The Annals of Probability
1978, Vol. 6, No. 1, 151-158

ON THE INCREMENTS OF MULTIDIMENSIONAL
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For a nondifferentiable random field {X;: t € R¥} with values in R4, it
is often easy to check that with probability 1 lim infs_; [| X5 — X;||/o(s, 1) =0
and lim sups—: || Xs — Xtl|/a(s, t) = oo for a.e. t, where 02(s, t) = E|| X, — Xi|%.
In this note we discuss the ‘‘proportion’’ of s’s near ¢ for which ||Xs; —
Xill/a(s, t) is small or large.

Let {X,, e R"} be an M-valued stochastic process, R" being N-dimensional
Euclidean space and (M, ||-||) a separable Banach space; (Q, #, P) denotes the
probability space. We assume that (¢, w) — X,(w) is measurable & ® T A
(&, A the Borel o-fields in R”, M respectively), that E||X,|[* < co for all ¢,
and that ¢%(s, t) = E||X, — X,||* is jointly continuous.

In this paper we will consider the approximate local behavior of the normalized
increments || X, — X,||/o(s, ). When M = R¢,d < N, and X, is nondifferentiable,
it is usually easy to check that with probability one, .

() timinf, X=Xl 0 and  tlimsup,_, e =Xl — o

a(s, ) o(s, 1)
for every ¢ or Z-a.e. t, where 4 is Lebesgue measure on <%, However, behavior
such as (1) provides no information on the “proportion” of s’s near ¢ for which
||X, — X,||/a(s, t) is small or large. Indeed, (1) can be arranged by altering X,()
on a countable set.

Let u be a positive, o-finite Borel measure on ZF, positive on open sets, and
let B(t, ¢) be the open ball centered at re RV of radius e. Let f{s) be a real,
“-measurable function. The approximate lower limit ap lim inf, , f(s) (relative to
¢ and the Euclidean topology) is the supremum of those v such that {s: f(s) < v}
has density 0 at +—i.e.,

lim, , #(B(:9) 0 (53 /() <o) _ g

p{B(t, €)}
The approximate upper limit is defined analogously. (See [2] and [7] for the role
of approximate limits, derivatives, etc., in classical and modern gnalysis.)
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For a large class of processes we will show that for each e R", with prob-

ability one:
. X, — X|| . [1X, — X4

2 a llmlnf_,H_‘-_—_‘_zo and ap limsup,_, "= "t — o .
@ e s 1) e Y
Obviously, (2) implies (1).

Before stating the main theorems, we give two examples; the first shows how
these theorems complement certain results in [3], [4] and [6].

ExampPLE 1. Let{X, = (X(?),- - -, X (), t € R"} be the d-dimensional Gaussian
random field with i.i.d. components, zero means, and covariance EX ()X (s) =
2| =+ |Is||* — ||t — $||*, 0 < a < 2. It follows from Theorem 1 of [6] that, if
N — adf2 <0,

X, — Xl _ o

3) lim,_
s =l

for A-a.e. t, a.s.

for any r > a/2. On the other hand, if N — ad/2 = ¢ > 0, the results of [3] yield

IIXs - Xt” — oo

4) ap lim,_,
( T

for A-a.e. t, a.s.

for r = «/2 4 ¢/d. Now for standard one-dimensional Brownian motion, i.e.,
a, N,d =1, it is not hard to show, using the zero-one law, that

(3) ap lim inf,_, I_)I(_’___.% = oo for A-a.e. t, a.s.
s —t

Finally, by Theorem 3 of this paper we find that for any N and d (in particular
when N = ad/2), ‘

X, — X))
6 ap lim inf,_, l_s-__‘_=0,
© R T e
ap lim inf, [1X, = Xl _ oo A-a.e., a.s.

s — e
It is clear that in some sense (6) represents the boundary case between (3) and (4).

EXAMPLE 2. Let W(s, 1), s, t€[0, 1], be the Yeh-Wiener process, i.e., the
mean 0, real Gaussian field on [0, 1]* with W(0, ) = O a.s., W(s,0) = O a.s., and
EW(s,, t,)W(s;, 1,) = min (s, 5,) - min (1, 1,) .

One can also view W as a one-parameter process with values in M = CJ[0, 1]:
W,: Q- C[0, 1], W(o)(t) = W(s, t, »).
From Theorem 1, then,
W5, 1) — W@ b)| _
a((s 1), (@, 8))
apliminf,, ., (W, ) — W@, B)| _ g .

(s, 1), (a, b))

ap lim sup, 1,1
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for each 0 < a, b < 1, where 0,%((s, 1), (a, b)) = st + ab — 2(s A a)(t A b). Also,

SUPygis [W(s, 1) — Wi(a, 1)] _ .,
|s — alt

ap lim sup,_,,

ap lim inf,_, *tPosts1 |I/II/(s, ) l: W@b)l _ o as.
s—a

Returning to the general case, our basic assumptions about X, will be

(A1) There exist measurable functions ¢,: RY — M and independent random
variables &, j = 1, 2, - - . such that for each ¢,

(a) Xy(o)=lim,_, 337, & (w)p,(¢) a.s. and
(b) lim,_, [|§,(s) — $5(n)ll/a(s, 1) = O
(A2) For each e R" and Q > 0 there are numbers ¢, > 0 such that
5 < P(IX, — Xl < Qo(s, ) S 1 —
for all s e B(t, ¢).
We note that the set of pairs (¢, ») for which Y7 & ()¢ (t) converges to X,(w)

is jointly measurable; hence, for almost every w we have X,(0) = X7 €,(0),(?)
for each te A4, p#(A4,°) = 0.

THEOREM 1. Suppose {X,} satisfies (A1) and (A2). Then for each te R", (2)
holds with probability one.

Note. For ¢, w, and Q > O fixed, the expression
o o) = 25 B9 [[Xw) = Xw)]| < Qa(s, 1)
p{B(t, €)}
need not have a limit as ¢ — 0. (See Remark (e).) To prove the theorem, we

must show that for each ¢ fixed, limsup, , g(¢) > 0 and lim inf, , g(¢c) < 1 for
all Q > 0, with probability one.

Proor. Fix te RY and define (for a.e. w):
X6, 0) = Limn (@000, Xalt, 0) = D E(0)6(0), m 20,
and
K™Q, n, o) = [p{B(t, 1/n)}]*pu{s € B(t, 1/n) 0 A,:
[|X™(s, w) — X™(¢, 0)]] < Qa(s, 1)}, n=1,0>0.
(Since p(4,%) = 0 a.s., we will ignore 4,° in what follows.) Further, define
G™(Q, ») = limsup,_., K™(Q, n, ), G™(Q, o) = liminf,_, K™(Q, n, ») .

We will show that, with probability one, G"(Q, 0) >0 for all Q and G%(Q, w) < 1
for all Q.

Now fix m >0, Q > 7 > 0, and w ¢ Q. By (Al)(b), there exists an integer
n, such that ||s — ¢|| < 1/n, implies || X, (s, ®) — X,(#, ®)|| < 7o(s, ). Hence,
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forn = nyand a.e. 0

pfsen(n L)ix - X = @ - nots, 0}

) ) — X — 11Xa(s) — XulO] < (@ — (s, 1)

1

Pen(e )
< pfseB(t ) IX(s) — X"l S Qa(s, 1)}
[se B (0 1) 1x7(s) — Xo() + 1Xu(s) — Xu(O)l] £ (@ + o, 0}

<u {seB(t, %) X, — X,J| < (Q + n)o(s, t)} .

Consequently, GY(Q — 7, 0) < G™(Q, ) < GY(Q + 7, w) and G(Q — », ) <
G™(Q, ) < GY(Q + 7, w). Since G%(+, ») and G*(+, w) are nondecreasing in Q,
each has at most countably many discontinuities. It follows (upon letting » | 0)
that for a.e. 0, GYQ, 0) = G"(Q, w) and GY(Q, w) = G™(Q, w) for all m, for all
but at most countably many Q’s. Now G™ and G™ being jointly measurable,
we then find, for i-a.e. Q > 0, that G%(Q, ») = lim,,__, G™(Q, 0), GYQ, 0) =
m,,_.,G"(Q, w) a.s
Therefore, for such Q, G° and G° are measurable with respect to the tail g-field
for the sequence {£,(w)}.
Finally,

EGYQ, w) = Elim inf, . KYQ, n, 0) < lim inf, ., EK(Q, , )

= liminf, ., [#{B(t, 1/m)}]7* § e 1 P(| X, — X,
< Qoa(s, ))p(ds) < 1 — 4,

for some 0 < d, < 1, where the last inequality uses (A2). Asaresult, for 2-a.e.
Q >0, GYQ, w) < 1 a.s., from which it follows—by Fubini’s theorem and the
monotonicity of G+, w)—that G(Q, ») < 1 for all Q a.s. As for G°, EG’ =
Elimsup,_,, K(Q, n, w) = limsup, .. EK(Q, n, ») = §, > 0, which leads to
G“(Q, ) > 0 for all Q a.s. This completes the proof.

We intend to apply Theorem 1 to multldlmensmnal Gaussian random fields
X(1) = {Xi()}eys te RY (i.e., M = R%. Roughly speaking, we will show that
(A1) and (A2) hold whenever a(s, t)/||s — t|| — oo and the components X,(, w)
are independent and each covariance has a suitable “spectral representation.”
The following lemma extends Theorem 1 of Klein [5]. We omit the proof, it
being an easy modification of Klein’s.

LEMMA 2. Let {X,, t € R"} be a real-valued, second-order process with mean 0
andlet R(t, s) = EX,X,. Suppose that there exists a locally compact Hausdor{f space
L and a g-finite, regular Borel measure = on L, finite on compacts, such that: (a)
there exists a family of real functions on L{g(t, +), t € R"} such that the finite linear
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combinations of the g(t, ) are dense in L*(r) and (b) (0/0s,)9(s, A) exists and is jointly
continuous forall (s,A) e R" x Land1 < k < n,and R(t,s) = §, 9(t, A)g(s, A)n(dA).

Then there exist real functions ¢(t), t€RY, and orthogonal random variables
§iw), j=1,2, .-, such that:

(i) ¢4(1) = E§; X, for all t;
(ii) Limsup, . [6,(s) — $,()|/|ls — #l] < oo for all 1;
(iii) {¢,} forms a complete orthonormal system in the reproducing kernel Hilbert
space H(R); and
(iv) E|X, — X7, &0, > 0asm— oo forall t.

If, in addition, {X,} is Gaussian, then &,,&,, - -+ may be taken independent and
standard normal .

As we shall see in the proof of Theorm 3, the conclusions of Lemma 2 hold
for any real, mean 0, Gaussian random field {X,, € R"} with stationary in-
crements.

THEOREM 3. Let {X,, t € RY} = {(X\(¢), X\(?), - - -, Xy(2)), € RY} be a mean 0,
d-dimensional, Gaussian random field with independent components. Assume further
that o(s, t)/||s — t|| — co as s — ¢t for all t, and that each component {X (1), t € R"}
has stationary increments. Then for each t € RY, (2) holds with probability 1.

Proor. First, we show that (i)—(iv) of Lemma 2 hold for {X,(#) — X;0),
te R} for each j = 1,2, - .., d. For simplicity, let j = 1.

It is well known (see e.g., [1], Theorem 3.1) that there exists a unique measure
7 on R\{0}

E(X,(1) — X(0)(Xy(5) — X,(0))
= (gl (€ — 1)(e*? — 1)n(dR) for all s, ¢
where 7 is a Lévy measure, i.e., with D = {Ae¢ RY: [[4]| = 1} and C = {1e R":
0 < (14 < 1,
n(D) < oo and So l|A|]*r(dA) < oo .

To apply Lemma 2, we choose L = R¥\{0}; now 7 is finite on compacts since
these are bounded away from co and 0. We need to show that the functions of
the form Y™, c,(e*i'* — 1)are dense in L*(x). To this end, let f(2) € L*(x) be or-
thogonal to each of the functions 2 — (e — 1), € RY, or what is the same,

(8) Vo frA) et — Da(dd) = §, f-(A)(e** — 1)n(d2) for all ¢

where f*, f~ are the positive and negative parts of f. Since f* and f~ are in
L¥(r):
Vo [IAIPf*()m(dR) = §e [1A1|f*(A)n(dR)
< (Yo [IRIP2(d)A(So (f*(A)'m(dR) < oo

$o f5(A)r(dR) = (1o (f5(A))7(dR)) (D))} < oo

and
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Hence f*(2)n(d2) and f~(2)r(d2) are Lévy measures. By (8) and the uniqueness
of Lévy measures, f+ = f~ w-a.e.

By Lemma 2, for each j = 1, 2, - - -, d there are independent standard normal
rv’s {£,;,}o,and real functions {$ ,}i., on R¥ such that, for each ¢, 337_, & (@) ;(7)
converges to X (¢, w) — X;(0, ) in mean square, and hence pointwise. Since
the components {X,}¢_, are independent, we can and do assume all the £,’s in-
dependent. To see that (Al) holds, define ¢, : RY — R* by ¢,(¢) = (0, - --, 0,
$4(1), 0, - - -, 0) where ¢ ,,(7) occupies the jth coordinate. Then for each 7,

X(w) — Xo(0) = X T Eulw)du(t)  as.

so that (Al) holds for {X, — X, te R"}, which is clearly enough for Theorem
1. (Al)(b) follows from conclusion (ii) of Lemma 2 together with the assump-
tion that o(s, t)/||s — || > co as s — 1.

By Theorem 1, to finish the proof, we need only check that (A2) holds. Let
0(s, ) = E(X;() — X;(s))’, 1 < j < d,andlet¢s) = ajs, 1)[d*(s, t) for||s — ||
small; here ¢ is fixed. Then

11X = X
a*(s, t)

$1 Y (@) (s)

where Y,,Y,, ..., Y, are independent and standard normal, and of course
21 ¢«s) = 1. Hence, for any Q > 0,

P{IX, — X\Jl = Qa(s, N} = P{Z5 Y¢,(s) = O}
But,
0 < Plmax,g;<, |Y,| < O} = P{X9-, Y%¢(5) < Q7
< Plmin,g;, [V, < 0} < 1,

which gives (A2).

REMARKS. (a) The zero-one law for subgroups implies that, for Gaussian
processes, the event ap lim sup,_,, || X, — X,||/a(s, f) < oo has probability 0 or 1.

(b) Theorem 2 remains valid if the components {X,(¢), € R"} have “mth
order stationary increments” (see [7]).

(c) If, in Theorem 3, the components gre identically distributed, but not

necessarily independent, one still obtains ap limsup,_, || X, — X,||/o(s, t) =
a.s. for all ¢, as follows:

pse B(t, &)1 Tdo, 1X,(s) — X, (O < Q%do(s, 1)
= pse B(t, ¢): [Xy(s) — X(n)] = Q(d)ta(s, )} 5
hence, since a(s, t)/||s — || — oo,
X, = X[ 5 aplimsup tM = oo a.s.
a(s, ) o ay(s, t)

(d) LetX, = (Xy(2),---, Xy(t)), t € R, where X, - . ., X; are independent, sym-
metric stable processes of index a;, - - -, a;, each with independent increments.

ap lim sup, _,,
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Define ¢ (s, t) = 0 by E(e™*¥®-¥®1) = exp{—g (s, f)jul*} and let ¢(s, t) =
31 6,(s, t). Then apliminf,_, ||X, — X,||/é(s, f) = O and ap lim sup,_, || X, —

Xi||/¢(s, 1) = oco. To see this note that the zero-one law still applies by the

independence of the increments and (A2) holds by the choice of ¢.

(e) We will show that for one-dimensional Brownian motion {W,: 0 < r < 1}
the limit in (7) does not exist for = 0 (and hence for any t = 0). 4 =, B will
mean that 4 and B have the same distribution, and m will denote Lebesgue
measure.

Fix QO > 0 and let

ze=1 m{0 < s < et [W(s)| < Ost)
€

- _:_ 6 1o, i(IW(S)|/52) ds = § 1o, o1(IW(e5)|/(e5)?) dis

=, 8 Loo(IW)|/si) s, since (W(es)/et: 0 < s < 1)
=, {Ms): 0 s 1}

Hence the rv’s Z,2, 0 < ¢ < 1, are identically distributed. If Z,2 convergesa.s.
(ase | 0),say to Z% wehave Z¢ =, Z2 =m{0 < s < 1: [W(s)] < Qs?}. Also,
by the independence of the increments of {IW,}, the zero-one law implies that
Z? is constant a.s., and hence a.s.:

Z° = EZ° = {} P(|W(s)| < Os')ds
=20(Q) — 1,

where ®(Q) is the standard normal distribution function. As a result, then,
Z2 = 20(Q) — 1 a.s. for all ¢, and consequently

§6 Lo, W(s)/st) ds = ¢(2D(Q) — 1) forall ¢, a.s.

Differentiating both sides above with respect to ¢, we arrive at a contradiction.
Hence, for each Q > 0,

P{lim, , Z° exists} = 0.
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