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TWO APPLICATIONS OF A POISSCN APPROXIMATION
FOR DEPENDENT EVENTS!

By NORMAN KAPLAN
Umverszty of Calzforma Berkeley

Recent results have estimated the error when sums of dependent non-
negative integer-valued random variables are approximated in distribution
by a Poisson variable. Two problems are considered where these results
can be used to provide simple solutions. The first problem studies the
asymptotic behavior, as « — 0, of the number of independent random arcs
of length « needed to cover a circle of unit circumference at least m times
(m = 1). The second problem deals with urn schemes.

1. Introduction. Freedman [2] has studied the problem of approximating in
distribution a sum of dependent random variables by a Poisson variable. We
first introduce some notation. For ¢ > 0, let N(f) denote a Poisson variable
with parameter 6. If X, and X, are any two nonnegative integer-valued random
variables, then define

d(X,, X,) = sup, |P(X, € A) — P(X, € A)| ‘
where A ranges over all subsets of nonnegative integers. Also for any set B, I

is its indicator function. .

THEOREM A (Freedman [2]). Let (Q, &, P) be a probability space. Let A,
Ay, « - - be events, i.e., elements of 5. Let {F} be a collection of sub-c-algebras
of & and assume that

Aie 7y, izl, F,cF,C---
Let p; = P(A;|.% ;). Let N equal the number of A, that occur with i < n:

N = Z?:l IA,L- .

Let a < b be nonnegative real numbers. Let ¢, 0 be nonnegative real numbers less
than §. Suppose

(1) Pa< 2iap=b Xiapi<ezl1-3.
Then there is a positive constant C such that
d(N, N(a)) < Ce + (b — a) + 20.

The difficulties in using Theorem A are to compute the {p,} and to establish
(1). The next result considers a simple situation, where sufﬁc1ent condltlons are
given which imply (1).
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CoROLLARY 1. Let (Q, 5, P) be a probability space. Let {A,;} be a collection
of events and {5 ;} a collection of sub-c-algebras of & . Assume that
AyeFy,; and F,C F,;C - foradl .
Let p,; = P(A,;| .5 ;) and {n;} a sequence of integers tending to co. Let
N; = 2idi Ly, -
Suppose that as j — oo

2) 2iii E(ps;) — 0 a positive finite constant,
3) E(| 522 (pi; — E(piy))l) = o(1) 5

4) L E(ply) = o(1) .

Then

d(N;, N(#)) = o(1). '
ProOF. Let0 < e < 4,0 <0 < 4. Inview of (3) and (4), there exists a J,

such that j > J, implies
P 2ita (s — E(pi)| <& Xt pi; <) >1 -4
Hence by Theorem A, for all j > J,,
®) d(Ny> N4 E(pyy) — €)) = (2 + €) + 20
The result now follows from (2) and (5) and the observation ([2], Lemma 8) that

d(N(Ltdy E(pig) — ), N9)) = | 234 E(piy) — ¢ — 0] -

The purpose of this note is to give two applications where the computation of
the {p,;} is possible and the conditions of Corollary 1 are verifiable.

The first application is to a problem studied by Flatto [1]. Let & be a circle
with unit circumference and suppose that arcs of length a are thrown independ-
ently and uniformly on &. Set N,(m) equal to the number of arcs necessary to
cover & at least m times (m = 1). We then have

THEOREM 1 (Flatto [1]). Let —oco < x < oo, and m = 1. Then,
lim,_, P(N,,(m) =< 1 (logi + mlog log 1 + x)) = e~¢ "/m-1l
a (24 , a

Using Corollary 1 and some properties of the Poisson process, we will give a
simple proof of Theorem 1. The details are carried out in Section 2.

Our second problem was considered by Sevast’yanov [4]. Suppose we perform
a sequence of experiments, where, for the /th experiment, we independently toss
n, balls into N, urns according to some distribution {b,(k)}is,. For ease of nota-
tion we drop the subscript /. We assume that on the set of integers {1, 2, -- -, N},
there is a metric p(i, j) possibly depending on /. We write Z; for the number of
the urn picked on the ith throw and let Z denote the number of pairs of tosses .
(& J)» i < Jj, with outcomes Z, and Z; such that o(Z,, Z;) < a, wherea > O isa



APPLICATIONS OF A POISSON APPROXIMATION 789

certain fixed number. Let 7, = ], j,z. &(j) be the probability of picking an
urn whose number is in the sphere of radius a with center at k for one trial.
We then have:

THEOREM 2. Assume

(6) n® Y b(k)m,t = o(1)
and

(7 3 X b(k)yr, > A < oo
Then,

d(Z, N(3)) = o(1).

(It should be noted that all the above limits are taken as | — co.)
A proof of Theorem 2 is given in Section 3.

2. Proof of Theorem 1. For the remainder of this section we assume x and
m are fixed and set

n = n(a, m, x) = [_1_<logi + mlog logi + x)} )
(24 a a
where for any positive y, [y] is the greatest integer in y. Our starting point is
a result of Flatto [1].

LemMA 1. Let n — 1 (n > m) points be chosen uniformly and independently on
[0,1). Let (Z,,Z,, -+, Z,_,,) denote the order statistics. For convenience set
Zy=0and Z, = 1. Let

L=2Z,—Z,, 1<ign
and define L, for all i by putting L, = L,,,. Set

S, =N Li; m<ig<n4+m—1.
Then,
8) P(Nm)<n)=PS;,fam<i<n+m-—1).

Lemma 1 is just a restatement of Theorem 2.1 of [1].

The problem is to determine the asymptotic behavior of the right-hand side of
(8). Since the {L;} are exchangeable random variables ([3], Chapter 8), all the
{S;} have the same distribution. Furthermore, Flatto [1] showed that P(S,, >
a) = o(1). Thus there is no loss of generality in studying

AmM) =PS;fa,mZi<n—1).

The analysis depends on Corollary 1 and some properties of the Poisson pro-
cess. Let {X(#)},<,<; be a Poisson process with parameter equal to n. Denote
the interarrival times by {7},.,, and recall that they are i.i.d., having a negative
exponential distribution with parameter n. Let

W= 2icicm Tj izm.
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We then have
©)  PW SamZ i< X0X(1)zm) = D AR ST

where

Ak)y=PW,<a;m <i < k|X(1) = k).
It is well known ([3], Chapter 8) that conditioned on X(1) = k, {>1%_; T;hci<k
have the same distribution as a set of order statistics of size k taken from a uni-
form distribution on [0, 1]. Thus A(n — 1) = 4,(a).

The idea now is to show, using Corollary 1, that the left-hand side of (9) is
asymptotic to exp(—e~*/(m — 1)!), and that the asymptotic difference between
the right-hand side of (9) and A4,(a) is negligible; to do this we use the central
limit theorem (CLT).

We first consider the left-hand side of (9). Lete > 0. Itfollows from the law
of large numbers that

PW, < a;m < i < X(1); X(1) > m)
:P(Wiga;mgigX(l);l&—— ll<e>—|—0(l).
n
Let ny = n(1 — ¢) and n, = n(1 + ¢). Using monotonicity we then have
PW, fa;mZi<n)+o(l)

(10) < P(Wi <aym<i<X1);

‘_{(_ll_ll<s>

n
SPW, fa,m<Zi<n)+o(l).

Consider the right-hand side of (10). The argument for the left-hand side is
analogous. Define

A, =W, > a) m<i=<n,.
Then,

PW, <a;m =i < n) = P(R7e, Ly >er = 0).
We now verify the conditions of Corollary 1. First we compute § = > %0, P(4,).
Since all the {4,} have the same probability
0 = (n, — m)P(4,,) .
But .
P(Ay) = (LT T > a)

—_ o n Mm—1,—n2
=z m(nx) e~ dx

(na)™-1

Smoni T 0(%)

- (m — C;;;:og lja to (711_) '

(The last equality follows from the definition of n.)
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Hence
(1 — e)e*

(m — 1)!
This proves (2).
Let &, =0o(Ty, -++,T,), i = m. Then

6 = +0(1).

pi = P(4;1.5F ) .
= P(T, > a — Sty T5 | 50m)

j=t—m+1
=Isizt o rpe T exp[—n(a — X mna T )]I(z‘_l a1 TiS®
=Wy + Wy
To prove (3) it suffices to verify
(11) By = E(| Xt (W — E(W)]) = o(1) j=12.
A straightforward computation shows that
(12) 2t EWy) = o(1)

which in turn implies that B, = o(1). To handle B, we argue as follows. Observe
E((2em (W — E(Wm-))]z)
S X EW3) + Ditn [Dins E(Wu — EWy)(Wy; — EWy)] -

By the independence of the {T,}, the sum in the brackets has at most 2m nonzero
terms and each of these, by Schwarz’s inequality, is bounded by E(W%;). Thus

E((Z5em Wy — E(W))P) = 3m 2iien E(W3)
= 3mn,E(W},) by exchangeablllty

But
E(ng) — Sge—z'n(m—z) (m z 2)' (nz)m—2e—'nz dZ
e—ma na ,m—2
(13) =¥ jae zm-2et dz
e—2n m—2pna
= 2y (na)™—2em[1 4 o(1)]

()
=0({—).
n ‘
This completes the proof of (3). The proof of (4) follows from (12), (13) and
the observation that
20 E(pl) £ 2 X0 (E(Wy) + E(W3)) -
We now conclude from Corollary 1 that as @ — 0
(14) POV, < oy m < i < my) — e"G=0r =1 = o(1).
Similarly
(15) |P(W, S a;m < i < ny) — e o7 %m=0 — o(]) .
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Since ¢ is arbitrary we obtain from (10), (14), (15) that
|P(W, < a;m < i < X(1); X(1) = m) — e~ ™D = o(1) .
We now turn to the right-hand side of (9). It follows from the CLT that for

any ¢ > 0, there exists a D > 0 such that for all » sufficiently large (i.e., for all
a sufficiently small),

X(1) —n
P([F0m|> o) <
It therefore suffices to show for any D > 0,
(16) 7 = SUPi_pgpat |A(K) — A(n — 1) = o(1).

To prove (16) it is convenient to modify the definition of A(k). Let
Aky=PW, <a;m <i<X(1);1 — DEO-"1T, < a| X(1) = k).
Then for |k — n| < Dn?
(17) A — Ak)| < P(1 — ZFR="T; > a| X(1) = k)
- 0(71;) (uniform in k) .

The last equality is a straightforward computation which is omitted.
We next estimate . .
B = IA(k) — A(k — 1), |k — n| < Dnt.
Let Z,, Zyys -+ +» Zys Ziiry b€ a set of order statistics of size k taken from the
uniform distribution on [0, 1], and set S;, = Z;) — Z;_,., (£, = 0, Z4y,y = 1).
Let X be one more observation from uniform [0, 1], {Z},,, Z), ++ +» Zi4i1y» Zinsa
the new set of order statistics, and S,/ = Z,, — Z, Then,

(t—m)*

Be=|Ak) — Atk — )| < b PSS, > a8, Sasm<j<k+1).

4 =

But :
PS;>a, S/ amZj<k+41)
SPa<S sma;Z,; p <X Zy)
(18) < maP(a < S; < ma)
= maP(a < S,, < ma) (by exchangeability)
= ma (k — D) ma xm=1(] — x)k-1-m gx
(m— 1k —1—m
=0 <_._—ﬁ2___> uniform in k.
(log 1/a)™
Hence
(19) Br = O(a) uniform in &,

and so using (17) and (19) we obtain

7 = Die-ni<ont B + 2Dnt supy_,icpay |[A(K) — Ak = o(1).
This establishes (16) and completes the proof of Theorem 1.
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ReEMARK. Flatto’s method for proving Theorem 1 was to estimate
P(Ur=1(S; > a)). Our use of Corollary 1 allows us to avoid many of the
analytical difficuities which he encountered.

3. Proof of Theorem 2. Define
Ly=1 if p(Z,Z)<a

=0 otherwise I1ij<gn,
and
X; = Zi<i G : 2zj=n.
Note that
Z=73",X;.
Since E((,;) = NI, b(i)x,, for all i, j,
(20) E(Z) = [Z5- (G — D] Zi% 6@ () -

It follows then from (7) that E(Z) — 2. Let 4; = {X; = 1}, N = 2%, Lz,
and p; = P(A;|Zy, Zy, -5 Z;y), j = 2.

Using the independence of the {Z,}, it is not difficult to show that
(21) P(X; = 1) = E(P(X; = 1|Z)))

= (j = 1) T by (1 — m)?.
Thus
22)  E(Z — N) £ S5 B(X; — L)
= 25— DIZL b1 — (1 — =)™7)] .

The last equality follows from (21) and the fact that X; = Iy, With proba-
bility 1. Thus

(23) E(Z — N) £ {X32( = D0 — DHZL b=}
= 0(1) .

The last equality follows from (6) and the observation that 315, (j — 1)(j —2) =
O(r®). To complete the proof of the theorem, we therefore need only show

(24) d(N, N2)) = 0(1) .
To do this we use Corollary 1, and so we need to verify its conditions. (2) fol-
lows from (23) and the already noted fact that E(Z) — 4. We next verify (3).
Adding and subtracting the appropriate quantities leads to:
E(|Do(p; — E(p)))) £ E(| X5 p; — D= EXG | F520)))
+ E(lZ?:z E(Xj l '-7-1‘—1) - ?=2 E(XJ)D
+ E(| 2% E(X;) — 25 E(p)))
= 11 + Iz + 13 .

Since for all i, p; < E(X,| .5 ,_,) with probability 1,

L= 25 E(X;) — 25 E(py) = L -
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Thus to establish (3) it suffices to prove I, = o(1) and I, = o(1). It follows from
(22) and (7) that I, = o(l). To show I, = o(l), we argue as follows. In view
of (21) it is enough to prove

E(| 5% E(X; | 7 520) — () Zi=a b(k)mi]) = o(1) .
However,

=2 B(X; | 750 — () DRl b(k)me = 255 (0 — J)(ra; — E(nz)) -
Squaring, taking expectations and using independence yields

E{(Z5 E(X; | F5) — () Zia b(k)m)} < {2522 (n — J)}E(e3)
< Cr® 2, bk,
Thus I; = o(1) and the proof of (3) is complete.
Finally we need to establish (4). Observe
pi = EX;|Zy oo, Z5y) = j;llﬂzi~
Thus
E(35- p) = E(X5= (202 ﬂzi)z)
= L5 By, + Zis s 7s,72,)
< T3 (( = 1) + 20T b))
< Cr® S, b(iyr,?

= 0(1) .

This proves (4). Hence we can apply Corollary 1 and conclude that (24) is true,
completing the proof of the theorem.

ReEMARK. Theorem 2 is slightly stronger than Sevast’yanov’s result since he
needed to assume that max, ...,y 7, = o(1/n).
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