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NOTES

CORRECTION TO

“RADON-NIKODYM DERIVATIVES OF
GAUSSIAN MEASURES”

By L. A. SHEPP
Bell Laboratories

Introduction. J. R. Klauder kindly pointed out that the first statement of
Theorem 11 of my paper [2] is incorrect. It was claimed incorrectly that if
h = h(t), 0 <t < T is a (strictly) increasing absolutely continuous function
with #(0) = 0, then a necessary and sufficient condition that the Gauss-Markov
process

1
(1) X(t) = —— W(k(1), 0<t<T
(F (1))t
is equivalent to the Wiener process W, X ~ W, is that
@ 55 - (@ [ de < oo
The case
3) W) =14 11, 0<i<T=1

gives an example where (2) fails although X ~ W. We will prove that the
condition

@ 55 1) | () [ di < oo

is necessary and sufficient for X ~ . Note that (3) satisfies (4) but not (2).
Theorem 1 of [2] gives a general condition for a Gaussian process to be equiva-
lent to W but the condition is difficult to apply in this case. Instead we use the
elegant results of M. Hitsuda [1]. Note that [4] gives necessary and sufficient
conditions among a restricted class of # for X ~ W. Of course the exact scale
normalization 1/(#'(¢))* in (1) is necessary for X ~ W (e.g., note that cW ~ W
only for ¢ = 1).

The error in the argument in [2] that'X ~ W implies (2) occurs in the ninth .

line from the bottom of page 344 where it is incorrectly claimed that v’ ¢ L?
[0, T if &'(min (s, ¢))v'(max (s, £)) e L*[0, T] x [0, T].

The argument given for the converse assertion, that (2) implies X ~ W, tacit-
ly assumes that % is bounded and under this assumption is correct since then
(2) implies (4) which implies that X ~ W. However for unbounded #, i.e.,
h(T) = o0, ¢.g.,

(%) h(t) = tj(1 — 1), 0
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t T=1,
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if (1) is defined by continuity at ¢+ = 1 so that X is the pinned Wiener process
with X(1) = 0, then (2) holds but X ~ W is false since W(1) + 0 w.p.1. Thus
the assertion “1 ¢ sp(K) holds automatically” on page 344 of [2] tacitly assumes
bounded 4. Of course, Hitsuda’s method avoids the spectral condition altogether
and has other advantages [1, page 299].

Proof that (4) is necessary and sufficient that X ~ W. If (4) holds then
(6) Us,u) = —(W@)L/(H(s)? 5 s >u
=0 5 s=Zu
is a Volterra kernel in L [0, T] x [0, T'] the primes denoting differentiation
with respect to s or # as indicated in each term by the variable in parentheses.
By Theorem 2 of [1], Y ~ W where Y is defined in terms of a Wiener process
W by
Y(0) = W(1) — §5 §6 (s, u) dW(u) ds
(7) = W(1) — §6 §% Us, u) ds dW(u)
= W(1) — §i (R (u)((H ()™t — (H'(1))") dW(u)
_le
= 9§ (K (W) aW(W)
(K
where we have used the argument on the top of page 306 of [1] to interchange
the integrals in the second line of (7), and (6) in the third line. Since the last line
of (7) is a Gaussian process with the same covariance as X in (1), it follows that
X and Y are the same process (induce the same measure). Since ¥ ~ W and W

is a Wiener process we have proved that (4) implies X ~ W.
To prove that X ~ W implies (4) note that the process

(8) X(1) = — 7 {0 (W(u))* dW(u)

(’l( ()
is the same process as X in (1) as observed above. Since X is equivalent to a
Wiener process, by Theorem 1 of [1] there exists on the same space as X and
W in (8), another Wiener process W for which
%) X(1) = W(1) — §¢ (Y2 I(s, u) dW(u)) ds

where 1 is a (unique) L* Volterra kernel. Moreover W is a Wiener process with
respect to the same o-fields &, as W.

Since (#'(2))¥X(?) = (¢ (W' (u))t dW(n) is a martmgale with respect to &, we
have for any 7 < ¢

(10) E[X()(H (1)} |F ] = X(£)(H(z))* .
From (9) and (10) with s A ¢ = min (s, ), for ¢ < ¢
(1) (F@)W() — (#(1)* §5 (57 Us, u) dW(w)) ds
= (K(@)W() — (H(2)* §5 (3 1s, u) dW(u)) ds .
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Interchanging integrals as before since 1 e L* [0, T'] x [0, T'] we obtain

(12) WE)((H () — (K(7)})
= {5 (WD) \u s, u) ds — (K'(z))* §3 (s, u) ds) dW(u) .

Considering = and ¢ as fixed and noting that { ¢ dW = 0 for an L* function ¢
implies ¢ = 0 a.e., we obtain that for each 0 < u < 7 < ¢, a.e.
(13) (F()t — (H(2))t = (H(1)* i Xs, u) ds — (K(2))* §3 U(s, u) ds .
Setting © = u we obtain easily that % is twice differentiable and 1 =/ in (6).
Thus e L* [0, T] x [0, T'], and since {7 §7 I*(s, u) ds du is the left side of (4), we
have shown that (4) holds.

We remark that since X ~ W implies the scale changed processes X and W
where, for any Y,

1
(14) Y(t) = ——— Y(g9(1))
(9'())*

are also equivalent, we have X ~ W, for any increasing differentiable function
g with g(0) = 0. Taking g to be #~* and noting that X = W in this case we see
that X ~ W and only if X ~ W, i.e., the condition (4) must be invariant under
the change from 4 to A='. A direct proof of this fact is given in [3].

Other corrections in [2].

1. Israel Bar-David pointed out that (16.2), page 347, should include the

additional term: '
—3X*(0)[R(0, 0)]™*

on the right-hand side.

2. In footnote 3, page 332, the name referred to should be I. M. Golosov.

3. (18.19), page 352: change X; to x;.

4. First line of display below (18.19), page 352: change 7' to T*.

5. Change (18.21), page 352 to read

T2
(18.21) Alg, = ;{fkgk+1 .
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