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THE FINITE-MEMORY SECRETARY PROBLEM'

By H. RUBIN AND S. M. SAMUELS

Purdue University

The expected rank of the individual selected in the secretary problem
can be kept bounded as the number of individuals becomes infinite even if
we are not permitted to remember more than one individual at a time. The
least upper bound of these expected ranks is derived: it is approximately
7.4.

1. Introduction. The central question, when dealing with any of the so-called
secretary problems, is: “Does the minimal risk remain bounded—or the success
probability remain bounded away from zero—as the number of arriving indi-
viduals becomes infinite?”” And the answer is yes, surprisingly often (the most
notable exception, discovered by Gianini [4], occurs when the total number of
arriving individuals is unknown, uniformly distributed on 1 to n, as n becomes
infinite), especially considering the severity of the constraints:

(1) noinformation from the data may be used other than the sequence of rela-
tive ranks of successive arrivals;

(2) an individual may be selected only at the time it arrives; later recall is
forbidden.

(Recent papers of Yang [9] and Smith and Deely [8] allow recall but with the
penalty that the individual may no longer be available for selection. The latter
paper, despite the similarity of its title to ours, uses the term “finite memory”
in an entirely different sense.)

Perhaps the most surprising “yes” so far is the one we shall give in this paper,
because not only do we exhibit sequences of stopping rules whose bounded risk
is more transparently clear than previously thought possible; but these rules
obey yet another very severe constraint:

(3) only one individual at a time can be “remembered.”

To properly introduce our rules we must begin by recalling briefly the two
“standard” secretary problems: the best choice problem and the rank problem.

1.1. The best choice problem. The object is to maximize the probability of
selecting the best (rank 1) of n rankable individuals arriving in random order.
(See any of many references, e.g., [2], [3, page 87] or [6].) This goal is not
nearly as difficult to achieve as it may seem initially. For example, the rule
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“Let half the arrivals go by, then select the first one better than all previous
ones (if any),” has success probability greater than % for all n. The optimal
rules are of this form except that we let s, individuals go by, where s,/n is about
three-eighths. These rules obey the third constraint since at any given time we
only need to remember the best of those individuals who have arrived so far.

1.2. The rank problem. Now the object is to minimize the expected rank of
the individual chosen. (For this to make sense, we must demand that some
individual be chosen: the last one to arrive if no earlier one was selected.) Chow
et al. [1] derived the limiting minimal risk which is approximately 3.87, and
the limiting form of the optimal rules. The optimal rules are of the form: “if
we haven’t stopped by ‘time’ s,(k), select the first arrival in [s,(k), s,(k + 1))
which is one of the k best so far (if any),” where s,(k)/n, for each k, tends to a
limit which is strictly between 0 and 1.

Indeed there is no way to keep the risk bounded with rules which never accept
an individual of relative rank higher than some preassigned value. Hence it has
been supposed that it can never be as easy as in the best choice problem to see
that the minimal risk remains bounded, and that bounded risk must surely be
incompatible with the third constraint. .

What we shall show in Section 3.3 is that both of these suppositions are false.
That demonstration will be given explicitly for an “infinite secretary problem,”
as introduced by Rubin [7] and by Gianini and Samuels [5]. But implicitly, as
explained in Section 3.2, it holds for the ordinary finite problem, which is the
subject of Section 2.

While simplifying an old problem, we are led to a much more complicated
new one: What are the best “finite memory” rules? Some of the difficulties
are described in Sections 4—6.

2. Memory-length-one rules for the finite problem.

2.1. The finite problem. n individuals ranked one (= best), two (= second
best), and so on, up to n (= worst), arrive in random order. As each one ar-
rives, we have three choices: accept it (and stop), ignore it, or remember it.
Only one arrival at a time can be remembered; so, if we choose to remember
the current arrival, we must discard the previously remembered one. The one
and only thing we can observe about the current arrival is whether it is better
(lower rank) or worse (higher rank) than the currently remembered individual.
Hence the only available strategies are all possible “action” strings:

{WiB;:i=2,3,...,n— 1}
where each W and B is either accept, ignore, or remember, and “W,/B,” means
if we haven’t selected one of the first i — 1 arrivals, do W, if the ith arrival is
worse than the remembered one, and do B, if it is better.

(We have omitted i = 1 and n because every strategy must accept the nth
arrival, if it has not previously stopped. And, for every criterion we consider
in this paper, it is better to remember the first arrival, rather than to accept it.)
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2.2. The best choice problem. If the object is to maximize the probability of
selecting the best individual, we have already seen that this memory constraint
does not prevent us from using the optimal rule for the classical problem, namely

W,|B, = ignore/remember for i<s,
= ignore/accept for i=s,.

2.3. The best 3-action rule for the rank problem. In addition to the two actions
ignore/remember and ignore/accept, let us also allow just one more, namely
remember/remember. The logic behind the latter action is that if we have been
remembering an individual for a long time without encountering a better arrival,
the remembered individual may be foo good. Better to discard it and, in effect,
start over again, rather than risk being forced to accept the last arrival.

The sense in which we “start over again” when we use remember/remember
is this: If W,/B, = remember/remember then the conditional expected rank of
the individual selected, given that we stop after time k, is just (n + 1)/(n — k + 1)
times the expected rank when the strategy

W/ B! = W.i[Byy, I<i<n—k

is used in the n — k individual problem. This follows easily from the elementary
fact that the expected rank of the jth best among the last n — k arrivals is

jn + Djn — k + 1).
We now give an algorithm for finding the best 3-action rule and its risk for
n=2. Let
d,(k) = minimal expected rank among all 3-action rules with
W,/B, = ignore/remember for i< k.
d,(1) = minimal expected rank among all 3-action rules.

Then
d(n—1)=(n+ 1)2

4,0 = min {d,(c + 1), - 2P0 Kok,

k+1 k+2 k+

n_ﬁ%dn_k(l)} for 1<k<n—1.
The three terms in the bracket represent the minimal risks for W, /B, ,, =
ignore/remember, ignore/accept and remember/remember, respectively. The
middle term follows from the fact that we are remembering the best of the first
k arrivals, so the (k + 1)st arrival has probability 1/(k + 1) of being better,
and, if better, has expected rank (n + 1)/(k + 2).

The second term becomes smaller than the first at

a, = min {k: (k + 2)d,(k + 1) > n + 1}.

The third term becomes minimal at, say, r,, which must be bigger than a,, since
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otherwise a best rule would be to, in effect, totally ignore the first r, — 1 arrivals,
which is impossible. (In fact for n < 10, the third term is never minimal.)
A best 3-action rule is then

W,|B; = ignore/remember for i<a,
= ignore/accept for a, i<,
= remember/remember for i=r,
=W, B, for i>r,,

where
{(WiIB/:1=j=n—r,}
is best for the n — r, + 1 individual problem.
Table 1 gives some values of a,, r, and d,(1), the minimal risk.

TABLE 1
Best rules and risks using only the three actions: Ignore/ Remember,
Ignore| Accept and Remember|Remember

n= dn(1) = ap = Fn =
Total number Minimal Earliest Earliest

of individuals risk ignore/accept remember/remember

3 1.667 2 —

4 1.875 2 —

5 2.100 2 -

6 2.333 3 -

7 2.476 3 —

8 2.625° 3 —

9 2.778 3 —

10 2.933 3 —

11 3.071 3 8

20 3.869 5 14

21 3.933 5 14

25 4.185 6 18

47 5.033 9 28

50 5.114 9 30

100 5.885 17 54

250 6.599 38 126

500 6.932 72 241

1000 7.138 140 468

From this table it can be seen that the best rule for n = 50 uses remember/re-
member with the 30th and 43rd arrivals and ignore/accept with the 9th through
29th, 34th through 42nd, and 45th thro'ugh 49th arrivals. The reader can also
work out the best 3-action rule for n = 100.

It does appear from this table that the risks are remaining bounded as n be-
comes infinite, but the evidence will not become conclusive until we look at
the infinite problem in the next section.

3. Memory-length-one rules for the infinite rank problem.
3.1. The infinite problem. As in Gianini and Samuels [5], the arrival times of
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the best, the second best, etc., individuals are an infinite sequence of independent
random variables, each uniformly distributed on (0, 1). As we shall see later,
it is not at all clear how best to further define the problem by specifying pre-
cisely what are the allowable strategies. Let us instead merely look at the ana-
logues of the 3-action rules studied for the finite problem. These are defined
by choosing a sequence
0:R0<A1<R1<A2< <Ak<Rk< e < 1.

and stipulating that in each (R,_,, 4,) we remember the best arrival in that sub-
interval only; then in (4;, R;) we accept the first arrival (if any) better than the
best in (R,_;, 4;).

3.2. Infinite problem risk > finite problem risk. We shall shortly demonstrate
by a very simple argument that there are rules for which the expected rank of
the individual chosen is finite and then we shall compute the minimal risk and
the rule which achieves it. But first let us underline the significance of that
result: namely that this minimal risk is an upper bound for the minimal finite
rank problem risks. (In fact it is actually the limit of the minimal 3-action
risks, {d,(1)}, as a modest amount of analysis would show.)

The argument is quite simple. Suppose we modify the rules by, in effect,
allowing knowledge of when an arrival is one of the n best—by accepting the
first arrival (if any) in (R,_,, 4;) which is both better than the best in (R,_;, 4,)
and one of the n best overall, and by accepting the last of the n best to arrive,
if we have not stopped sooner. Obviously the risk is reduced. But the resulting
rule is now simply a randomized 3-action rule for the n individual problem.

3.3. The minimal infinite problem risk is finite. Choose the A,’s and R,’s so
that foralli =0, 1, - ..

(1) (Ri+1 - Ri) = Rl(l - Rl)i
and
(2) (Ain — R)[(Ripn — R) =p.

Let T be the stopping time and X be the rank of the individual selected. Clearly
P(T > R;) = p’soT < la.s. Moreover, since the kth best arrival in (R,, 1) has
expected rank k/(1 — R,), we easily conclude that
(3) EX = EXIycp, + P(T > R)EX/(1 — R),
which is finite if and only if )
PT>R)=p<1—R,.

To see immediately that the minimal risk is less than 12, note that E(X |T) =

T-1, so
EXlipcpy < P(T < R[4, = (1 — p)/4, = (1 — p)[pR;;
hence, from (3),
EX <[(1 = p)/pR.J/1 — p/(1 — R)]-

Now take p = R, = 1.
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3.4. Minimal risk and best rule. First we assert that an optimal choice of the
A’s and the R’s must satisfy (1) and (2) so that our task will then simply be to
minimize EX with respect to the two parameters p and R;; and the values of
these for which the risk is minimized will completely specify the optimal rule.
The basic idea is the same here as in the finite problem but slightly simpler to
describe: _

Since the arrival times of the best, second btest, and so on, of those arriving
after some time #, are independent, each uniform on (¢, 1); and since the ex-
pected rank of the kth best of these is k/(1 — #) it follows that, for any m,

E(X|T > R,) = E*X/(1 — R,)
where E*X is the risk when we use 'the rule defined by the sequence

R* = (Rm+i - Rm)/(l — R,)

A* = (Ansi — Ra)/(1 — Ry) 5
the rest of the argument is straightforward. (Notice that as soon as we verify
that there is a best choice of 4, and R,, it follows that the minimal risk is actu-
ally attained.)

Now, for given R, and p,
EXTipeny = $ap BX|T = 1) dFy()
= $ok, (PR 17?) dt

= (p~' — p)2R;;

hence
(4) EX = (p* — p)(1 — R)[2R,(1 — R, — p) .

For fixed p, the right side of (4) is minimized at (1 — R,) = p!. Substituting
and minimizing with respect to p, the result is that (1 — R,) is the positive root
of x* 4+ x* + x — 1 =0. Thus

R, = .456311
p = .295598
A1 = pRl = .13488

and the minimal risk is 1/4,, as we would expect from dynamic programming

considerations:
EX'= 7.41375 .

These values of R, 4,, and EX are the limits of r,/n, a,/n and d,(1), respectively,
from the finite 3-action problem.

3.5. Even for polynomial loss, the minimal risk is finite. The same simple argu-
ment we have used when the loss is the rank (X) of the individual selected can
be applied to any loss of the form X(X + 1) - .- (X + m). This is because the
distribution of the rank (Z,) of the kth best to arrive after some time, %, is
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Pascal (k, 1 — t). Hence
EZ(Z,+ 1) - (Zy+ m) = k(k + 1) - -+ (k + m)[(1 — 1)
s0, as before, we conclude that any rule satisfying (1) and (2) has finite risk if
and only if p < (1 — R)™.
Of course every polynomial is dominated by one of these factorial forms.
Thus we have an elementary demonstration that, whenever the loss is a poly-

nomial function of the ranks, the minimal risk remains bounded as n becomes
infinite, even when we are constrained to use memory-length-one rules.

4. A finite memory “counter” rule. Hereisa competitor to the rules in Section
3. Whether or not to call it a memory-length-one rule is a matter of taste.

Having chosen A4’s and R’s as in Section 3, choose a B; between each 4, and
R;.;. Ineach (4,, B;) accept not the first arrival better than the best in (R;, 4,),
but the second one. In (B;, R;) accept the first better arrival just as before.

Can we improve on the rules of Section 3 this way? The answer is no as can
be shown by direct calculation. Here is a streamlined argument:

First we only need to consider A’s and R’s satisfying (1) and (2) and B’s such
that

4) Biys — R)/[(Rpy —R) =g >p.

Now we compare this modified rule with the corresponding uninodiﬁed rule
without the B’s.

Let T and 7" be the stopping times for the unmodified and modified rules
respectively, and let X, and X, be the ranks of the individuals selected. Let D
be the event that there is exactly one arrival in (4,, R,) better than the best in
(0, 4,) and its arrival time is in (4,, B,). It is easy to see that

E(X,, |T' < R)) = E(X;.|T" < Ry, D)
= E(X,|T' < R, D°)
= E(X,|T < R,, D) ;

E(Xy| D) = E(X,|T < Ry, D)
= 1/R,
< E(X;|T <Ry
< E(XT|T < R, D%).

Thus
E(X;|T < R) < E(X;,|T"<R).

Similarly, for all i,
E(X;|Te (R, R,;,y)) < E(Xp, |Te (R, R,yY)) -
Now both sides of this inequality are increasing in i, in fact
E(X;|Te(R;, R,,,)) = E(X;|Te (0, R))/(1 — R,
and 77 > T. The result follows immediately.
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5. Optimal memory-length-one rules.

5.1. The finite rank problem. There are only nine possible actions, of which
four—accept/accept, accept/ignore, accept/remember, and ignore/ignore—we
can show should never be used. That leaves us with 5%2 possible strategies for
the n-arrival problem and, embarrassingly, no efficient way to analyze them.
The standard method of backward induction is no help here, unless we rule out
the actions remember/ignore and remember/accept. We are happy not to use
the former, although unable to prove it should never be used, but sorry not to
use the latter, which we know can improve the 3-action rules of Section 2
(though for large n the improvement is small).

For any given, prescribed strategy, we can compute its risk by forward induc-
tion using the following facts: let

T = stopping time,
R, = relative rank of remembered individual after i arrivals
(undefinedon T < i),

Y, = relative rank of ith arrival.

7

Here is the distribution of R,,, in terms of the distribution of R, and the action
we take with the (i + 1)st arrival (all probabilities and expectations are condi-
tioned on {7 > i}, or {T > i 4 1}, whichever is appropriate):

(i 4+ 1)st Action PRy, =)
ignore/remember _l"i___il__?.i P(R; =)) + Tll— PR; = j)
ignore/accept @+ 1—)PR,=j)/EGi+1—R)
remember/remember /G + 1)
remember/accept PR, < ))JE(i + 1 — R))
remember/ignore l—I—% P(R; < j) + ]l_"l:—: PR, =j—1)

The two other formulas we need to compute the risk are:

P(i + Ist arrival better than remembered one) = P(Y,,, < R,) = ER,/(i + 1)

E(rank of i 4 1st arrival|Y,,; < R)) = n.—|_|_21 E(Y,,]Y;;. = R)
1

n+41
=12 ER,(R; + 1)/2ER, .

The above formulas help to illustrate the difficulty which arises when we try to
do backward induction: in order to know what to do after time i, we need to
know the distribution of R;, which in turn depends on what we have done up to
time i. The net result is that backward induction becomes just a way of directly
evaluating all possible strategies.
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6. Memory length greater than one. As bad as the situation is for memory-

length-one rules, it is much worse when we are allowed to remember, say, m
previous arrivals. Now with each arrival we have m + 2 choices: accept it,
ignore it, or remember it instead of the kth best of the currently remembered
ones, k =1,2, ..., m.

We have no results at all, not even in the infinite case, which for m = 1 is

much more tractable than the finite case. We do venture the guess that the best
strategy involves from time to time discarding the best of the remembered
individuals.
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