The Annals of Probabzlzty
1977, Vol. 5, No. 2, 210-221

FIRST EXIT TIMES FROM MOVING BOUNDARIES
FOR SUMS OF INDEPENDENT
RANDOM VARIABLES!

By Tze LEUNG LAl

Columbia University and the University of Illinois
at Urbana-Champaign

Let Xi, X, - - - be independent random variables such that EX, = 0,
EX,2=1,n=1,2, ... and the uniform Lindeberg condition is satisfied.
Let S» = X1 + +++ + Xa. In this paper, we study the first exit time N, =
inf{n = m: Sa| = cb(n)} for general lower-class boundaries b(r). Our re-
sults extend the theorems of Breiman, Brown, Chow, Robbins and Teicher,
Gundy and Siegmund who studied the case b(n) = n}. We also obtain the
limiting moments of N, in the case b(n) = n* (0 < a < ) as analogues of
recent results in extended renewal theory.

1. Introduction. In[1], Breiman has proved the following theorem about first
exit times from square-root boundaries for sample sums: Let X;, X;, - - - be i.i.d.
with EX;, = 0, EX? = land E|X* < c0. Letc >0, m = 1, S, _X—|— X
and define T(c, m) = inf {n = m: |S,| = cnt}. Then as n — oo,

(1.1) P[T(c, m) > n] ~ hn—e®

where p(c) is an absolute constant depending only on ¢, and % is a constant
depending on ¢, m and the distribution of X; such that 2 > 0 if m is sufficiently
large. The key idea in Breiman’s proof of (1.1) is to first establish it for T,* =
inf{tr = 1: |W(r)] = ct!} by transforming the Wiener process W(r) into the
Ornstein-Uhlenbeck process U(r) so that square-root boundaries for W(r) be-
come constant boundaries for U(r). This approach, however, breaks down when
one considers more general lower-class boundaries, say ¢ or #}/log ¢, and Breiman
mentions the open problem in ([1], pages 15-16) on analogous results for the
first exit times from such boundaries.

When p(c) is an integer, say p(c) = k, ¢ turns out to be the smallest positive
root ¢, of the Hermite polynomial of order 2k. Since p(c) is strictly decreasing
in ¢, (1.1) implies that if m is sufficiently large, then

(1.2) ET*(c, m) < o if ¢e<e,,

= oo if c=¢,.

By making use of suitable martingales, Chow, Robbins and Teicher [3] and
later Gundy and Siegmund [7] have proved (1.2) in the case where k = 1 and
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X, X;, - - - are independent random variables such that EX, = 0, EX,> = 1 and
the Lindeberg condition is satisfied. Their method and result have been extended
by Brown [2] for general integers k.

In this paper, we shall study the open problem in Breiman’s paper and try to
find analogous results for general lower-class boundaries. Instead of restricting
ourselves to the i.i.d. case, we shall consider the problem in the setting of inde-
pendent random variables which satisfy a slightly stronger assumption than the
Lindeberg condition. Our main result is Theorem 1 which is stated in Section
2 and proved in Section 4. It covers a general class of boundaries, and applications
of the theorem to special boundaries of interest, such as logn, n* (0 < @ < %)
and nt(log n)~#(log log n)’ (8 > 0, d < 0) are given in the corollaries in Section 2..

The main idea in our analysis of first exit times from general moving bounda-
ries b(n) is to divide the family {X|, X,, . - -} into suitably chosen increasing blocks
(X - X (X - -» X@}s - -+, s0 that the block size v(k + 1) — v(k) is
of the same order of magnitude as b*(v(k)), which is in turn of the same order
of magnitude as b*(v(k + 1)). We can then obtain estimates for P[T > v(k)] by
using the invariance principle for the successive delayed sums within each block.
Since we want the convergence rate in the invariance principle to be uniform
over all the blocks, a uniform version of the invariance principle is developed
in Section 3.

We note that by (1.2), if 0 £ @ < { and N(c) = inf{n = 1: |S,| = cn°}, then
EN?(c) < oo forall p > 0 and ¢ > 0. It is interesting to consider the limiting

behavior of EN?(c) as ¢ — co. In the case where X, X,, ... are i.i.d. with
EX, = ¢ > 0 and E(X;7)? < oo, then
(1.3) EN?(c) ~ EN,*(c),

where N, (c) = inf {n = 1: S, = cn°} is the one-sided first passage time, and Gut
[8] has shown that

(1.4) EN,?(c) ~ (c]p?/o~ .
The result (1.4) is an extension of the classical renewal theorem which deals
with the case @ = 0. In view of (1.3), (1.4) implies that
(1.5) EN?(c) ~ (c/p)r’== .
In Section 5, we shall find an analogue of (1.5) when x = 0. Of course, in
this driftless case, (1.3) no longer holds and N(c) and N,(c) have very different
asymptotic properties. An analogue of (1.4) for driftless random walks has been
considered in [9] for the case @ = 0. :

2. First exit times from general lower-élass boundaries.

THEOREM 1. Suppose X, X;, --- are independent random variables such that
EXn=0, EX:: I,n=1,2,..., and
2.1) n=t Y EX g5 enty — 0 uniformly in k as n— oo

forevery ¢>0.
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Let S, = X, + -+ + X,, and let (b(n)), ., be an ultimately nondecreasing sequence
of positive numbers such that

(2.2a) lim sup, ., n~tb(n) < oo,

(2.2b) lim sup, _., b(an)/b(n) < co  for every integer a > 1.
For ¢ > 0, define

(2.3) N, =inf{n = m:|S,| = cb(n)} .

Letm = v(1) < »(2) < - - - be an increasing sequence of positive integers satisfying
the following conditions:

(2.4a) lim sup, ... ((k + 1) — w(k))/6*(u(k)) < oo,
(2.4b) lim inf, ., (u(k + 1) — v(k))/Bx(k)) > 0.

By defining v(t) to be linear on [i,i + 1],i = 1,2, ..., we can regard v as an in-
creasing continuous function on [1, 0o). Let W:[m, co) —[1, co) be the inverse
function of v. Then for every sufficiently large c, there exists a finite positive number
0, such that

(2.5) Eexp((¥(N)) < oo if 0<0,,

RemARrks. (i) Condition (2.1) is obviously satisfied when X, X;, - - - arei.i.d.
with EX;? < . If X,, X,, - - . are independent and sup,., EX,*¢(|X,|) < oo for
some nondecreasing function ¢ on [0, co) such that lim,_, ¢(x) = oo, then it is
easy to see that (2.1) also holds. We note that (2.1) is a slightly strengthened
form of the Lindeberg condition. It guarantees that the sequence of partial
sums S, not only obeys the central limit theorem but also the invariance prin-
ciple. In fact, it implies an even stronger result. If instead of S,, we look at
the sequence of delayed sums S, , = X, + -+ + Xy, (n = 1,2, --), then
for every fixed k, the sequence S, , obeys the invariance principle and the con-
vergence to Brownian motion is in some sense uniform in k. This result, which
will be proved in Section 3, is what we need in the proof of Theorem 1.

(i) Givenany sequence (b(n)),,. of positive numbers such that inf,,, b(n) > 0,
there always exists an increasing sequence (v(k)),, of positive integers satisfying
(2.4a) and (2.4b). For example, set v(1) = m and choose a positive number a
such that inf,,,, ab’(j) = 2. Fork=1,2, - ., define v(k 4 1) = v(k) + [ab*(v(k))]-

The proof of Theorem 1 will be given in Section 4. In the rest of this section,
we shall consider some applications of Theorem 1 to different types of boundaries
b(n). Inall the following corollaries, we assume that X;, X,, - - - are independent
with EX, = 0, EX,> = 1 (n = 1, 2, .. -) such that (2.1) is satisfied and define N,
as in Theorem 1.

COROLLARY 1. Let 0 < a < . Let b(n) = n*g(n), n = m, where g(t) is a posi-
tive and ultimately nondecreasing function on [m, co). If lim,_, g(r) = oo, assume
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further that the following conditions hold:
(2.6a) gt + t9)[g(t) =1 + O(t*7")  forevery 0< p<1;

(2.6b) lim sup, .. 9(t9(?))/9(t) < oo .
Then
2.7 lim, ., t*g(t)y =0  forevery p>0.

Furthermore, given any sufficiently large c, there exists a finite positive constant 6(c)
such that

(2.8) E exp(ON,'7**[g*(N,)) < oo if 0<0(),
= o0 if 0>0().

Proor. To prove (2.7), we shall assume that lim, , g(f) = co. Let 8>
lim sup, ., 9(t9(7))/9(¢). Given any d > 1/8, choose a« > m such that g(a) > 98,
9(t) is nondecreasing for t > a and 8 > g(tg(¢))/9(?) if t = «. Therefore

g(a) > B'g(ag(@)) > B 2g(ag*(@)) > - - > B rg(agh(a) > --- .

Hence for k > 1, g(ad*f*) < g(ag*(@)) < B*g(a). A simple change of variable
then implies that g(f) = O(s'~"°s /e 3h) as t — co. Since & can be arbitrarily
large, (2.7) holds.

We now prove (2.8). By (2.7), (2.2a) halds. Also (2.2b) holds in view of
(2.6b). Let us first assume that lim,__ g(f) = co. Set y = 1/(1 — 2a) and let
v(k) = [k7g*(k7)] for all large k. Then for all large k,

{(k + 1)r — k}g'r(k7) — 1

(2.9) < vk + 1) — v(k)

= 1+ {(k + 1) = kg ((k + 1)) + k{g"((k + 1)7) — g*7(k")} ;
(2.10) b (u(k)) ~ k*rgtar(kr)g*(v(k)) .
The ultimate monotonicity of g(¢) and (2.6b) imply that for each d > 0,
(2.11) lim sup, _.. g(19%(?))/9(f) < oo .
Furthermore it follows from (2.6a) that
(2.12) g7((k + 1)7) — g*1(k") = O(g"(k7)/k) .

Using (2.9), (2.10), (2.11), (2.12), it is easy to see that (2.4a) and (2.4b) hold.
Hence Theorem 1 is applicable.
We note that for all large k, if + = [k7g*"(k7)], then W(r) = k = ¢V7/g*(t + 1).
By (2.11), we also have ¥(r) = O(t”f/gz(t))‘. Therefore (2.8) follows from (2.5).
In the case where lim, ., g(r) < oo, we define v(k) = [k7] for all large k. Then
a similar argument as before establishes (2.8). ’

SOME SPECIAL CASEs. (i) Suppose (b(n)),s, is an ultimately nondecreasing
sequence of positive numbers such that lim,_, 6(n) = 4 < co. Then a = 0 in



214 TZE LEUNG LAI

Corollary 1 and so given ¢ sufficiently large, there exists a positive constant
0(c, A)such that E exp(6N,) < oo if 6 < (¢, A), but = oo if > 0(c, A). Hence
N, has a finite moment generating function m(f) in some neighborhood of the

origin. This is the well-known theorem of Stein [12] when X, X,, ... are i.i.d.
Our result says further that m(f) cannot be finite for all ¢ if c is sufficiently
large.

(ii) Suppose b(n) = logn for n = m. Then the conditions in Corollary 1 are
satisfied and so given ¢ sufficiently large, there exists a positive constant 6(c)
such that

(2.13) E exp(6N,/(log N,)*) < oo if 6 <6(c),
= o0 if 0> 6().

(iii) Suppose b(n) = n*(log n)? forn = m, where 0 < a < $and 8 = 0. Then
by Corollary 1, for every sufficiently large c, there exists 6(c) > 0 such that
(2.14) E exp(ON,'7**/(log N,)*) < oo if 6 <6(),

= o© if 6> 6(c).
COROLLARY 2. Let 0 < a < %. For n = m, let b(n) = n*[g(n), where g(t) is a

positive and ultimately nondecreasing function on [m, co) such that b(n) is ultimately
nondecreasing. If lim,_ g(f) = oo, assume further that (2.6a) holds and

(2.15) lim inf, ... g(t/9(1)/g(5) > 0.

Then (2.7) holds, and for every sufficiently large c, there exists a finite positive con-
stant 0(c) such that
(2.16) E exp(ON,7**g*(N,)) < oo if 0<40(c),
= o0 if 6> 0(c).

Proor. The ultimate monotonicity of g(f) and (2.15) imply that for every
d > 0, liminf,__, g(¢/9*(¢))/9(t) > 0. From this, it is easy to see that (2.7) holds.
To prove (2.16), set y = 1/(1 — 2a). If lim,_, g(f) < oo, then let v(k) = [k7]
and proceed as in the proof of Corollary 1. Now assume that lim,_, g(f) = co.
Define v(k) = [k7/g*(k")]. In view of (2.7), lim,_ v(k) = oo = lim,_,, b(n).
Proceeding as in the proof of Corollary 1, it can be shown that (2.4a) and (2.4b)
hold. Therefore lim, ., (v(k + 1) — v(k)) = oo and y(k) is strictly inceasing for
all large k, say k>=k,, We can also have m = (1) <y2)< -+ <
v(ky, — 1) < v(k,) by redefining these terms if necessary. Hence (2.16) follows
from Theorem 1.

COROLLARY 3. Let a > 0. Let b(n) = ni(log n)~*g(n) for n = m, where g(t) is
a positive and ultimately nondecreasing function on [m, c0). If lim,_ g(f) = oo,
assume further that the following conditions hold: .

(2.17a)  g((1 + orr)e)/g(e’)y = 1 + O(t™*=*)  forall 6 >0 and p>0;
(2.17b) lim sup, ., g(e**?)/g(e*) < oo .
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Then
(2.18) lim,_ (log ¢#)=°g(t) =0  forevery p>0.
Furthermore, given any sufficiently large ¢, there exists a finite positive constant (c)
such that
(2.19) E exp(f(log Nc)‘“"'/g“(Nc)) < o if 6<6(),
= o if 0>0(c).

REMARK. Write log, t = log ¢, log,t = loglog ¢, and in general set log, t =
log (log,_, t). Let g(f) = log,t. If k = 1, then g(¢) satisfies conditions (2.6a),
(2.6b) and (2.15). If k = 2, then conditions (2.17a) and (2.17b) also hold.
Therefore if b(n) = ni(logn)~*(log, n)?, where « > 0, =0 and k = 2, then
(2.19) reduces to
(2.20) E exp(d(log N,)"**/(log, N)») < oo if 6 < 6(c),

= oo if 6>0(c).

Proor oF CorOLLARY 3. To prove (2.18), we may assume that lim,_,_, g(f)=oco
and proceed as the proof of (2.7). Therefore b(n) satisfies (2.2a) and (2.2b).
We now prove (2.20). First assume that lim,_,, g(f) = oco. Set y = 1/(1 + 2a)
and let v(k) = [exp(k7g*"(exp(k7)))] for all large k. The ultimate monotonicity
of g(¢) and (2.17b) imply that for each d > 0,

(2.21) lim sup, ., g(exp(1g%(2)))/g9(e’) < oo .

Making use of (2.17a) and (2.21), it can be shown as in the proof of Corollary
1 that (2.4a) and (2.4b) hold, and the desired conclusion (2.20) follows from
Theorem 1. In the case where lim,_,, g(f) < oo, we simply define v(k) = [exp(k")]
instead and proceed as before.

COROLLARY 4. Let a = 0. Let b(n) = ni(log n)=*/g(n) for n = m, where g(t) is
a positive and ultimately nondecreasing function on [m, co) such that b(n) is ultimately
nondecreasing. If lim,_,, g(t) = oo, assume further that (2.17a) and (2.18) hold and

(2.22) lim inf, ., g(e"?*®)/g(e') >0  forevery d>0.
Then for c sufficiently large, there exists a finite positive constant 6(c) such that
(2.23) E exp(f(log N,)'***g*(N,)) < oo if 6<¥6(),
= oo if 6>40(c).
We note that if « = 0, then (2.23) can be written as
(2.24) EN%*¥o) < oo if 6 <o),
= o0 if 6>0(c).

In the particular case where lim,_, ¢*(f) = 4 < oo, (2.24) says that N, has finite
moments of order lower than 46(c), but infinite moments of order higher than
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Af(c). This corresponds to the results of Breiman and Brown referred to in
Section 1.

An example of a function g(f) such that lim,_,, g(f) = co and (2.22) holds is
log, t with k > 2. The proof of Corollary 4 is similar to that of Corollaries 2
and 3, and the details are omitted here.

3. A uniform version of the invariance principle for sums of independent
random variables.

THEOREM 2. Suppose X,, X,, - .. are independent random variables such that
EX,=0,EX*=1,n=1,2, ..., and (2.1) holds. Fork =0, 1, ..., define

(3.1) Cin(0) =0, Chalifn) = n7H( Xy + -+ + Xpp) and
Cia(t) islinearon [(i — 1)/n,i/n], i=1,..-,n.

Then for each k, there exists a standard Wiener process W(t), 0 < t < 1, such that
for every 6 > 0, we have (by redefining the random variables on a new probability
space if necessary) as n — oo,

3.2) P[max,.,, |W(t) — &, .(t)] = 6] —0 uniformly in k as n— oo .
Proor. Given any » > 0, we can choose p > 0 such that
(3.3) P[max;,_sp,0s0,e21 |[W(1) — W(s)| 2 9/4] < 7.
Take ¢ > 0 such that
3.4 n > 128072,
With this choice of ¢, we now truncate the X,’s. Define
Xi™ = Xilixysaty, -~ X = X; — X;™,
Y™ = n7¥}X;™ — EX;™) .

Leté, () =Y®, + -« + Yy, fori =1, ..., n. By the Skorohod embedding
theorem, we have (on some probability space) the representation

(3.5) E4(i) = W(T, (D) i=1,...,n,

where T, (i) = }i,7,,.(j) and 7, (1), ---, 7;,,(n) are independent random
variables such that fori =1, ..., n,

Erya(i) = B(Y)' s E(7ea(D)' = 32E(YiR)*
(cf. [11], pages 166-169). Noting that |Y;™| < 2¢, we obtain that
(3.6) E(Y; ™) < 48E(Y;™) < 4n~'E(X; ™) < 4ePnt .
In view of (3.6), it follows from the Kolmogorov inequality that
(37)  Plmaxi,|T.() — ET,, () 2 p]
S 07 D E(mea() = 3207 i B(YiT) < 12887 < 7.
The last inequality in (3.7) follows from (3.4).
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By (2.1), we can choose n, such that
(3.8) v(k, n) < min (p/2, ¢6/8,¢*) forall n=n, andall k,
where w(k,n) = n7' T EX My s ety -

Making use of (3.8), we obtain the following inequalities:

(3.9a) P[X; #+ X, forsome i=k+1,.--,k +n] < e?v(k,n) < 7;

(3.9b) Xz, 174 Doy EX| < ev(k, n) < 085

(3.9¢)  maxic, [ET, (1) — (ijm)| £ 3= |E(YED) — 1n]
< n7t D (B — 1] + (BXL2))
< 2v(k,n)<p.

From the inequalities (3.3), (3.5), (3.7) and (3.9), the desired conclusion (3.2)
follows. ‘

The key step in the above proof lies in the truncation, and the rest of the
argument has been straightforward. In fact if the X;’s are uniformly bounded,
then the desired conclusion (3.2) follows immediately from a corresponding
theorem of Freedman for martingales (cf. [6], pages 90-93).

As an immediate corollary of Theorem 2, we obtain the following theorem
which will be used in the sequel.

THEOREM 3. Suppose X, X,, --- are independent random variables such that
EX,=0,EX}?=1,n=1,2,---,and (2.1) holds. LetS,, = X1+ -+ X4y -

(i) Let ®©(x) denote the distribution function of the standard normal distribution.
Then as h — oo,

(3.10)  P[S,, < nix] > ®@(x)  uniformlyin k =0,1,... and
—oo < x < 0.
(ii) Let W(t) be the standard Wiener process. Then as n — oo,

PEmaXlstn |Sk,j[ < nU, nta < Sk,'n < n&ﬂ]

(3.11) — P[max,g,, |[W(1)] < 2, a < [W(1)] < 8]
uniformlyin 2>0, — A a< =<1 and
k=0,1,....

4. Proof of Theorem 1. We shall show that
(4.1) P[W(N,) > k] = O(p*)  forsome 0 < p=p(c)<1;

(4.2) liminf, ., ¢~ *P[¥(N,) > k] > 0

forsome 0<g=gqc)<1l if c=¢,.
From (4.1), W(N,) has a finite moment generating function in some neighborhood
of the origin, while (4.2) implies that if ¢ > ¢,, then E exp(6¥(N,)) = co for

0 = |log g|. Therefore defining 6, = sup {6 : Eexp(0¥(N,)) < oo}, we obtain
(2.5).
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Assume first that lim, ., b(n) = oco. Then by (2.4b),

(4.3) lim,_, (v(k 4+ 1) — v(k)) = oo .

To prove (4.1), we first show that

(4.4) lim sup, ., &*(v(k + 1))/(v(k + 1) — v(k)) < oo .
In view of (2.41), it suffices to show that

(4.5) lim sup, ., b(v(k + 1))/b(v(k)) < oo .

By (2.4a), v(k+1)—v(k) = O(b*(v(k))). Therefore by (2.2a), v(k +1) = O(v(k)).
Hence (4.5) follows from (2.2b).

Let S, = X,,, + -+ + X,.,. Suppose b(n) is nondecreasing for n = v(k,).
By Theorem 3 (i), (4.3) and (4.4), given ¢ > 0, there exist a positive number p
with p < 1 and an integer k; > k, such that for all i > k,,

P[IS,cs),0ci40-vn| < 2b(p(i + 1)] = p -
Therefore for k > k,,
PIU(N,) > k] = P[N, > u(k)] < TIEE, PUISucoccsnscol < 26000 + 1)]
=pth.

We now prove (4.2). By (2.4a), there exist « > 0 and k, > k, such that

b (v(k)) > a*(v(k + 1) — vw(k)) if k = k,. Forc>0andk =1, let
Are = [No > v(k), S, < Feb(u(k))]
B, = [MaXigic,min—im|Suim,il < dea(u(k + 1) — v(k))?
and 0 > S, yoesn—a > —3ca(u(k + 1) — v(k)H];
Dy, = [MaXgigymin—vim|Sum,il < Fea(u(k + 1) — v(k))?
and 0 < 8, uusn-y < Fea(u(k 4 1) — v(k))}].
We note that for k = k,, the event
[MaX;g;g,mrn—ml* + Sya,5] < cb(v(k)) and
X + Sy uiern -] < Feb((k + 1))]
contains B, , if 0 < x < 4cb(v(k)), and contains D, , if 0 = x > —3cb(v(k)).
Therefore for k > k,,
(4.6) P(Apss,e] Ar,e) Z min {P(B, ), P(D, )} -

By Theorem 3 (ii) and (4.3), we obtain that as k — oo,
4.7 P(B, ) — P[max,.,, |W(t)] < 3ca and 0 > W(1) > —}ca],
(4.8) P(D, ,) — P[max,g,, |W(t)| < 4ca and 0 < W(1) < }ca],
and the convergence in (4.7) and (4.8) is uniform in ¢ > 0.

In view of (4.6), (4.7) and (4.8), we can choose i, = k, such that

(4.9) P(A;40]A;0) = q(c) >0 forall i =i, and ¢>0.
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Choose c, large enough so that

(4.10) P[|S,| < ¢yb(n) forall m < n < (i) and [S,,,)| < 4¢5(x(i))]
=1>0.
From (4.9) and (4.10), it follows that if ¢ > ¢, and k > i,

P[¥(N,) > k] = P[N, > v(k)] Z P(Ay0) Z P(Ay.| Auor )P(Apr) Z -+
= P(Ay,0) TTEE, P(Aigr,e | Ai0) = A(g(c))* .
Hence (4.2) holds.

We now assume that lim,_, b(n) < co. Then by (2.4a), lim sup,_,, (v(k+1) —
v(k)) < B < oco. It then follows that ¢/8 < W(r) < ¢ for all large 7. Let 0 <
B < b(n) < B,foralln = m. By Theorem 3 (i), given ¢ > 0, there exist a posi-
tive number p with p < 1 and a positive integer j such that P[|S, ;| < 2¢8,] < p
forallk = 0,1, .... Therefore for k = 1,2, ...

P[N, > kj] < Tliz PS03l < 2¢B] < p*.
Hence (4.1) holds.
To prove (4.2), define A4, , = [N, > k[c*], |Sy2| < 3¢B;]. Then using Theo-
rem 3 (ii) and a similar argument as that leading to (4.9), we can choose ¢, > 0
and 0 < ¢ < 1 such that for all ¢ > ¢,

(4.11) PA4,)=q and P4 =q, k=1,2,....

From (4.11), it follows as before that P[N, > k[¢*]] = ¢* for k = 1,2, ....
Hence (4.2) holds.

REMARK. An examination of the above proof shows that to obtain the upper
bound (4.1), we need the condition (4.4). This condition explains why Theorem
1 covers only boundaries 5(n) which do not grow faster than the square-root
boundary, i.e., so that (2.2a) holds. If lim,_,, b*n)/n = oo, it is obvious that
condition (4.4) cannot be satisfied for any choice of the subsequence (v(i)). In
such cases, however, by combining the ideas in the derivation of (4.1) with those
commonly used in the proof of the law of the iterated logarithm, we can obtain
another type of upper bound. As an example, let b(n) = {2(1 — ¢)n log log n}?
O0O<e< ). LetN=inf{n = 3:|S,| = b(n)}, where S, = X, + ... + X, and
X, X;, - - - are independent with EX, =0, EX?*=1,n=1,2, .... For sim-
plicity, assume

(4.12) SUp,.; E|X, " < oo | forsome 0<d<1.
Given 0 < ¢, < ¢, choose an integer & >3 such that

(1 — (et + 1) < (1 — &)b(a — 1)t ,
Letting »(i) = a’, we can therefore choose j, such that for all j > j,

b(u(j + 1)) + b(())) < {2(1 — &)ai(a — 1)log j}t .
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Then for k > j,,
P[N > v(k)]
(4.13) = TI525 PUS Gyl < B0 + 1)) + b(v(j))]
= 11520 PllXaisn + -+ + Xegna] < {21 — e)ai(a — 1) log j}]
= TI555, {1 = 20(—{2(1 — &) log j}t) + O(a~i2)} .
For the last relation above, we use (4.12) and a theorem of Esseen ([5], page
43). It then follows from (4.13) that
P[N > a*] < exp{—k(n(1 — &) log k)=t(e,™* + o(1))} .
Since ¢, can be any number <. ¢, we have proved that
(4.14) Eexp(f(log N)") < oo forall ¢ if p<e.
5. Asymptotic moments of first exit times related to extended renewal theory
without drift. In this section, we shall find an analogue of (1.5) in the case

¢ = 0. We shall drop the assumption that the X,’s are identically distributed
and use the setting of Theorem 1.

THEOREM 4. Suppose X, X,, - -- are independent random variables such that
EX,=0,EX>=1,n=1,2,..., and (2.1) holds. Let S, =X, + --- + X,,
0 < a< i, andlet W(t), t = 0, be the standard Wiener process. Define

N(c) =inf{n = 1:|S,| = cn*}, c=inf{r > 0: |W(1)| = ¢4} .
Let a, = Et? for p > 0. Then as ¢ — oo, ¢c=¥3~*N(c) converges to t in distribu-
tion, and
(5.1) EN?(¢) ~ a,c®/%=*  forall p>0.

LEMMA. Suppose X, X,, - - are independent with EX, = 0 and EX, = 1 for

all n. Then for0 < a < %,
(5.2) lim, ,sup,,., P[|S,| = mi(n/m)* for some 1 < n < om]
= 0 = lim, , P[|W(t)| = t* for some 0 < t < 4] .
Proor. By the Hajek-Rényi-Chow inequality (cf. [4], page 25),
P[m*~tn=|S,| = 1 for some 1 < n < om]
(5’3) é m?*~1 Zlg‘nSJm n—2aEX,n2
= (1 —2a)%* -0 as 0/0.

We remark that when X, X,, - .. are i.i.d. with EX, =0and EX*® =1, (5.2)
is a special case of a theorem of Robbins and Siegmund for more general bound-
aries of the form mig(n/m) (cf. Theorem 2(ii) of [10]). In the above lemma

where we deal with g(r) = 1* (0 < a < }), the X;’s need not be identically dis-
tributed and we do not even assume the Lindeberg condition.

ProoF oF THEOREM 4. Let y = 1/(1 — 2a). We note that for all x > 0,
(5.4 P[N(c) > c¥x] = P[|S”| < c(nfen)= forall 1 <n < c¥x].
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It follows easily from Theorem 2 that for every 0 < 9 < x,
(5.5) P[|Sp2ryg| < cr([c?t]/c?)* forall ¢ <t < x]
— P[|W(5)| < t* forall 6 <t < x] as c—oco.
Using the preceding lemma, we obtain from (5.4) and (5.5) that as ¢ — oo,
P[N(c) > cx] - P[|W(1)| < t* forall 0 < ¢t < x] = P[z > x].

To prove (5.1), we need only show that (¢c~*’N(c))* is uniformly integrable.
We shall show that in fact there exist positive constants 2 < 1 and ¢, such that

(5.6) P[N(c) > ¢¥kr'] < **  forall c¢>¢c, and k=1,2,....

Let y(k) = [¢*’k"]. Then by Theorem 3 (i), there exist positive constants 2 < 1
and ¢, such that forall¢ > ¢c,and k = 1,2, ...

P[IS, ey vtkrny-vim] = 2¢(u(k + 1)) ] < 4.
Therefore if c = ¢,and k = 1,2, ..., then

P[N(c) > k7] < TI¥=1 P[1Su) visn—var] = 2¢(v(i 4 1))7]
é Zk—l .
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