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ON THE UNIQUENESS AND NONUNIQUENESS OF
PROXIMITY PROCESSES
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We discuss the uniqueness of a class of infinite particle systems known
as proximity processes, with the aid of certain ‘‘dual’’ Markov chains. By
checking whether the dual ‘‘explodes,” i.e., attempts infinitely many jumps
in a finite time, and how it explodes when it does, it is possible in many
cases to determine whether or not there is more than one particle system
with given flip rates. We then use duality to find an example of a system
which is uniquely determined by its flip rates, but whose generator is not
the closure of the naive operator formed from these flip rates.

0. Introduction. Let (§,),.+ be a continuous time spin system (see [10] or
[3], for example) with configuration space & = {—1,1}", V' a countable set.
Each configuration ¢ = (£(x)),., represents an assignment of + and — “spins”
to the sites x of V. The dynamics of (£,) are prescribed by means of flip rates
¢ ={c,(§); xe V, § ¢ B}: intuitively, ¢,(£) gives the instantaneous rate of change
from &(x) to —§&(x) at site x when the system has value §. Certain of these pro-
cesses may be studied by constructing a “dual” Markov chain (€)ieg+> ON @
suitable denumerable state space E, such that

(1) Ee[0.¢)] = Eilg:,6)]-

Here E, and [, are the expectation operators for (&,) starting in £ and (&,) start-
ing in i respectively, and {g,} is a countable collection of continuous functions
on E which totally determine the evolution of (§,). The resultant “duality
theory” has been developed over the past several years, mainly by Vasershtein
and Leontovich [18], Holley and Liggett [9], Harris [6], Holley and Stroock [12],
and Holley, Stroock and Williams [13]. The systematic formulation of spin sys-
tem duality is due to Holley and Stroock. In[9], [6], [12], [5]and [17], assorted
special cases of (1) are used to derive ergodic theorems for various types of spin
systems. Our object in this paper is to discuss the uniqueness problem for a special
class of spin systems with duals, namely the proximity processes introduced by
Holley and Liggett in [9]. It was mentioned in [10] that uniqueness of such a
system having prescribed rates ¢ is connected with whether or not (£,) can “ex-
plode,” i.e., jump infinitely often in afinite time.! With the aid of an exploding
dual, the first example of two distinct Feller spin systems with the same rates
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! For want of a better term, we say that an ‘‘explosion’’ occurs at the time of the first bad
discontinuity. This will not necessarily mean that the total number of particles in the dual has
grown without bound.
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was constructed in [3]. More recently, Holley, Stroock and Williams [13] have
used duality to discuss nonuniqueness of a class of diffusions with one boundary
point on the d-dimensional torus. As an immediate consequence of the methods
of [13], we show in Section 1 that a Markovian spin system (£,) satisfying (1)
with respect to the multiplicative a = 1 basis { f,} and branching process with inter-
ference (,) is uniquely determined by its rates ¢ provided that (£,) does not
explode. Sufficient conditions for uniqueness and ergodicity, due to Holley and
Stroock [11], are easy corollaries.

The paper next discusses proximity processes (§,) with exploding duals. It
turns out that there are two types of explosion: “weak,” and “strong,” which
must be distinguished. In Section 2 a continuum of Feller systems with the same
rates is exhibited whenever (§,) hasa weakly exploding dual. As an illustration,
“voter models” on ¥ = N = {0, 1, ...} with rapidly exploding duals are men-
tioned. We show how to produce a wide range of behavior “at co” by exploit-
ing the boundary theory of birth and death processes and its implications for
the dual.

Then in Section 3 we show uniqueness for rates ¢ which are bounded and
bounded away from 0 if (£,) has only a strong explosion. The property of spin
systems known as the strong extension property (s.e.p.) is studied. We note that
a process with a dual enjoys this property if the dual’s expected total number
of jumps is uniformly bounded. We next give a uniqueness example with a
strongly exploding dual and without s.e.p. This example (Theorem 4), the main
result of the paper, settles a problem from [3] and [16]. It shows that there is
a pregenerator which uniquely determines a Markov spin system whose true
generator is not the minimal closure of this pregenerator. Additional con-
sequences of Theorem 4 are discussed at the end of Section 3.

1. Preliminaries. We outline the theory of spin systems, following most
closely the notation in [3] and [5]. Write 8 = {—1, 1}" (discrete product topol-
0gy), § = (§(x)),ey € B, Z; = the Borel g-algebra on E. & denotes the con-
tinuous functions on E topologized by the supremum norm || ||, and & consists
of those functions in & which depend on only finitely many sites in V. Note
that & = &, i.e., & isdense in €. Let ¢ = {¢,(£); xe V, & € B} satisfy 0 <
¢,(+) € & for each x. Given c, introduce the pregenerator G: .5 — & defined by

GA(§) = Zaev CEfE) — )]s
where ,
£0)=¢60) y#x
= —£®) y=x.

Put D = the right continuous functions with left limits from R* = [0, o) to &,
and let <% be the usual o-algebra on D. A spin system with rates c is given by
the collection (D, &Z, {P}icss (€.)1cr+), Where (§,) is the canonical coordinate
process with path space D and state space E. The measures P, should satisfy
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P.(B) Z.-measurable for each Be <7,

(2 P =¢) =1
and
3) f(§) — $tGf(§,)ds is a P,-martingale

forall § e E, fe & (cf. [10]). In this paper we will be largely concerned with
Markov spin systems, i.e., processes which satisfy the stronger condition:

G extends to a generator G° for a conservative Markov

semigroup (P");eg+ »
and Feller spin systems, i.e., Markov spin systems such that
“ Pt takes <% into itself.

As is customary, we often suppress most of the structure and think of (§,) as
the spin system. Holley and Stroock proved in [10] that there is always at least
one spin system (§,) with (continuous) rates ¢, and that if there is a unique sys-
tem (i.e., a unique collection {P,},.s satisfying (2) and (3)), then (4) is auto-
matic. What is more, a method of Krylov [14] (described in Remark (2.6) of
[10]) shows that there is always a Markov (§,) with given ¢, and that if there is
only one, then there is only one spin system. A useful condition which guaran-
tees uniqueness is

(5) SUP, ey Zyev SUP;ea ‘cx(ﬂg) - C,,(E)l < o0
(cf. [15], [3]).

Let 77 denote the collection of finite sets 4 C V, the empty set @ included.
Throughout this paper the letters 4, B and A will always represent finite subsets
of ¥, even when not explicitly identified as such. Endow 7 with the discrete
topology, and throw in an additional isolated point A to get E = 7, U {A}. This
will be the canonical state space for the dual process (§,). The path space is
D, @) defined analogously to (D, £#’). Measures for the dual will be P,, ex-
pectations IE,E The corresponding function space is © = the bounded functions
on &. Define [:(6) = (§(x) + 1)/2, xe V, § ¢ E. The multiplicative (a« = 1) basis
&, consists of all functions f,, 4e 7, given by f, = [[.ev [z (fo = 1) (cf.
[12]). Note that f, is simply the indicator of “all +1’s on 4.” It is easy to see
that the finite linear span of & is #. The basic assumptions one makes of the
flip rates ¢ which give rise to a proximity process ([9], [12]) are that

(6) Gf(§) = Iz >0 9.5 f5(§) 7.3€R, g,z R* for B+ x,
and that with ¢, = —gq,,,
(7) Ko =qs— Yipsa9es =0  forall xeV.

(Here and below we confound x with {x} whenever convenient.) Thus the rates
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¢ have the form

®) ®) = % |14 809 = %) T (£2) 70|

T

Note that (8) implies c,(+) € & for each fixed x.

Consider a process (§,) on the state space 2 with the following transition
mechanism. If ét = 4, then each xe A attempts to “branch” into a set B,
B + x, at rate q,5, and to send the entire system to A at rate x,. If the first
“occupied” site x to attempt such a transition chooses B, then the sites of
B n (A — x)° are added to the occupied set, and the sites of B N (4 — x) remain
occupied. If the first x to jump chooses A, then the system is absorbed at A.
Thus the states @ and A are traps. Define f, = 0. By imposing conditions on
the rates c for a spin system (§,) which ensure (5)—(8) and that the process (£,)
just described does not attempt infinitely many jumps in a finite time, it is shown
in [9] and [12] that for all £ 8, 4 ¢ 7,

) E:[f1(€)] = E.[£2,8)]-

This is the basic form of (1) we wish to consider. The process (£,) is a branching
process with interference (b.p.i.). Let G be its “Q-matrix.” Then (6) may be
rewritten as

(10) Gf.(€) = Gf()

where G operates in the subscript with ¢ fixed. To obtain (9) one wants

(11) Gf, (&) = Gf(§) forall 4,¢.

But it follows from the definition of G that

(12)> GfA = ZzeA(HyeA:y¢zfy)Gfx‘

Thus Gf,(§) can be computed using (10)—(12), and the matrix elements g, of
G can be read off. Moreover, £, = § s = —Gus + Y pesGas = Dipes £y = 0,

so Gis a proper Q-matrix. In fact, the corresponding chain (ét) is exactly the
b.p.i. described above. Interference corresponds to the reduction of terms in-
volving [§(x)]’=1 in (12). For details, and the formulation of more general
duality theory, the reader is referred to [12], [6], [5] and [17].

In this paper, a b.p.i. is any chain (£,) on the state space & and path space
(I@, gf’), governed by a Markov family {I@)g}geg, whose Q-matrix G is derived
from rates ¢ which satisfy (8) according to (10)—(12). Given a b.p.i. (£,), define
€, = the time of the nth jump (= oo if no such jump exists), » = 1. Introduce
the first explosion time { = lim,_, {,. By elementary Markov chain theory, G
uniquely determines the evolution of (&) up to time {. Let {P;}:.2 be the
Markov family of measures for the minimal process with pregenerator G,ie.,
the process which is absorbed at A at time {. If P = o) = 1 for all £¢ &,
then the minimal process is the unique chain with Q-matrix G
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Our first theorem states that the pregenerator G with rates ¢ uniquely deter-
mines (¢,) whenever the Q-matrix G for the b.p.i. uniquely determines (£,). It
relies on the following lemma, which gives a condition for uniqueness. Except
for the setting, the proofs are virtually identical to those given in [13] that (7)
and (8) of [13] imply uniqueness for the diffusions considered there. We there-
fore omit these arguments.

LemMma 1. Given flip rates ¢ = {c,(£)} which satisfy (1)—(8), let G be the
Q-matrix derived from G, and let (ét) be the minimal b.p.i. Introduce (Ay)%_,, an
increasing sequence of sets in 2, which exhausts V, and define ¢, = inf {¢: g, n
Ayt + @} If for every Markov spin system with rates c,

(13)  limy . EdELf, (Go)] oy <11=0  forall &6 1,

then there is a unique spin system with rates c, and it is a Feller process whose gen-
erator extends G.

(Note that it suffices to check (13) for Markov systems by Krylov’s result.)

THEOREM 1. Assume that c satisfies (1)—(8), and let (£,) be the b.p.i. with Q-
matrix G. If

pg(C:oo)zl for all éeg,
then there is a unique spin system with rates c, and it is Feller.

(To apply Lemma 1, note that lim,_ o, = { a.s. since the jump rates are
uniformly bounded on any given A,.)

ReMARK 1. Lemma 1 and Theorem 1 generalize in a straightforward manner
to the a-duals of [12] and more general dual processes. These generalizations
can be used to give probabilistic proofs of uniqueness and ergodic theorems.
For example, consider the results in Sections 6 and 7 of [10]. Condition (6.3)
there says that the dual jumps to A with at least a certain minimal positive
probability after a finite holding time in any state which is not a trap. It is
therefore trapped somewhere, whence { = co a.s. and uniqueness ensues by
Theorem 1. If, in addition, ¢, > O for all x € ¥ (in our setting), then either @
or A is reached after a finite number of jumps. This implies ergodicity, as in
[12], and corresponds to Theorem (7.4) of [10]. Finally, if we also have
inf,., £, = £ > 0, then the ergodicity is exponential because the b.p.i. goes to
A with at least rate £ from any state except ). An analogous argument yields
Theorem (7.10) of [10], or the more general Theorem (1.8) of [11]. Another
efficient method of obtaining these results may be found in [16].

A more intricate application of Lemma 1 will be given in Theorem 3.

Let us now turn to the question of nonuniqueness. Denote 4 = the cardi-
nality of 4. When { < oo, write é‘c_ = lim,_; Ne<r<c £,. Note that this set may
have infinite cardinality, and that it equals lim,_, £, by left limits of the path.
Say that { is a weak explosion time for (ét) if #éc_ < o0, and a strong explosion
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time if #6,_ = co. The remainder of the paper is devoted to studying the con-
sequences of these two types of explosion.

2. Weak explosions and nonuniqueness. The main result of this section,
Theorem 2, shows that a weakly exploding b.p.i. always leads to nonuniqueness
of the associated proximity process. The idea of using duality to get nonunique-
ness examples was proposed in [10], and exploited in [3] and [13].

THEOREM 2. Given ratesc for a proximity process, let {D;} be the minimal Markov
family with Q-matrix G. If ]ﬁgo(C < oo, #éc_ < o0) > 0 for some /foe@, then
there is a continuum of distinct Feller spin systems with rates c. More precisely, let
A be the maximal set in V such that A c &,_P; 4,-a.s. Then to each probability
measure z on (8, B s) there corresponds a Feller system of path measures {P,} for
a process with rates ¢, and {P,"} # {P,~} if my_p # Ty_s.

The idea is to consider various extensions of (ét) beyond {, and see with the
aid of the duality equation (9) which of these give rise to a spin system. For
clarity, we isolate the easy steps of the proof as a lemma.

LEMMA 2. Given rates c for a proxzmzty process, let (P?) be the semigroup of a

b.p.i. (§,) with Q-matrix G, where Ptfy(€) = Ey[ IXGIRN

(14) ZACDCAUB (—1)*(D—A)ptfn($) = 0
forall A,Be 7. AN B= @, t=0andéecB, then the duality equation
(15) P (E) = Pf.(6) Ae P, EeB,

gives rise t0 a well-defined Feller semigroup (P*) on & whose generator extends G,
and hence to a Feller proximity process (§,) with rates c.

Proor. There are seven steps; we omit some of the routine details.

(i) Define P* on &, by (15), and note that Pf,(§) = Pif,(§) = 1 because
@ is a trap for (§,). Thus P* is conservative.
(ii) Extend P! linearly from & to & .
(iii) Check that P is positive on &, To do this, note that any f > 0 in &~
is a positive linear combination of functions y,,(§) = the indicator of “all 1’s
on 4, all —1’son B,” 4,Be 7, AN B = . By Mobius inversion,

XaB = ZAchm;B (— 1)#(D_A)fn .

so (14) ensures that P'y,, = 0. The claim follows.

(iv) Extend P‘ uniquely to & by approximation. This is possible because P*
is a contraction on & by (i)—(iii).

(v) Verify that (P*) has the semigroup property by computing

P, (8) = Prfy(€) = PPYLE) = PPYuE) = PPSL(E) = PP,
and then extending from & to & to & by approximation.
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(vi) Show that the generator for (P*) extends G, i.e., that the Markov spin
system (§,) with semigroup (P*) has flip rates c. It suffices to check that

w — Gf.(&)]l0 as h |0 uniformlyin & foreach A4.

For fixed £ and A the limit is O because (P*) has Q-matrix G. The uniformity
in £ is easily verified.
(vii) Note that (P?) is Feller. To see this, let £Z be the modification of £ € &
given by
E3(x) = é(x) xeB
=1 else ,

and observe that

Pi8) — PLED = Bul£2,(6) — 2691 = 0
as B1 V by bounded convergence. Therefore P* takes & into &, and hence
(4) holds. The construction of {P,} from (P?) is standard.

Proor oF THEOREM 2. Given a probability measure = on (8, &), define P~
as follows. Use the Q-matrix G to determine the evolution of (EAt) up to time .
If there is a strong explosion at { put éc = A. In case of a weak explosion, let
é, =&, U, wheres), e 8 is a random element chosen independently according
to #. The possibility 7, = A is allowed; define A U & =A for all EcE. The
dual now proceeds from £, according to G until another explosion occurs. A
new independent 7), with the same distribution 7 is used to define the state at
the second explosion time as before, and so on. If the explosion times have a
finite limit point, then send the system to A at that time. The resulting family
of canonical measures {I[A)g”} is surely Markov with Q-matrix G. According to
Lemma 2, we need only check (14) in order to get a corresponding Feller spin
system {P,"} with rates ¢. To this end, fix 4, B, and construct a coupling of
#(4 U B) copies of (§,) on a common probability space (Q, Z, P), one copy
starting from each xe 4 U B. The mechanism of the coupling is quite simple:
all copies of the dual which are occupied at a given site x use the same ‘“‘ex-
ponential alarm clock” to decide when to attempt to jump. At explosion times,
all copies with simultaneous weak explosions use the same z-distributed random
state 7. Let (£,) denote the copy starting from x, and define

(16) étD = U:cep étw De 7.

The key observation is that (§,) obeys the transition law of the b.p.i. starting
from D. Letting & be the expectation operator for P, the sum in (14) may
therefore be rewritten as

E[ZACDCAUB (_ 1)#(D_A)fuxe,—_,g§(€)] = E[ZAch(AuB)nS”A (— 1)#(D_A)fu,epgf(‘s)] )

where S, = {x: £ = A}. If A n S, # @ the last term in brackets is 0. Other-
wise, again by Mobius inversion, it is an indicator. Namely, it equals 1 on
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{6: &(x) =1 for all xe U,ea &} N {§: 6(x) = —1 for some x ¢ §» whenever
yeBN S,y and equals 0 otherwise. Hence the expectation is nonnegatlve, as
desired. To finish the proof, let 4, and A be as in the statement of the theorem.
Then b o umquely determines r,_,. So if m,_, # «,_,, we must have
Ps (A cC &)+ P"’(A c &,) for some t > 0, Ae 77,. Let & e E be the configu-
ration with 1’s on 4 and —1’son ¥ — A4 to deduce from (15) that

EE[f1y(0] = E5 /601 # BX[/2,E0] = EELfa, (6] -
Thus P, +

REMARK 2. If V ={1,2, ---}, ¢,4s = —¢,, = 1*, then the nonuniqueness
example in [3] consists of the Feller families {IP;"} and {Pf"}, where 7*(Q) =
7=(A) = 1. The fact that the duality equation is positivity-preserving was treated
much too lightly there.

When (£,) has weak explosions, the continuations of Theorem 2 are by no
means the only ones which give rise to spin systems with rates ¢, at least in
general. We illustrate this point by considering flip rates for certain rapidly
exploding voter models. The ergodic theory of more well-behaved voter models
has been studied in some detail (e.g., in [9], [12], [5], [17]). Let V¥ =N = {0,

.-}, and let ¢ be of the form

e(§) = 2 [1 — &O0)E(1)];

Nlo

c,(§) = 2 [1 — paé(mE(n + 1) — ¢, E(mé(n — 1)] nzl,

2
for some r, >0, 0 < p, < 1, with ¢, =1 — p. Thereisa minimal b.p.i. for
these rates, which consists of birth and death processes (b.d.p.’s) on N, all with
jump rates r, and probabilities p, of a jump to the right, ¢, of a jump to the left,
from site n (p, = 1). These processes are independent except for the usual colli-
sion rule. If there is an explosion the entire system goes to A. The cardinality
of the dual is deterministically nonincreasing, so any possible explosion is weak.
Explosion occurs a.s. if and only if the one-particle dual, i.e., the (r,, p,)-b.d.p.
explodes a.s. To find additional ways of contlnumg (Et) beyond { we can take ad-
vantage of the bounday theory for b.d.p.’s (cf. [1], [2]). In fact, to each (r,, p,)-
b.d.p. whose absorption coefficient equals 0, there corresponds a distinct Feller
spin system with rates ¢. In simple cases, such spin systems have “waves” of 4-1’s
and — I’s “coming in from co.” But in general (£,) must have very complicated
behavior at oo, since the one-particle dual at oo reflects and makes infinitely
many jumps in time ¢, then goes to A after an exponential amount of Brownian
local time. We sketch the construction of (&,), since the argument leading to Theo-
rem 2 must be modified somewhat. Let ¥ = N U {oo}, 77, = finite subsets of
V, and temporarily redefine B = 97, U {A}. Let & be a copy, starting at x, of
the given (r,, p,)-b.d.p. Construct £,4, the dual starting from A, according to
the usual collision rule: two particles coalesce when they occupy the same site.
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Now let {I@’g}geg be the induced family of measures on the canonical path space,
and introduce the corresponding operators Pt. If the absorption coefficient is 0,
then the duality equation (15) makes sense without defining f; when co € §. The
proof of Lemma 2 goes through with virtually no change, and the coupling used
to get Theorem 2 can be altered to ensure that (16) defines the desired copies of
the b.p.i. The rest of the argument is the same.

The general problem of when (15) gives rise to a Feller semigroup, and the
more ambitious task of finding all systems with rates ¢, are undoubtedly difficult
even in this simple voter model case. A more complete analysis is available for
the class of Feller diffusions on the 1-dimensional torus considered in [13], where
a one-parameter family of chains (with reflection and extinction at co) are the
only possible duals.

REMARK 3 (added in revision). Two very recent papers treat a large class of
“additive” interacting particle systems which enjoy property (16) when con-
structed on an appropriate joint probability space. For this general context,
Bertein and Galves [0] give more details of the coupling in our Theorem 2.
Harris [7] constructs infinite additive systems directly with the aid of Poisson
flows. Both papers focus on infinite systems whose duals do not explode, but
the nonuniqueness construction used here extends in a straightforward manner
to any additive process with a weakly exploding dual. We suspect that the “graph-
ical representation” in [7] makes sense even for our ill-mannered voter models.

3. Strong explosions, uniqueness and s.e.p. The construction behind Theorem
2 shows that the minimal b.p.i. {P;} always gives rise to a Feller proximity pro-
cess via (15). It also suggests that it may be difficult to continue the b.p.i. be-
yond a strong explosion time without sending it to A, since EC_ U A is not in &
for any 4 e 77,. This intuition is essentially correct: if { < oo with positive
probability but the first explosion is strong with probability one, and if the flip
rates satisfy certain uniformity conditions, then it turns out that there is only
one system with rates c. Some estimates similar to the ones in the proof of our
next result have been used in [18], [6] and [12] to derive ergodic theorems.

THEOREM 3. Let c be rates for a proximity process, such that ‘
infa:eV infeea:é(x)=1 ca:(é) > 0 and Super Supeea:e(x)=—1 cx(f) < St

Assume that P ,( = oo or { a strong explosion) = 1 for all Ae %,. Then the pro-
cess (&,) derived from {I\E’I’e} by way of (15) is the unique proximity process with rates c.

Proor. By Lemma 1 it suffices to prove that
(17) B [Pe(é,_,y(x) = 1 forall xeé, ), o, < 1]
has limit 0 as N — oo for all 4, §, ¢t > 0. Majorize (17) by
(Ay)  Puloyelt—0,1)
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(Bx) + pA(aN <t—9, #éw = M) sup,z., sup,.,; Pe(§,(x) =1
for all xe€ B)
(Cy) + Pyloy < 1, #6,, < M)

for arbitrary d € (0, 7), M = 0. Choose ¢ > 0. Note first that
lim sup,,_., @A(UN e[t—90,1]) £ @A(aN €[t — 0, t] for infinitely many N)
= Pu(lelt—d,1).

Since { is the independent sum of the exponential variable {; and the remaining
time { — {,, the P 4-distribution of { is absolutely continuous on (0, co). Thus
we can choose 6 > 0so that lim sup,_., 4, < ¢/2. Next we take M large enough
that B, < ¢/2 for all N. The claim here is that B, = B,(M, ) — 0 as M — co.
This is intuitively clear, since by hypothesis there is a positive lower bound /
for the rate of flipping from 1 to —1 and a finite upper bound L on the rate of
flipping from —1 to 1, independent of x and §. Here is a rigorous proof based
on a rough estimate. Let f = f; be the indicator of “all I’s on B,” $B = M.
Apply (3) to f, then differentiate to get

PR _ g 16fe)]
ds

= Zaen B[ —¢u€0), f€) = 1] + Z.es Eelcu€0), f:€) = 1]
—MIPf(§) + L X.c 5 P°f(.£.)

—MIP'f(§) + L[1 — P*f(§)] -

By Gronwall’s inequality,

L M
P8 S —(Ml+L)s
f(E)_Ml-]-L +Ml—|—Le

A TIA

—0 as M — co,

uniformly in s > 6. (With a little more care one can show that P*f(£) goes to 0
exponentially in M.) This controls the second term of (B,); bound the first by
1 to establish the claim. Finally, with 6 and M as chosen, note that lim,__ C, =
P, < t, 86, < M) = 0, again by hypothesis. Thus the limit in N of (17) is
less than e, and uniqueness is proved.

REMARK 4. Theorem 3 generalizes easily to spin systems with a-duals,? addi-
tive processes etc. Note that the existence of a “minimal” spin system (£,) cor-
responding to {IP;} implies that convergence of (17) to 0 is necessary for unique-
ness. Moreover, if 1€ & is the configuration “all 1’s,” if ¢,(1) = 0 for all x,
and if {P,} is the Markov family obtained by stopping the minimal proximity
process when it hits 1, then quantity (17) computed with respect to P,” does not
tend to O if an explosion occurs with positive probability. Evidently the posi-
tivity condition cannot be dropped in Theorem 3.

2 When « = 0 one must assume that all the rates are uniformly bounded and bounded away
from 0. When a < 0, reverse the roles of +1 and —1 in the hypotheses.
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The pregenerator G with flip rates c is said to satisfy the strong extension prop-
erty (s.e.p.) if :

(18) the closure G of G is the generator of a Feller semigroup
(P)eers -

The remainder of the paper centers around a discussion of this property. Recall
that G satisfies graph (G) = graph (G) in € X %. Thus if G has domain Z(G)
and h e Z2(G), then there are functions f, € & such that ||z — f,|| — 0 and
||Gh — Gf,|| — 0. If G has s.e.p. then there is a unique spin system with rates
c. Tosee this, use Krylov’s theorem, the minimality of G among all generators
extending G, and the fact that a generator cannot have a proper extension which
is also a generator. The converse question—whether uniqueness implies s.e.p.—
is a problem which has been mentioned in [3] and [16], for example. We prove
in Theorem 4 that the answer is no, by constructing rates ¢ for which there is a
unique proximity process (§,), but such that G does not have s.e.p. First, though,
as motivation we mention a sufficient condition for a proximity process to have
s.e.p. Namely, by mimicking the argument leading to Theorem 1.3.6 in [16],
we can show that G has s.e.p. whenever

(19) SupAe 70 Z:=1 pA(Cn < OO) < o,

i.e., when the expected total number of jumps by the minimal b.p.i. is uniformly
bounded. Thus the processes described in Remark 1 have s.e.p. This was shown
already in [10] for @ = 0 duals. One can construct additional examples, though
they tend to be artificial. The proof makes use of the Hille-Yosida theorem,
which yields (18) whenever

(20) Range (A — G) D & for all sufficiently large 2

(see [14], [3]). The truncated generators introduced in [14] correspond to Q-
matrices for b.p.i.’s which are sent to A upon leaving A,. Condition (19) says
that if weAdeﬁne an operator L on probability densities on ﬁAby Lr = IE,[({S,, € ),
and on [Y(E) by linearity, then (1 — L)' is invertible in [%(E). This is the key
tool for checking that the truncated generators approximate G well enough that
(20) can be checked.

The fact that a condition as strong as (19) seems necessary to prove s.e.p. sug-
gested looking for a system with uniqueness but without s.e.p. among processes
with exploding duals. We therefore considered the simplest possible proximity
processes to which Theorem 3 is applicable, and which have very strong explo-
sions. This led to the example which follows. We do not know (a) whether
there is always s.e.p. when the dual does not explode, or (b) whether there can
be s.e.p. when the dual explodes strongly. Neither can we offer any additional
insights into the proof of Theorem 4, which is based on only the grossest of
estimates.
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THEOREM 4. Let V = N, and define flip rates ¢ by
() =0 if &)= —1
=1 if émy=1, 0<m<n+1
= 100"  else,
ne 2. Then there is a unique spin system with rates c, but the pregenerator G for
these rates does not have s.e.p.
ProoF. Observe that

100"

eu®) = 4

[T+ &(m) — 26(m)(1 — 100" p,....nsi(§)] 5

so the rates ¢ admit a b.p.i. with a very simple transition mechanism. A particle
at site n jumps at rate 100"*, choosing the set {0, 1, - .., n 4 1} with probability
1 — 100-"%, and sending (§,) to A with the remaining probability. Govern &)
by {If)g}. Then P 4(( < ©) > 0 whenever 4 = @, but the explosion must be
strong. In fact, éc_ = V whenever { < co. The uniformity conditions of Theo-
rem 3 also hold, so uniqueness follows from that result. Let (P*) be the unique
(Feller) semigroup for (£,), G*: D(G*) — & its generator. Define ¢ € & by

o(§) = 100~%  n, = min{m: &m) = —1} < o0
=0 E =1 = “all 1’s.”
To show that G does not have s.e.p. we will establish two claims:
(i) DG
(i) If fe & and |l¢ — f|| = 1§g» then ||G¢ — Gf][ > 15
Together, (i) and (ii) show that ¢ € D(G*) — D(G), so that G is not a generator.
To check (i), put A, = {0, 1, - - -, n}, then define G,: &, — & by

G, [4(§) = Lpca, 945 5(8) >

where ¢, are the jump rates for our b.p.i. Note that G, is bounded, extend to
&, and write P,! = e'». These are simply the truncated generators and semi-

groups mentioned earlier. Let &, = functions on & which depend only on
sites in A,. Consider ¢ € & given by

$(8) = (1 — G)p(®) it o= n 1
= —(14+ X, 100-%) if &=1.
To see that ¢ is continuous at 1, let &, be the configuration with I’son {0, 1, - - -, n}

and —1’son {n 4 1,n 4 2, ...}. Then a simple computation yields

lim_, ¢(§) = lim, ., $(§,) = lim,_, [¢(£,) — G, e(E4)]
= lim,_,, [100~+1* — $12-1(100-® — 100-+1?)

=0

— 1007(100-"* — 100-+1%)]
=¢).
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Now P,'¢(§) = P'¢(§) if n, < n 4 1, 50 PAY(1) = P,'Y(S,) = PY(E,) — Po(1),
by continuity of P¢. Thus P,'¢(§) — P'¢(§) for all £ ¢ E. Hence
(1 — G)g = {7 e tP'(§) di = 7 et lim, ., P,'(E) dr
= lim, ., {7 e~'P,'¢(§) dt = lim, o, (1 — G,)7'P(§) = ¢(5) »
&eB. Thus ¢ € D(G*), and G°¢ = ¢ — ¢. In particular,
(20) 1G°¢ll = Gep(1) = 1 + X, 1002

Claim (i) is proved, so we proceed to claim (ii). Fix fe &, for some n = 1,
lle — fIl < 1ho» and assume [|G'p — Gf|| < hg- Write Ah(§) = h(:£) — h(&),
i>0,he &, EcE. Weestimate || = |22 A, f(§,)] in two different ways to
get a contradiction. First,

|Z| = |GA€,) — 100™A, fi€,)| = |GfiE,)| — 100™A, f&,)| -

Now [Gf(E,)| = |G°0(&,)| — 135 = G.o(E,) — 135 > 1.98 for all n = 1. More-
over,

Gf(§.) — Gfiéa)l = | L1 A fiE,) + 10074, fi€,)
— Do A flEar) — 100708, A€, L)
= (100" — D)[A, fi5,)]

because fe & ,, and at the same time
GA€,) — Gf€a)| < 2/1G°¢ — Gf|| + |G*¢(€.) — G'¢(Sain)| < .03
We conclude that || = 1.98 — 100(.03) > 1.94. On the other hand,
|Z] = 2050 A f(8) — A fEI] + s [8: (6]
= 205 X35 A fEn) — ASE)] 4+ TS 184 (€0
= 2o 0550 1850 flEm) — B flE50)| + Lo 1A f(E)] -
Note that for 0 < i < j < oo, |4; f(;£;)| < 279*?; if not, then
Gf(:£,)| = | D48 A f(i&5) + 10098, f(i€5) + Tiheiia 10074, £(:6))|
= 100422-i+3) _ 2j100(j—1)2||f||
= 1007276+ — 2j1005-(|g]| + rhg)
> 3> |lG°¢ll + 155 by (20).
The same bound holds for |A; f(§;)| when j = 1, so
(DI =220 X35 27970 4+ Zind 27 + 20 — oll + lell < 1.65 .
This contradiction yields claim (ii), completing the proof of the theorem.
REMARK 5 (added in revision). Once uniqueness is established for rates c,

interest centers on the ergodic theory for the corresponding spin system, and in
particular on its invariant measures. Recall that p is invariant for (§,) if pP,' = p
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for all e R*, where P,! is the adjoint to P*. Equivalently, x is invariant if and
only if

21 {Gfdp =0 for all fe ID(G°).
In practice, one wants invariance of x to be implied by the naive condition
(22) {Gfdp =0 forall fe & .

It turns out that if g is a probability measure, then (22) implies (21) whenever
(€,) is uniquely determined by c¢. The proof of this follows easily from the con-
struction in the proof of Theorem 2.4 of Higuchi and Shiga [8]. For each finite
A C V they produce rates ¢, , (using the positivity of x and (22)) such that
llc,.s — €,/ > 0as A1V, ¢, , =0 for xe A% and such that p, = (projection of
¢ onto {—1, 1}4) x v, is invariant for the unique spin system {P, ,} with rates
¢, 4 where v, is any fixed probability measure on {—1, 1}y7-4. It follows from
Theorem 2.3 of [10] and uniqueness that for all fe &, ||P,'f — P!f]|— 0 as
A1 V,sothat§ Pfdp = limg,, § P'fdp, =lim,,, § Pfdp, =lim,, § fdp, =
{ fdp. However, this proof fails when p is a signed measure. In that case, one
must check a more general condition on G° to get (21), namely

(23) Range (G) = & .

In this connection, Stroock has pointed out that one can use the spin system in
Thoerem 4 to construct a system (no longer a spin system) where (23) fails and
yet the martingale problem is well-posed. Simply take the system in Theorem
4 and send it to a “cemetery” with exponential rate 1. The new pregenerator G
uniquely determines this system, and Higuchi and Shiga’s argument can be ex-
tended to show that (22) is sufficient for a probability measure to be invariant.
At the same time, there is a signed measure g satisfying (22) which is not invari-
ant. Presumably G and G both have more than one extension which generates
a signed semigroup, even though they have unique extensions generating a posi-
tive semigroup. Therefore, positivity must play an essential role in the proof of
Theorem 3. It is used only in the derivation of the estimate for By, in the step
just before Gronwall’s inequality.

The interest in Theorem 4 is that it demonstrates that in certain delicate situ-
ations a pregenerator may determine only one semigroup of probabilistic interest
(i.e., positive) and yet it may not determine one semigroup among all semigroups.
The martingale approach can see this, but the analytic theory cannot.

Acknowledgments. Thanks to Professors R. Holley, H. Kesten and D. Stroock
for their help.
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