique (1964). Moreover, (1.2) combined with (1.1) imply
the existence of a centered Gaussian process (X(¢): ¢ € [0, 1]) on some probability
space (', %', P') also having continuous paths on [0, 1] a.s. Let ¢ > 0 be
chosen and (e, : i = 1), (e;: i = 1) be CONS’s in H(R,) and H(R) respectively,
determined according to Lemma 2.3 where we take N so large that
(3.1) SUp,5; |[Ry ™|t < ¢/4 .

Since e, = 6,(§,), where £, = v, (X,) € L(X,) are independent N(0, 1) ran-
dom variables and @, is the natural congruence from L(X,) onto H(R,), we can
write

(3.2) X, (0) = 2, em(0)E,™  aus.
and the series is uniformly convergent on [0, 1] (Jain and Kallianpur (1970),
Kuelbs (1971). Let
X)) = ZheM0Em,  Uy™(0) = X,(1) — X5,(1) -
Then
E[Uy™(1) — Uy™(s) = ¢*(I — s])

so that if R, denotes the covariance function of (U,™(¢): t € [0, 1]) we obtain
by using again Fernique’s theorem

P(|Uy™lc = «(21g n)*)
(3:3) = P10y llc Z exal(|Rx™llc* + 4 §7 9(p~*") du))
< 4pig,, e du

for all positive integers p, whenever
_ &2 1g n)}
IRl 455 g(p) du
If we now choose p = p(¢) so large that

457 9(p*) du = 4(1g p)7 §Ge o 9(e7) du < /4
then by using (3.1) we have

Cya = 2218 m)t 2 (1 4 4p)*

= (1 + 4p).

cN,n

for all large n. By the usual estimate of the tail of the normal distribution we
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obtain from (3.3)

P(||Uy™||; = (2 1g n)t) < (const.)n™*
for all n = n, = ny(N, p, ¢). Hence by the Borel-Cantelli lemma
(3.4) P(|Y, — Yy™|o=¢, i.0)=0
where Y, ™(¢f) = (21gn)~2X,"(¢) and i.o. is relative to the index n. Let x,™ =
(21gn)~,™ and x™ = (x,, ..., xy™). It is easy to check that (x: n > 2)
is with probability one a sequentially compact subset of RY and £ nx(x™) C By
a.s. where B, is the unit ball in RY. Thus for each w ¢ Q,, where Q,e . and
PQ, = 1, any subsequence (x™: m = 2) of (x: n > 2) has a further subse-
quence (x™”: m’ = 2), depending on o, such that x,™" —_,x,i=1,..-,N
and Y7, x? < 1. Moreover, since e, —, e, in &, we also have:

3.5) Y™ -, >¥ e x,eKy in &,

where K, = (he H(R): hesp(e, ---, ey), ||#]|z < 1). It follows from (3.5) that
A(Yy™) C Ky C K a.s. and by taking into account (3.4) we may conclude that
Z(Y,) is a.s. contained in an e-neighborhood of K. This finishes the proof of
the first part of the theorem.

Proof of the relation K — £(Y,) a.s. Let us choose first ¢ in (0, 1). From now
on, for sake of simpler exposition we shall assume, with no loss of generality,
the following two conditions:

(a) o =sup(Ri(t, t): te[0, 1]) = 1;

(b) the index n is taken larger than the integer n* defined as follows: n* =
sup (n: |0, — 1| = ¢) where ¢, = sup (R,}(z, t): [0, 1]).

Let now f be in K. Then for some v e €* the element 4 in H(R) defined by
h(t) = § R(t, s)v(ds) satisfies the condition || f — 4[|, < ¢/2. This in turn implies

(3-9) I1f = Al <.

Given such an element # we construct a sequence (k,) with %, € H(R,) for each
n as follows

3.7) h,(t) = § R, (¢, s)v(ds) .

By the uniform convergence of (R,) to R on the unit square we observe that
(3.8) g — kllg =0 O

(3.9) ] = Tim, .. [[A]], -

In (3.9), that is a consequence of Lemma 2.1, we have set [|+||, = ||+|[z,. Let

us give R, the representation R, (¢, s) = X3, e, (¢)e,™(s), where (e, :i = 1)
are CONS’s in H(R,) defined at the beginning of this section. Then each func-
tion 4, defined by (3.7) can be written in the form #,(t) = >}, e, (¢)2,™, where

(3.10) B = e M()u(dr) .
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For each integer k set &, (1) = Y5, e,»()h;™. Then

e — Pialle = | D5ksr €0 lo = | D5 ksr €0 a - 00
S (Z&Ze [P + ¢)
Furthermore,
Lt [B] = DZan [§ e (0v(dn)]
= APl XZZes [§ [ (@OFv(d0)]]
= [Vl § Zitess [e (O (dr)]
= VIR 25k L6 Plle -

Hence there exists an integer N, independent of n, such that

(3.11) 1By — by alle < ¢
and
(3.12) P(|Yy — Yy™[lo =2 & 1.0.) =0

where as before Y™ = (21gn)~t 311, §,e, . Such an N will be kept fixed
from now on. We claim that the theorem is proved if we can show
(3.13) P(|]Yy™ — (1 — )y |lc < 2¢, i.0.)=1.
In fact
1Ye = flle = [1Y5™ — (1 = )yl

+ 1Y = Ya™lle + [I(1 = tyn — Ayallo

+ ey w — Rall + [1A0 — Allo + |12 — f1Ic] -
Of the terms in brackets, in the above expression, ||& — f]||, and ||Ay , — &,||¢
are already each less than ¢ by (3.6) and (3.11). By (3.8) ||#, — A||; < ¢ for all
n = n, and by (3.9)

(11— &)y — by ulle = el s ™Rl
S (X [P+ )
= e(1 + &) forall n=n,.
To prove (3.13) we shall follow Lai’s paper. Recall that the random variables
¢, in (3.2) can be written in the form £, = v, (X,) where v, ¢ €* and by
(2.13) |jy;»|| £ 4, i =1, - .-, N. Consequently:
E[(&/™ |F )] < ™I suPeerony ELE(Xn(t) | )T

so that max,,_,., E[E¢,™ |5 ,)'—>0asr— cofori =1, ..., N, if (1.3) holds.
Therefore there exists an integer r = r(¢, N) such that

E[EE$, "™ |F )] <V i=1..-N
where

(3.14) v =¢/3N(1 +¢).
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Let us take n’ = max (n,, n,, n*) and set for n > n’
Ui(rn) — E[Ei(rn) I (51(7.1')’ . EN(M')),]' — 1’ e, n — 1] .

Then E[U™] < i=1, ..., N. Defining V,™ = & — U™ for j =
1, ..+, N we observe that the sequence ({V,"™, ..., V,™}: n > n’) has inde-
pendent components. If we set
SN(rn)(t) = (2 lg rn)—# Z{V=1 Vi(r'n)ei(rn)(t)

and

G = (Y™ — (1 = )y, alle < ¢/2)

FN,'n = (“SN(TM - (1 - s)hN,rn“C < E) ’

Biw = (U le™|le < (21g rn)te/2N)
one can easily check that
(3.15) P(Fy.) 2 P(Gy,a) — LIl P(B;,) -

(If A is an event, A° denotes its complement.) We now claim that

(3.16) Y. P(Gy,) = o,
(3'17) ZnP(B:,n)< S for i = 1: "‘:N’
(3.18) P(|ISy™ — Y™l Z &, 1.0.)=0.

Recalling (3.10), (3.14) and using standard estimates (cf. Lai (1974), Oodaira
(1972) and (1973)), we obtain for all n = n"” > n’

P(Gy.) = TIL P(E™ — 21g k(1 — )b, ™| < (21g rn)3v/2)
= (const.)(2 1g rn)~t(rn)=<v.m

where

En,n — (1 - 5)2 2 [him”]2
< (1— o B2, [P
= (1 = ¢)||Al7a
§(1—8)2(1+8)2=(1—62)2<1.

(The last inequality follows from (3.9) and the fact that || f — A||, < ¢/2.) Thus
(3.16) holds. Now let D™ = (E[U,"™]*). Then P(B:,) = O for all n such that
D,/™ = 0. On the other hand

¢/2N|le, ™| D™ = 3 i=1,..-,N
if D, > 0. Hence if Z denotes a N(0, 1) random variable
P(Bi,) = P(1Z] = 3(21g rm)})
and (3.17) follows. Finally we observe that
P([Sy™ — Yy™|lo Z ¢) = LI P(B;,) -
Thus by using the Borel-Cantelli lemma, (3.18) follows from (3.17). Since
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(Fy,.: n = n') is a sequence of independent events, we obtain from (3.15), (3.16)
and (3.17) that P(Fy ,, i.0.) = 1. This, coupled with (3.18), obviously implies
(3.12), and the proof is complete.

4. An application to the law of the iterated logarithm. Let (X(r): ¢ = 0) be
a centered Gaussian process with continuous paths on [0, co) a.s. and P[X(0) =
0] = 1. Seto’(n) = EX*(n)and f,(t) = (2¢*(n) 1g1g n)~4X(ns), t [0, 1]. Oodaira
(1973) has shown that &“_( f,) = K a.s. where, as in the statement of the theorem,
K is the unit ball in the RKHS generated by a covariance function that is the
uniform limit of a sequence of covariance functions. The conditions imposed
by Oodaira to establish such a result are the following:

ConpiTiON (a). There exists a strictly positive covariance function I' on
[0, 1] x [0, 1] such that

(a-1) lim,_ R(rt, rs)/v(r) = T'(¢, 5) uniformly on [0, 1] x [0, 1], where v(r) —
o0, as r — oo, and R(t, 5) = EX(1)X(s);

(a-2) |R(rt, rt) — 2R(rt, rs) 4+ R(rs, rs)] < v(r)g(|t — s|) where g is a nonde-
creasing, positive function on [0, 1] such that (¢ g(e~*’) du < oo;

(@a-3) I'(¢, ¢) is strictly increasing and I'(1, 1) = 1.

It follows from (a-1) and (a-3) that R(n, n)/v(n) —»T'(1, 1) = 1, as n — oo;
consequently £ f,) = £/(Z,) where Z,(1) = (2v(n) Ig1g n)~tX(nt). Thus if we
let

(4.1) X, () = [v(n)]~1X(ne)

then (X,(r): t€[0, 1], n = 1) is a sequence of centered Gaussian processes on the
same (Q, &, P) such that, by letting R, (1, s) = EX,(1)X,(s) we have R, - T,
as n — oo, uniformly on the unit square. Set n, = [c*], ¢ > 1, k > 3; then
Iglgn, ~ gk and if Y, (1) = (21g k)~1X, (1), it follows from our theorem that

4.2) AY) = é?(fnk) c K a.s.
By defining two-dimensional time Gaussian processes
(Xa(ty, 1) 2 (1, 1) €[0, 1] x [0, 1], [t;, — 1,] < 0)

as X, (1, ty) = X,(f;) — X,(%;), it is an easy consequence of Lemma 2 of Lai (1974)
and a standard argument that the family (f,) is equicontinuous a.s. so that for
any ¢ > 0 there exists a ¢ sufficiently close to one to get

(4.3) P(SUPy cncnyyy 1fo — fullo Z & 1.0) = 0.
Equations (4.2) and (4.3) together imply #(f,) C K a.s., that is Theorem 2 of
[8]. To insure that K c 7 f,) a.s. the following additional conditions are given:

ConpITION (b). Forany 0 <8 < 1 let L*(X, rd) be the smallest closed (in
Ly(Q, &, P)) linear manifold spanned by (X(f): t€[0, r6]) and L'(X, rd) =
L(X,r)© L*(X, rd). Let XX(t) and X],(¢) be the projections of X(r), ¢ [0, r],
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on L*(X, ro) and L'(X, rd) respectively. Set
R%(t, 5) = EX}(HX}5(s) for ¢ s5¢]0,r]
R.,(t, 5) = EX],(1)X]s(5) for t,5€[0,r]

and supppose that for each d € [0, 1) there exist covariance functions I';*(t, s)
and I',/(¢, 5) on [0, 1] X [0, 1] such that

(b-1) [ R)RY(rt, 1s) — L*(1, 5)| = o((Ig 1)7), [v7HP)RL(rt, rs) — T (8, 5)| =
o((lg r)™*), uniformly on [0, 1] X [0, 1];

(b-2) H(I') = H{I',*) @ H(I',’) where I'(t, 5) = I',;*(z, s) + IT')/(¢, 5);

(b-3) T',*(¢, ©) — 0 uniformly on [0, 1] as d | 0;

(b-4) T')/(t,s), s, te]o, 1], is strictly positive definite and I',/(z, #) is strictly
monotone increasing on [4, 1].

To obtain Theorem 3 of Oodaira, asserting K C -<°(f,) a.s., we first observe
that we can write

(4.3) X3 (rt) = E[X(r1)| 5], refo,1],

where &, = Mo L(X, r0 + k). Next, an inspection of the proof presented
in Section 3 shows that the conclusion K c £7(Y,) a.s. can still be deduced if
(1.3) is replaced by the following, somewhat weaker condition.

For every ¢ > 0 there exists a positive, increasing function d, from the positive
integers into the positive integers, such that n — d(n) — o0, as n — oo and

4.4) lim sup,, ., {SUP;ego,) E[E(Xa() | F 4]} = €

One may now notice that & ., = sp(X(if): te[0,1],i =1, ---, [r0]) so that
by using (4.3) and conditions (b-1), (b-3) one obtains

(4.5) lim, ;, lim, . E[E(X,(1)] F )] = 0

uniformly on [0, 1]. Obviously (4.4) holds by choosing d in (4.5) sufficiently
small and then letting d(n) = [0n].
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