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We give a simple representation of two-parameter martingales in terms
of a stochastic integral. This representation leads to the idea of the partial
derivate of a martingale and to a generalization of the stochastic Green’s
theorem of the authors. Green’s formula in this generalized form gives us
a new and simpler proof of the fact that the derivative of a holomorphic
process is holomorphic.

Let R,* be the positive quadrant of the plane, let (Q, %, P) be a complete
probablhty space, and let W = {W,, ze R,?} be a separable Brownian sheet de-
fined on (Q, &, P), that is, a Gauss1an process of mean zero and covariance
E{W,, W} = min (4, s) min (v, 7). Being separable, W has continuous paths.

The two-dimensional parameter set gives a rich structure to the increasing
families of o-fields and there are a number of objects to which one could attach
the name martingale. The most natural, perhaps, is this. Give R,? the partial
order “<”: (s, #) < (u,v) iff s < u, t < v. For each zeR,?, let %, be the o-
field generated by {WW, { < z} and the null sets of . A process {M,, .5 ,, z¢

R, is a martingale if M, is % -measurable and E{|M,|} < oo for all z, and if
z < 7’ implies E{M,,| %} = M,. There are related processes, called 1- and 2-
martingales, which w1ll be important in this article. Roughly speaking, a process
M is a 1-martingale if it is a martingale in s for each fixed 7, and a 2-martingale
ifitisa martingale in ¢ for each fixed s. More precisely, M is a 1- martingale if
{M,,, #,., seR,}is a martingale for each ¢, and a 2-martingale if {M,,,

t € R,} is a martingale for each s.

An i-martingale (i = 1 or 2) is said to be adapted if it is adapted to the fields
{-#}. A process is a martingale iff it is both a 1-martingale and a 2-martingale.
(This, by the way, is a consequence of the fact that the fields %, and .7
are conditionally independent given .&,.)

According to a theorem of Wong and Zakai ([4], see also [1]), any square-
integrable martingale is the sum of a constant, a stochastic integral, and a
double stochastic integral. We remarked in [1] that a double stochastic integral
could be rewritten as a single stochastic integral of a weakly adapted integrand,
that is, an integrand ¢,, adapted either to {5} or {&_,} but not necessarily
to{F,.}. (Werefer readers to[1] for the elementary properties of such integrals.)
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We follow up that remark here, to show that any i-martingale (and in particular,
any martingale) can be written as an initial value plus the stochastic integral of
a weakly adapted integrand. This representation seems relatively simple and
useful, and it is exactly half as deep as that of Wong and Zakai (for, as we show
in Section 2, the latter can be obtained directly by applying the representation
for i-martingales twice). It leads, in particular, to Theorem 3.1, a natural ex-
tension of Green’s formula ([1], Theorem 6.3) which relates line and surface
integrals of i-martingales.

The main applications we will give of these basic results are to stochastic
partial derivatives and holomorphic processes. In particular, Green’s formula
leads to a straightforward proof of the theorem which establishes that the de-
rivative of a holomorphic process is holomorphic. This theorem was given in
[1], but only for processes holomorphic in all of R,2.. We extend it here to
processes holomorphic in arbitrary subdomains of R 2.

Our notation is taken from [1]. In particular, if (s, #) and (u, v) are in R.?,
(s, 7) < (4, v) means that s < uwand t < v, (s, 1) < (4, v), that s < wand t < v,
whereas (s, ) A (4, v) is the complementary order: s < u and t > v. We will
also use the notation (s, £) A (¥, v), which signifies s < u and ¢ > v.

If a, b are in R,?, then [a, b] and [a, b) denote the rectangles {z:a < z < b}
and {z:a < z < b} respectively, while R, denotes [0, a]. Finally, <% and %"
represent the Borel fields of R, and R,? respectively.

1. Representations of 1- and 2-martingales. The basic observation of this
section is the following variation on the theorem of Ité to the effect that any
square-integrable functional of Brownian motion can be written as a constant
plus a stochastic integral. '

LEMMA 1.1. Let X be a square-integrable F w-measurable random variable.
There exists a measurable process {$,, ze R, such that ¢, is F-measurable,
@y = 0 if s > 5, and such that

(1.1) X:E{X}+§Rz+¢,dW,.
Note. Here and below, equalities between random variables are to be in-

terpreted as holding almost surely.

Proor. Let 0 =u, <u, < -+ <,y =5, Put X' = Weioro — W, and
let & = o{X},v" < v}. Suppose Y' is a square-integable, <, -measurable
random variable of mean 0. By Itd’s theorem [2], there exists a measurable

¥ ,-adapted process a‘ such that
Yi= {{a,dX,, i=1,.-.,n.

For v < ¢, let Y,' = (¢ a!, dX?,, where we take a continuous version of the in-
tegral. By It&’s formula,

(1.2) 4, Y= (Y YY) e £ (Y YN dY
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Let
G =Y, Y )} if 0su<u,, v<t,

v v v

=Y} .. Y, " laS if u,<us,, v=t,

v

=0 otherwise.

Then ¢,, is &, ,-measurable and (4, v, ©) — ¢,,(w) is F* x & -measurable.

Furthermore, E{SR%W ¢’ dz} < oo. Thus SRSOw ¢, dW, is well defined—it is the
integral of a weakly-adapted integrand—and (1.2) can be written in the form

YIY Y= g, 6. AW,

This proves (1.1) for X of the form Y* ... Y. Since sums of products of this
form are dense in L¥(Q, %, ), this representation extends to general X in
L/Q, &, .), and we are done.

Before giving the representation theorem for i-martingales we will address
ourselves to a problem of measurability. To handle this, we will do a little
more work than is absolutely necessary, and we will construct a family of
orthonormal bases for all the Hilbert spaces L(Q, &), which vary measura-
bly in s.

Let {r,} be an ordering of the rationals in (0, c0). For each n, let {X,;,j =
1,2, ...} be a sequence of square-integrable mean zero ,nm-measurable
random variables which have the property that, together with 1, they span
LXQ, &, ). By Lemma 1.1, for each nand j = 1, there is a process {§,;(2),
zeR,? such that ¢,,(u, v) is &, ,-measurable, ¢,,(u,v) =0 if u>r, and
such that

Xo; = (x2 @ns(2) dW, .

Order the X,; in a single sequence, denoted {X,}, and order the ¢,; in the same
way into a sequence {¢,}. Define

Ny(s) = inf {k: X, = X,; for some n,j such that r, < s},
N,..(s) = inf {k > Ny(s): X, = X,; for some n,j such that r, < s}.

The N(s) are all finite for each s >0, and if r, <s, the sequence X, ),
Xyyor includes all the X, so that, together with the function 1, they span
L¥Q, .7 ,.). (We are using the fact that &, =V, .,.%, . here.) Fors> 0
and n = 1, define
Y.(s; 0) ='XN,,L(8)((U)

and

¢n(z’ S5 (U) = ¢N71;(8)(Z; w) ’
so that we have

Y'n(s) = SRi ¢n(z; S) sz .

Now for each n and s, Y,(s) is & ,_-measurable and ¢,(u, v; 5) is &, -measur-
able. Furthermore, N,(s) decreases as s increases, so it is certainly Borel
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measurable. Thus
{0):u s, Y, (u;0) £ xp=U;{uZs5:N,(u) = j} X {o: X(0) £ x},

which is in & x &, so that Y ,(s) is a measurable process. A similar argument
shows that ¢,(z; s; 0) is % x < x .5 -measurable in (z; s; ).

Now apply the Gram-Schmidt procedure to the sequence Y,(s), Yy(s), - -+ to
obtain an orthonormal sequence Z,(s), Z,(s), - - -. Then Z(s) = 1, Z,(s), Z,(s), « - -
will be a basis for L(Q, &,.). The operations performed on the Y, to get the
Z, being linear, the same operations on the ¢,(z; s) will give a sequence ¢,(z; s),
¢y(z; ), - - - such that

Z,(s) = Swt $ul(z35) AW, nx>1.

Moreover, Z, and ¢, will inherit the measurability properties of Y, and ¢,. To
summarize:

LemMA 1.2. For each s > 0, we can find an orthonormal basis {Z,(s), n = 0} of
L¥Q, F,,) such that Z(s) = 1, (5; 0) — Z,(s; 0) is ZF x F# -measurable, and for
which there exists a sequence of processes {¢,(z; 5), z€ R?, s > 0} satisfying, for
eachn = 1,

(@) (z; 8 0) > ¢,(2; 5; ©) is FB* x B x F -measurable,
(b) ¢, (u, v; ) is F,,-measurable, and ¢, (u, v; s) = 0 if u > s;
(c) for each s > 0,

(1.2) Z,(s) = S“i du(z; 8)dW, .
This brings us to the promised representation theorem.

THEOREM 1.3. Let M = {M,, z € R_?} be an adapted, measurable, square-integr-
able 2-martingale. Then there exists a process a = {a(z; s), ze R,?, s e R, } satisfying

(@) (z; 8 0) = a(z; 53 w) is F* x F x F -measurable;
(b) a(u, v; s) is & ,,-measurable if u < s, and = 0 if u > s;
(c) for each (s, t)ye R * E{\, a*(z; 5)dz} < oo;

and such that
(1’3) Mst = Mso _l_ SRst C((Z; S) sz’
for each (s, t) e R .

REMARKs. 1°. The function « is called the 2-derivate of M; the correspond-
ing function for a 1-martingale is the 1-derivate.

2°. We can choose a version of the integral in (1.3) (and consequently of M)
which is measurable and a.s. continuous in ¢ for a.e. s.

3°. There is an analogous result for 2-martingales which are not adapted.
In this case, a(u, v; 5) is adapted to &, rather than to .5 ,.

4°. In the case the fields &, are those generated by the Brownian sheet,
F o and F, are both trivial, so that M,, and M, in (1.3) are constant in s and
t respectively.
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Proor. Let {Z,(s)} and {¢,(s)} be the processes of Lemma 1.2. Fix N > 0
and s > 0. Then M,, e L¥(Q, &), so that if
n(s) = E{ SN n(s)} 4
we have
MsN = Z:=o bn(s)Zn(s) = Mao + Z::l bn(s) Sni ¢n(z; S) sz
= My + $t (B3 bu(8)9(75 9)) 4V, .

Now 27, b,.(5)¢.(z; 5) converges in L* for a.e. z, therefore a.s. along
Mokobodzki’s fast filter [3] to a limit @,(z;5). Set a,(z;s) = 0 if z is excep-
tional or if the limit does not exist. Then {a,(z;s), ze R ? s > 0} satisfies
(a)—(c) of the theorem, and in addition,

(1.4) My = My + (r2 ay(z; 5) dW, .
Condition both sides of (1.4) with respect to &, to see that, for t < N,
(1'5) Mst = 80 + SRst (XN(Z; S) sz *

Clearly, ay(z; 5) = ay,.(z; s) fora.e. ze R, x [0, N]. Weneed onlyset a(z; 0) = 0
and a(z; s) = ay(z;5) if s > 0and ze R, x [N — 1, N).

REMARKS. 5°. The definitions, lemmas, and the theorem of this section
evidently have their analogues for 1-martingales. We will use these without
comment in the future.

6°. If the 2-martingale depends measurably on a real parameter r (that is, if
it is of the form M), then a slight modification of the above argument shows
that the 2-derivate a(z;r,s) will still exist, and will be measurable in the
quadruple (z; r, s; w).

2. An application. The aim of this section is to show that Theorem 1.1,
applied two times, gives the representation of Wong and Zakai we spoke of in
the introduction.

Let M = {M,, ze R’} be a square-integrable martingale. Being in particular
an adapted 2-martingale, M has a 2-derivate « = {a(z; 5): ze R,? s e R,}, which
we can suppose square-integrable. Let s < s’ and ¢t > 0. Then

M, + (g, a(z; ) dW, = M,, = E(M,,,| Z,,}
= M, + E{\z,, a(z; 5') dW,| 7} .
But this least is equal to
M, + (g, E{a(z )|} AW,

(This can be seen directly if a is a simple function; it follows in general by
approximation by simple functions, cf. Lemma 9.6 of [1]) The equallty of
the above stochastic integrals implies that, for a.e. ze R,,

(2.1) a2 ) = Bla(z )| ).
We can modify a slightly to make (2.1) hold for all z as follows. Choose s, > 0
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and redefine a(u, v; 5) for s < s, by setting

a(u, v; 5) = E{a(u, v; 50) | .F ,,} if ugs,

=0 if u>s,

where we take a version of the conditional expectation which is measurable in
(4, v; 53 ®). Then a will still be a 2-derivate of M, but now, if u < s, {a(4, v; 5),
(s, v) € [u, 5,] x R} is an adapted square-integrable 1-martingale depending on the
real parameter u. By Theorem 1.3 and Remark 6° following its proof, « itself
has a 1-derivate § = {8(z'; z): 2, z€ [0, 5,] x R,}, so that, if u < s < 5’ < 5,

a(u, v; 8') — a(u, v; 5) = (5 B(u, v; z) dW, .

s'v-Rw
Thus, if s < s,
(2.2) M, = M, + \z,, a(u, v; s) dw,,
=M, + SR“ [a(u, v; u) + SRW_RW B(u, v; z) dW,] dw

Put

P(u, v) = a(u, v;u) and  @(u, v;s, 1) = B(u, v; s, 1) if (u,v) A\ (5,0),
' =0 otherwise.
Then (2.2) becomes

M, = M, + g, ¢(z) dW, + Sz, (S, 9(2'5 2) AW,) AW,
=Mo+¢°Wst+¢'WWat’

which is Wong and Zakai’s representation.

REmMARKs. The name “2-derivate” is supposed to suggest that a(z; s) plays
the role of dM/3, W, so that, in a certain sense, each martingale is differentiable.
The above construction of the representation shows that in the same loose sense,
each martingale is twice differentiable, for, if M = ¢ - W + ¢ - WW, the process
¢ is analogous to 9*M/3,W 3,W. One should probably not take these analogies
too seriously, but they do suggest some intriguing interpretations. For instance,
we could just as well have started with the 1-derivate instead of the 2-derivate
to get the process ¢, leading us to conclude that 3*M/6,W 3, = *M[o,W o, W.
The characterization in [1], Theorem 8.1, that M is a strong martingale iff ¢ =
0, can then be rephrased: M is a strong martingale iff 9?M/3,W 8, = 0.

3. Green’s formula for 1- and 2-martingales. Let M = {M,, z ¢ R.?} be an
adapted, measurable and square-integrable 2-martingale such that E{{3 M2, du} <
oo for each s and 7. Let a be the 2-derivate of M, i.e., a verifies (a)—(c) of
Theorem 1.3 and

M, = Mso =+ SRst a(C; S) dWC .
Let

3.1) a(u, v; s, 1) = a(u, v; s) if u<s, v>t,
=0 otherwise.



MARTINGALE AND HOLOMORPHIC PROCESSES 517

Then @ = {&(; §): £, & € R,?} is measurable and adapted in the sense that a(Z; £)
is & .-measurable. Furthermore, if z = (s, 1),

(3.2) E{§§ n,xn, 8(C; €) dC d€} < tE{{3 M2, du} < oo .

Thus one can define the double stochastic integral {§ B xr, @ AW dW (cf. [4],
see also [1]).
If 4 C R,? the shadow of A is the set 4 defined by

A ={((u,v), (5, 1)) 1 (1, V) A (5,7) and (s, v) € 4} .
Note that 4 is in R,*, not R,”.

THEOREM 3.1. Let A C R,? be a rectangle parallel to the axes, and let A be its
shadow. Then

(3.3) SouaMOW =, MdW + (& dW dw ,
where the line integral is taken in the clockwise direction.

REMARK. If M has a stochastic partial with respect to (W, ) (see Section 4
for the definition), a(u, v; s) does not depend on u if (s, v) € A, so the last integral
reduces to §, ¢ dJ, where ¢(s, v) = a(u, v; s). Thus Theorem 3.1 extends Theo-
rem 6.3 of [1].

Proor. Let 4 = [a,, a,], where a, = (g, 7;), i = 1, 2, and suppose 4 C R, ,
where z, = (s,, £,). Since E{{3 M;, ds} < oo, we can find a sequence of simple
functions {M", s < 5.} such that E{{g (M,,, — M,*)*ds} — 0 as n — oco. Extend
{M,"} to be a 2-martingale in R, by M} = E{M,*| %}, and let «, be the 2-
derivate of M = {M;}. Let &, be defined from «, as in (3.1). Suppose (3.3)
holds for M=, i.e.,

(3.4) Soa MO W =, M dW = ((; @adW dW .
Then (3.3) also holds for M, since
E{fou (M — M) ds}t,  E{§,(M — M")d} and  E[{{; (@ — &)’ d{ d&}

are all bounded above by 2(7, + 1)E{{z (M, — M) ds}, which tends to zero
as n — oo, implying that the three terms of (3.4) tend toward the corresponding
terms of (3.3).

It remains to show that (3.3) holds when {Msto, § < 5} is simple, and for this
it is evidently enough to consider the case where M, = YI, ,(s), where Y is
bounded and F ,,-measurable, and g, = 5 < 5 =< 0,. In this case M,, will be
constant for s [s,, 5,] for each fixed r < t,, taking on the value Y, = E(Y |7, ,}
there. Thus, if X, = W W

spt T 84t
ouMoW =Y X, —Y X and  {,MdW ={2Y,dx,.

1N

Since M,, is constant in s on [515 5,], its 2-derivate a(u, v; s) is, too. Thus
Iya(u, vs s, t) = a(u, v; s,) if u<s, velr, 1], sels,s] and 1< v,

=0 otherwise,
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so that we can regard {§; & dW dW as an iterated integral of the form
$a 85t (a(u, v3 8)) 8 Sz W) W, .
The integral over (s, 1) is exactly X,, so that
(§2a&dWdw = VRgpey=Fage, A 03 5)X, AW, .
Thus everything reduces to showing that for each ¢ < ¢,
(3.5) Y. X, =Y, dX, + SRs,t a(u, v; )X, dWw,, .
We will do this by discrete approximation. Let 0 = << - <ty =t
and write
(3.6) YoX, =200 (Yo, Xy, — Y, X,)
= 2ia Yti(Xti+1 - Xti) + 2 (YttJr1 - Yti)Xti
+ X (Yti+1. - Y‘i)(X%'ﬂ =X |
Consider a sequence of subdivisions for which § = sup; (¢4 — t;) — 0. Recall-
ing that ¥, — Yti = Reyo=Rayt; a(C; s,) dW,, we can see that
E{§e (Y, — Dt Yo ., a(v)) dv} < GE] Vo, @(C5 81) dC}
This tends to zero, hence the first sum on the right-hand side of (3.6) tends to
§6Y,dX, in L*. The second sum can be written
SRslt a(u, v; s)X, dW,, + N1, §a, a(u, v; s)(X,, — X,) dW,, ,
where A, = R, ., —R
3.7 0(sy — sl)E{SRslt a*(&; ;) dC}
hence the second sum on the right-hand side of (3.6) tends to § Ry A5 V3
8;)X, dW,,. Finally, the third sum tends to zero since its expected square is
also majorized by (3.7), and the theorem is proved.

Using the corresponding theorem for l-martingales and noting that a martin-
gale is both a 1- and a 2-martingale, we have immediately:

ot The sum has expected square majorized by

THEOREM 3.2. Let A © R,? be a rectangle and A4 its shadow, and let M = [M,,
ze R} be a square-integrable martingale. Then

Vou MOW = §34 (8, — &) dW aW

where &, and &, are the processes associated by (3.1) with the 1- and 2-derivates,
respectively, of M, and where the line integral is taken in the clockwise direction.

REMARK. As in [1], the theorems above can be extended to regions 4 whose
boundary is a sufficiently smooth curve.

4. The derivative of a holomorphic process is holomorphic. One of the more
obscure proofs in [1] showed that the derivative of a process holombrphic in
R,* is itself a holomorphic process. Its core was a complicated calculation
involving the increasing processes associated with the integrals in Wong and
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Zakai’s representation. We are now in a position to give a simpler and more
transparent—or at least less opaque—proof based on Green’s formula and the
representation of i-martingales, which will at the same time generalize the theo-
rem to processes defined in arbitrary domains. We do not want to insist too
much on the generality, for the most natural domains in which to define these
processes are random, not fixed. However, the study of random regions would
lead us into a number of areas we cannot go into here. We will enter them in
a subsequent article. v

Let ab be a horizontal line segment in R,? with endpoints a and b, and let ®
be a process defined on ab. We say @ has a stochastic partial derivative with
respect to W along ab if there exists an adapted measurable process p—the partial
derivative—defined on ab such that

4.1 E{{_ o dl} < o0 and O, =9, + {_ p0d, W forany zeab.

If 4 c R,*is a region and if ® is a process defined on 4, we say that ® has a
stochastic partial derivative with respect to (W, s) in A if there exists an adapted
measurable process p—the partial derivative—defined on A4 which satisfies (4.1)
for each horizontal segment ab C A. The stochastic partial derivatives along a
vertical segment and with respect to (W, r) are defined analogously. (The
stochastic partial derivatives defined in [1] admitted a second integral, { ¢ ds.
This is indeed the correct definition but we will only consider cases where this
integral vanishes, as it does, for instance, when @ is a martingale.)

We say that a process @ is holomorphic in a rectangle 4  R_? if it is defined
in 4 and if there exists a process ¢ = {¢,, z € 4} which is a partial derivative of
® with respect.to both (W, s) and (W, ). If D is a domain, we say @ is holomor-
phic in D if it is holomorphic in each sub-rectangle of D.

REMARKs. 1°. The process ¢ is called the derivative of ®. It is of course
possible to define stochastic partial derivatives and holomorphic processes with-
out the strong square-integrability condition of (4.1), but it appears that even
a slight relaxation of this condition can lead to some quite wild behavior on
the part of holomorphic processes. Thus we will only consider the square-
integrable case here.

2°. If @ is holomorphic with derivative ¢ in a rectangle 4, and if I'isa
staircase in 4 with endpoints @ and b, then

(4.2) D, — D, = (. p0W.

In particular, the integral of ¢ around a closed staircase vanishes, so that the
line integral of ¢ is independent of the path.

3°. A process is holomorphic in a domain D if and only if it has stochastic
partial derivatives with respect to both (W, s) and (W, ) in D, and the two
partial derivatives are equal. '

The existence of a stochastic partial derivative, even along a single line, is a
stronger restriction than one might think, and to have two partial derivatives
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actually implies that a process is holomorphic. Indeed, the promised theorem
on holomorphic processes is an easy consequence of the following theorem on
stochastic partial derivatives (cf. Theorem 9.10 of [1]).

Let a, = (o), 7;) < @, = (05, 7,) be in R,% and let 4 = [a,, a,]. Denote the
upper-left and lower-right corners of A4 by b, = (o,, 7,) and b, = (6, 7,) re-
spectively.

THEOREM 4.1. Let M a be square-integrable martingale defined in the closed rec-
tangle A = [a,, a,]. Suppose that M has a stochastic partial derivative with respect
to W along the two lines ba, and b,a,. Then M is holomorphic in A and admits a
derivative which is holomorphic in [a,, a,).

Proor. Denote the partial derivatives of M by {p,, z € b,a,} and {p,, z € b,a,}.
Now {52,053, E{0.'} dz < oo, so we may assume, by setting p, = 0 if E{p,’} =
oo, that the partial derivatives are square-integrable. Itis convenient to extend
M to all of R, by setting M, = E{M, |} if ze R,. Let B, and B, be the
rectangles R, — R, and R, — R, respectively, and define
(4.3) $u = Elo, | F ) i (s,0)e By,

o = E{o,, | F u} if (s,7)eB,,
where we choose measurable versions of the conditional expectations. By
Lemma 9.6 of [1], M has the partial derivative ¢ with respect to (W, s) in B,
and the partial derivative ¢ with respect to (W, #) in B,. Furthermore, ¢ is a
square-integrable 2-martingale and ¢ is a square-integrable 1-martingale. By
Theorem 1.3, ¢ has a 2-derivate a and ¢ has a 1-derivate g, so that if (s, #) € 4,
we have:

(4'4) ¢st = ¢sr1 + SRst_Rs‘rl a(z; S) sz ’
¢st = ¢alt + SRst_Ralt IB(t; Z) sz *

Let @ and § be associated with « and 8 by (3.1) and the corresponding formula
for 1-martingales. By Theorem 3.1, if A is the shadow of 4,

M2_Mb1_Mb2+Ma1= Soap O W =S§,¢dW 4 \§; &dWdW

a,

and
M

= My — M, + M, = —$,,p0,W =,0dW + \\; fdWaw .
But now the stochastic integrals are orthogonal to the double stochastic inte-

grals above, so that we have
4.5) §.0dW =, ,¢dW and - SS;&deW=SS,;ﬁdeW~

The first equation implies that ¢, = ¢,, for a.e. (s, ) € A. Thus there is a
negligible set F such that if se[o,, 0,] — F, then P{$,, = ¢,} = 1 for a.e. te
[r1, 7). Now ¢ is a 2-martingale and is thus L*-continuous in ¢ (i.e., for fixed
8, E{($urr — $.)"} — 0 as ¥ — ). Since for s¢ F, ¢,, equals the l-martingale ¢,,
a.s. for a.e. ¢, it is easy to use this L’-continuity to conclude that {¢,,, (s, ?) € 4,
s ¢ F}is both a 1- and a 2-martingale, and hence a martingale.
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We must eliminate the exceptional set F. We can use the conditional expec-
tation to extend ¢ to a martingale M’ defined in 4 — b,a,. Returning to ¢, an
argument similar to the above shows that there exists a negligible set G such
that if ¢z € [z}, 7] — G, P{M], = ¢} = 1 for a.e. s€[gy, 0,]. ¢ being a I-martin-
gale, we can use the conditional expectation once more to extend M’, this time
to a martingale defined on 4 — {a,}. We again call this martingale M’.

Now with probability one, M’ agrees with ¢ a.s. along a given horizontal
line, so that M’ is a partial derivative of M with respect to (W, 5). By symmetry,
M’ is also a partial derivative of M with respect to (W, 7). In particular, M is
holomorphic in 4 with derivative M’.

To show that M’ is also holomorphic, we turn to the second of equations
(4.5). We have @ = f a.e. on 4, which implies that for a.e. (s, v) € 4, a(#, v; 5) =
B(v; s, t) for a.e. u < sand a.e. ¢t < v. This in turn implies that, for these (s, v),
a(u, v; sy and B(v; s, £) must bz essentially constant inu < s and ¢ < v. Call the
common value (s, v) and set y(s, v) = 0 for the other values of (s, v). By (4.4)
and the definition of M’, we have, for a.e. s € [0y, 0,],

Sormemy Eladtdl < oo,
M;rg - M§r1 = ¢sr2 - ¢sz~1 = SRsfz_Rsfl a’(c; S) dWC = Sm y aZW’

and for a.e. r€[ry, 7],

Seorpogn Elx}dl < oo,

M¢,72t - M¢/71t =Popp — Popp = Szeazt—ze,,lt B(t; Q) dw = SW oW,

i.e., M’ has a stochastic partial derivative along both (s, 7,)(s, 7,) and (a,, #)(0,, ),

hence, by the first part of the proof, M’ is holomorphic in [a,, z], where z =

(s, 7). As z can be chosen arbitrarily close to a,, M’ is holomorphic in [a,, a,).
An immediate consequence is the following:

THEOREM 3.2. Suppose that © is a holomorphic process defined on a domain D.
Then @ admits a derivative which is holomorphic in D.
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