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BONFERRONI INEQUALITIES

By JANOS GALAMBOS
Temple University

Let 4;, A;, -+, A, be events on a probability space. Let Sy,, be the
kth binomial moment of the number m, of those A’s which occur. An
estimate on the distribution y; = P(m, = t) by a linear combination of Sy,
S2,n5 «++5 Su,n is called a Bonferroni inequality. We present for proving
Bonferroni inequalities a method which makes use of the following two
facts: the sequence y; is decreasing and S, is a linear combination of the
yt. By this method, we significantly simplify a recent proof for the sharpest
possible lower bound on y; in terms of Sy, , and S2,». Inaddition, we obtain
an extension of known bounds on y; in the spirit of a recent extension of
the method of inclusion and exclusion.

1. Introduction. Let 4,, 4,, - --, A, be events on a probability space. Let m,
be the number of those A’s which occur. Let So,» = 1 and, for k > 1,

(1) S = 21511<---<ik5n P(Ail to Aik) .
With real numbers ¢; and d;, the inequalities
(2) 2it=o CiSim = P(m, 2 1) < 29=0d;8; .

are called Bonferroni inequalities. It is not a restriction that, in both sums
above, j runs from 0 to n, since ¢; and d; may take the value zero. Here ¢; and
d; are preassigned; that is, they are not functions of Sk k = 1. They may,
however, depend on ¢ and n.

In a recent paper, Galambos (1975) pointed out that Bonferroni inequalities
can be proved by assuming that the A’s are either exchangeable or even that
they are independent. Here we present a further simple method for proving
(2). With this method, we shall reobtain the best known forms of (2) as well
as extend some of them. The proofs for the known cases are considerably
shorter than the original ones were. In addition, our method of proof will
show that (2) is a special case of simple nonprobabilistic inequalities. This
explains why Bonferroni inequalities are either valid for arbitrary events or fail
for very simple structures (such as independent events or exchangeable ones).

The method of proof is based on the following observation. It is well known
that S, , of (1) is the kth binomial moment of m,. Hence, putting

G) yi=P(m, = 1),
we get
) Sem = Dt G5 k=1
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578 JANOS GALAMBOS

Here y, = y, = -+ = y, = 0. It turns out that (2) is a set of inequalities for
decreasing sequences y,, 1 < j < n, where S, , is defined by (4), but the proba-
bilistic meaning (3) of y, is not significant.

2. The inequalities. We prove the following two theorems. The first one
is known, its original proof however is significantly simplified here. The in-
equalities of the second theorem are new.

THEOREM 1. Assume that the inequality
(5) P(mn g 1) ; aSl,n + bSﬁ,'n

holds for an arbitrary sequence A, A,, - - -, A, of events. Then there is a uniformly
better bound than (5) unless the coefficients a and b satisfy

6) a=—kb=2/k+1), k > 0 integer.
With the coefficients in (6), (5) always holds. Hence, maximizing in k leads to

™ P(m, 2 1) 2 25, ,/(k* + 1) — 28, Jk*(k* + 1),

where k* — 1 is the integer part of 25, ,/S, ,,.

THEOREM 2. Letl <t =n0=<j<in—t)—1and 0<r=<i(n—1t—1)
be integers. Then

. 2j +2 .
SER (DM CED i+ L2 (2S00

- 2r+1 ,,
< Pmy 2 1) < B3 (~ D CED S — S () Sar e
Theorems of the above nature are very valuable for estimating the distribution
of order statistics for dependent systems, when the joint distribution of the
observations are not known in all dimensions. Indeed, if X,, X,, ---, X, are
random variables and 4; = A,(x) = {X; = x}, then

Pm, =20 =1— PX,_ ;1. < X),

where X,., is the rth order statistic of the X,’s. On the other hand, Syn I8
expressible in terms of the k-dimensional distributions of the X,, 1 < s < n.

Theorem 1 is due to Kwerel (1975), but his proof is substantially reduced
here. The actual estimate (7), without establishing its extremal property, was
found earlier by Dawson and Sankoff (1967). Theorem 2 extends the so-called
Jordan inequalities in the same manner in which Sobel and Uppuluri (1972)
extended the method of inclusion and exclusion for exchangeable events, which
was later shown by Galambos (1975) to hold for arbitrary events.

3. Proofs. The proof will not make use of the probabilistic nature of the
inequalities of Theorems 1 and 2, as was pointed out in the introduction. Only
the facts, that the sequence y, > 0 of (3) is decreasing and that (4) holds, will
be used. Hence, the proof itself is of interest.
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Proor oF THEOREM 1. Substituting (3) and (4) in (5), we get
Nnz Diala+6( — Dy, = ay + Tt fa + 6 — D}y,

or

(®) (A —ay = Xja{a+ 6 — D}y,

Since (5) is assumed to hold for arbitrary events, the y; are variables. We thus
get the following estimates on @ and b by different choices of the y’s. The
choice y, = 1 and y; = 0 for j > 2 yields the restriction 1 — a > 0 for . On
the other hand, with y; = 1 for all j, (8) becomes

l—anglbn(n—l), n=1,2,....

This is possible only if 5 < 0. Thus a < 0 would evidently imply that the bound
in (5) can be improved. Consequently, a > 0, and thus, together with the
preceding estimates, 0 < a < 1 and 4 < 0. Hence, the right-hand side of (8)
can easily be split into positive and negative terms. Let the integer k be defined
as follows. Let k = n, if all the coefficients a + b(j — 1) are positive, and if
all of these coefficients are negative then k = 2. Otherwise k is defined as the
unique integer for which

) a+bk—-1)=0 and a+bk<O0.

Another special choice, y, =y, = ... =y, = 1 and Yit1 = 0, in (8) results in
the inequality

(10) 1 —az=a(k — 1) + 4bk(k — 1),

that is,

(10a) b < 2(1 — ak)/k(k — 1).

Now, since the y’s are monotonically decreasing, the validity of (10) implies
(8) for arbitrary y’s because of the special meaning of k. Hence, the best value
of b is provided by equality in (10a), that is
(11 b =2(1 — ak)/k(k — 1),
where k is defined in (9). Combining (9) and (11), we get that in the optimal
case, k is the integer defined by

(12) 2k + 1)< a< 2/k.
But, since with the value of 4 in (11),

S + b8y, = a(S,, — 28,,/(k — 1)) + 2{k(k — 1)}S,

the best choice of a is one of the end points in (12), depending whether the
coefficient of a on the right-hand side of the equation above is negative or
positive for a given value of k. But, whichever end point is to be taken in (12)
for a, together with (11), it leads to the form (6) for @ and b. Since, at each
step of the preceding arguments, we took care that (5) should apply, we actually

KR
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proved so far that, for any integer k satisfying 1 < k < n, the inequality

2 2

= Sip ——— S, = flk), ,
N 1,7 kk + 1) 2 = f(K) say

“k+1
is valid for arbitrary decreasing sequence {y;} with y, > 0. The proof will
therefore be completed if we determine the maximum of f(k) for given S, , and
Sy,n» Where 1 < k < n. If we first disregard the restriction on k, then the maxi-
mum of f(k) can easily be found by observing that f(k) either decreases for all
values of k > 1, or it increases for 1 < k < k, with some k, > 1 and decreases
for all k > k,. Hence, in either case, f(k) takes its maximum for the least k >
I such that f(k 4 1) — f(k) is aegative. It is immediate that this condition
occurs at k = k*, where k* — 1is the integer part of 28, ./S1,,- If we show that
this k* satisfies 1 < k* < n, the theorem will then be established. However,
foryy =2y, = --- =) z0,

(n— 18, =28, =210+ 1—2j)y,
=0+ 1—=2)(y; — yuj) 20,
where 3’ signifies summation over j, from 1 to n or 3(n + 1) according as n

is even or odd. The inequality above is equivalentto 0 < k* — 1 < n — 1, and
the proof is thus completed.

ProOF oF THEOREM 2. We again start from the relation (4). Let a be any

integer satisfying a > 0 and @ + ¢ < n. Then
Lo (=D CED)Sirin = Do (= DPCED) Diise (335,
= 2ii=e Vs D= (= DFCETY L)
where 7 = min (a, s — ). Thus, since
(“EGE) = G2D0EY
(13) 2o (=D L) Srin = 1+ Dl GIHye Tioo (= 1439 -
We now apply the identity
k=0 (= D*CE) = (=D)7 (4,

which is well known and easy to prove by induction over T. Hence, in view
of the special value of T and by (13),
(14) Likmo (=D CH)Siim = 20+ (= 1) Tiiians GHCED -
Hence, the left-hand side is smaller or larger than y, according as a is odd
or even, respectively. (14) thus implies the Jordan formulas. For the im-
provement of our theorem over these formulas, we have to estimate the term

occurring on the right-hand side of (14) after y, and to compare it with S, ,,, .
More precisely, the inequalities of Theorem 2 follow from ( 14), if we show that

1
(15) D e/
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However, (15) is immediate by an appeal to (4). As a matter of fact, after
applying (4), if we write all binomial coefficients in terms of factorials, (15)
reduces to the inequality s < n, which is evident. This completes the proof of
Theorem 2.
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